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Compilation techniques for energy-, code-size-, and run-time-eÆcient

embedded software

Peter Marwedel, Stefan Steinke, Lars Wehmeyer

Abstract|This paper is motivated by two essential char-
acteristics of embedded systems: the increasing amount of

software that is used for implementing embedded systems
and the need for implementing embedded systems eÆciently.

As a consequence, embedded software has to be eÆcient.
In the following, we will present techniques for generating
eÆcient machine code for architectures which are typically

found in embedded systems. We will demonstrate, using ex-
amples, how compilers for embedded processors can exploit
features that are found in embedded processors.
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I. Introduction

I
T is generally accepted that information technology will
�nd more and more applications in so-called embedded

systems. Embedded systems are systems in which infor-
mation processing is embedded into a larger system. For
such systems, information processing is typically not im-
mediately visible to the user and the main reason the user
is buying such a system is not information processing. Ex-
amples of embedded systems include:
� information processing in vehicles,

� consumer electronics,

� electronics in smart homes,

� process control.

One of the key characteristics of embedded systems is
the need for eÆcient realization. In this context, the term
eÆciency includes the following aspects:
� Low weight

� Low energy consumption

This requirement is expected to exist in the long run, due
to a variety of reasons. These include the facts that battery
technology is expected to improve only slowly, the need for
light-weighted batteries, and high costs for cooling power-
hungry processors.
� EÆcient use of the available communication bandwidth

It is expected that the increasing communication between
various information appliances will make bandwidth a very
scarce resource.
� Low cost

In the past, many embedded systems were implemented
using specialized hardware. Currently, however, there is
a trend for implementing most of the functionality of em-
bedded systems in software. This trend is motivated by the
need for 
exible solutions (products that can be updated
easily).
Considering trends and characteristics together, it is ob-

vious that processors and software for embedded systems
have to be eÆcient, at least for most of the applications.
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Accordingly, highly optimized processors are already be-
ing used in embedded systems. For such processors, code
compatibility with legacy code is less important than for
PC-like systems. Therefore, these processors use a larger
percentage of their functional units for performing useful
computations and a smaller percentage for providing code
compatibility. Examples of such processors include the
ARM processor (see www.arm.com) and many processors
for digital signal processing.

Looking at software generation techniques, the situation
is di�erent: software generation techniques for embedded
systems are still far from being satisfactory. Problems do
already start at the speci�cation level. How do we specify
an embedded system? Many proposals have been made
so far. Still, an ideal speci�cation language meeting all
requirements does not yet exist. A number of attempts for
meeting the most important requirements are shown in �g.
1.
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Fig. 1. Approaches for specifying embedded systems

According to Vaandrager [1], the size of embedded soft-
ware is doubling every two years. Consequently, since the
amount of embedded software engineers is limited, there
is a need for specifying embedded software at a high level
of abstraction, using compact speci�cations. This is re-

ected in the proposals for a real-time extension of the
uni�ed modeling language UML. At a slightly lower level,
StateCharts and SDL are being used, as well as real-time
extensions of Java. At still lower levels we �nd programs
written in C, VHDL and assembly languages. Note that C
is used as an intermediate step for most translations from
higher level descriptions into machine languages1. Hence,
the eÆcient generation of machine programs from higher
level speci�cations requires that C-compilers generating ef-
�cient code for embedded processors are available.

However, C-compilers for embedded processors are noto-
riously known for their poor code quality. Detailed studies

1Java is an exception in this context, but it would also bene�t from
knowledge about eÆcient translation techniques from C to machine
languages of embedded processors.



of the code quality of available compilers were made in
the context of the DSPStone project at the Technical Uni-
versity of Aachen [2]. In this project, manually generated
assembly language programs were compared with compiled
code. Some of the results are shown in �g. 2.

Fig. 2. Overhead of compiled code for ADPCM algorithm

According to �g. 2, data memory overhead for compiled
code can almost reach a factor of 5. Even worse, cycle
overhead can reach a factor of 8. That means, up to 7

8

of the useful processor cycles can be needed just to com-
pensate for the negative e�ect of the compiler. This is a
serious problem for battery-operated systems. As a result,
many embedded systems are still implemented in assem-
bly languages, partially because the energy consumption
of compiled code would be unacceptable.

Recently, many techniques aiming at avoiding the over-
head of compiled code have been proposed. First tech-
niques trying to reduce the energy consumption of pro-
grams will be described in section 2. In section 3 of
this paper, we will provide examples of optimization tech-
niques for DSP processors. Optimization techniques for
multimedia- and very long instruction word (VLIW-) archi-
tectures will be presented in sections 4 and 5 respectively.
Finally, there will be a conclusion.

II. Optimizations for low energy applications

Using electrical energy as eÆciently as possible is ex-
tremely important for mobile applications. Energy saving
compilers can help reducing the energy consumption. Pos-
sible compiler optimizations include the following:

� Exploitation of the memory hierarchy:

Small scratch pad memories are much more power eÆcient
than larger memories. In order to compare the two types of
memories, we have analyzed an ATMEL evaluation board
containing an ARM7TDMI processor core. The core comes
with a 4kB on-chip scratch pad memory. The board con-
tains a 512 kB o�-chip memory. For this con�guration, we
have measured current and energy requirements for execut-
ing instructions from the THUMB instruction set (16-bit
instructions). Energy savings for using the small memory
are signi�cant. For example, 32-bit register LOAD instruc-
tions consume only 14.2% of the electrical energy if both

the instruction as well as the data are fetched from the
scratch pad memory (see table I2).

TABLE I

Energy consumed by loading 32-bit data using a 16-bit

instruction

code data energy energy
[nJ] [%]

o�-chip o�-chip 115.8 100
o�-chip on-chip 51.6 44.56
on-chip o�-chip 76.5 66.06
on-chip on-chip 16.4 14.16

Therefore, a signi�cant amount of energy can be saved if
the existence of small scratch pad memories can be ex-
ploited by a compiler. For this purpose, we model each
basic block and each variable as a memory segment i. For
each segment, there is a corresponding size si. Using pro�l-
ing, we can compute the gain gi of moving segment i to the
scratch pad memory. Let xi = 1 if segment i is mapped to
the scratch pad memory and xi = 0 otherwise. Then, we
try to maximize

P
i
gi � xi while respecting the size con-

straint
P

i
si�xi � K whereK is the size of the scratch pad

memory. This problem is known as a knapsack problem.
Hence, we added a solver for the knapsack problem to our
compiler encc for the ARM processor. For some bench-
mark applications, we found energy reductions of about
45%, even though the size of the scratch pad memory was
just a few percent of the total size of the application.
� Modi�ed cost function in instruction selection:
Compilers typically use code size or cycle count as a cost
function during various optimizations. For energy saving
compilers, this cost function can be replaced by an estimate
of the required energy. According to our experience, this
typically results in a replacement of multiply instructions
by shifts and adds (since multipliers are very power hun-
gry), in a replacement of word load and store instructions
by byte load and store instructions and a more aggressive
use of the register �le to avoid energy consuming memory
accesses.
� Exploitation of register pipelining:
Register pipelining is an example of a technique that has
been used in compilers for a couple of years and that can
�nd a new application in low energy compilers. This partic-
ular optimization technique achieved an energy reduction
of up to 26 % for the ATMEL board [3]. It should be
worthwhile to also analyze the e�ect of other compiler op-
timizations on the energy consumed at run-time. Note that
optimizations that reduce execution time typically also re-
duce the consumed energy (since energy = power � time).
However, this is not necessarily true in all cases. We found
optimizations that increase run-time and still decrease en-
ergy by reducing the power by a major factor.
� Very long instruction word processors:
VLIW architectures are using very long instruction words
(> 64 bits) for controlling multiple functional units in par-

2Units have been corrected in the current, revised version.



allel. With VLIW architectures, the task of detecting par-
allelism is moved from run time to compile time, resulting
in more eÆcient system implementations. VLIW paral-
lelism can be used either to improve the performance over
sequential architectures or to reduce the clocking frequency.
The latter is extremely important for low power applica-
tions, since the reduction of the clocking frequency allows
a reduction of the supply voltage, which in turn reduces
the power consumption.
� Analysis of the in
uence of architectural decisions on en-

ergy consumption:
An analysis of the in
uence of architectural parameters on
the energy consumption can be used for optimizing archi-
tectures for certain applications or for application domains.
The in
uence of the size of the register �le on the energy
consumption was studied by Jain et al. [4]. Similar studies
for other architectural parameters will be very useful.

Compiler optimization for low energy applications is still
a new topic and we expect signi�cantly more results in this
area.

III. Compilers for DSP processors

Processors for digital signal processing (DSP) come with
a variety of special characteristics [5] including, for exam-
ple:

� multiply/accumulate instructions,
� specialized register �les,
� multiple arithmetic units,
� specialized DSP addressing modes,
� specialized address generation units,
� saturated arithmetic.

Compilers for DSP processors have to exploit these fea-
tures in order to generate eÆcient code. Techniques for
doing this can be very nicely demonstrated using address
generation units as examples. Many DSP processors con-
tain address generation units (AGUs) which are directly
connected to the address input of the data memory (see
�g. 3).
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Fig. 3. AGU using special address registers

Addresses which are available in address registers do not
need to be generated. They can be used in register-indirect
addressing modes. This saves machine instructions, cycles
and energy. In order to increase the usefulness of address
registers, instruction sets typically contain auto-increment
and -decrement options for most instructions using address
registers. This possibility of generating addresses "for free"

has an important impact on how variables should be laid
out in memory. Fig. 4 shows an example.
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Fig. 4. Comparison of memory layouts

We assume that in some basic block, variables a to d are
accessed in the sequence (b,d,a,c,d,c). Accessing these
variables with register-indirect addressing requires, �rst of
all, loading the address of b into an address register (see �g.
4, left). Assuming that, for the time being, we just have a
single address register A, we will then have to update the
address register to point to variable d. This requires adding
2 to register A. For the next access we have to subtract 3.
Auto-increment and -decrement modes can only be used for
the last two accesses. In total, 4 instructions for calculating
addresses are needed.
In contrast, for the layout in �g. 4 (right), 4 address

calculations are auto-increment and -decrement operations
which will be executed in parallel with some operation in
the main data path. Only 2 cycles are needed for other
address calculations.
How do we generate such clever memory layouts? Algo-

rithms doing this typically start from an access graph (see
�g. 5).
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Fig. 5. Memory allocation for address register A

Such access graphs have one node for each of the vari-
ables and have an edge for every pair of variables for which
there are adjacent accesses. The weight of such edges corre-
sponds to the number of adjacent accesses to the variables
connected by that edge.
Variables connected by an edge of a high weight should

preferably be allocated to adjacent memory locations. The
number of address calculations saved this way is equal to
the weight along the edge. For example, if c and d are
allocated to adjacent locations, then the last two accesses
in the sequence can be implemented with auto-increment
and -decrement operations.
The overall goal of memory allocation is to �nd a lin-

ear order of variables in memory maximizing the use of
auto-increment and -decrement. This corresponds to �nd-
ing a linear path in the variable access graph of maximum
weight. Unfortunately, the maximum weighted path prob-
lem in graphs is NP-complete. Hence, it is common to
use heuristics for generating such paths [6], [7]. Most of



them are based on Kruskal's spanning tree heuristic. They
start with a graph with no edges and then incrementally
add edges with decreasing weight, always keeping the out-
degree of all nodes to at most 2. The order of the variables
in memory will then correspond to the order of the vari-
ables along the linear path.
The algorithm just sketched only covers a simple case.

Extensions of this algorithm cover more complex situations,
such as:
� n > 1 address registers [8],
� also using modify registers present in the AGU [8], [9],
� extension to arrays [10],
� larger auto-increment and -decrement ranges [7].
Memory allocation, as described above, improves both

the code-size and the run-time of the generated code. Other
optimization algorithms that have been proposed exploit
other architectural features of DSP processors, such as:
� multiple memory banks [11],
� heterogenous register sets [12],
� modulo addressing,
� instruction level parallelism [13],
� multiple operation modes [14].
In addition, phase coupling techniques are required in

order to cope with the irregular data paths of DSPs. Com-
bining the optimization algorithms developed so far, it has
been possible to come up with compilers with zero (see �g.
6 [15]) or even negative overhead of compiled code, at least
for some processors.
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Fig. 6. Improvements for DSP code generation

IV. Optimizations for Multimedia-Architectures

Multimedia architectures exploit the fact that most pro-
cessors come with a word-length corresponding to several
color or audio values. For example, in the Pentium MMX
architecture, four 16-bit entities can be stored and pro-
cessed in a single 64-bit register. Four variable pairs are
added at a time, instead of just one (see �g. 7).
A very challenging task is to use this feature in compilers.

Only few algorithms have been described so far [16], [17],
[18].

V. Optimizations for VLIW-Architectures

VLIW architectures require special compiler optimiza-
tions:
� Due to the supported parallelism, parallel access to regis-
ter �les must be available. This is not easy, since processors
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Fig. 7. Functionality of MMAdd instruction

such as the TMS C6xx family allow up to 8 operations to
be started per cycle. Feeding these operations with a suÆ-
cient amount of register contents from the same register �le
would require a register �le with many ports. These can
hardly be implemented. Hence, the register �le is split into
two and each of the simpler register �les has to provide the
arguments for up to four operations at a time (which still
is quite challenging). Four functional units are connected
to each of the two simpler register �les (see �g. 8).
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A key optimization required for C6xx compilers is to al-
locate, at compile time, the functional unit that should
execute a certain operation. This implies a partitioning of
the operations into two sets [19], [20].
� VLIW processors frequently come with branch delay
slots. For VLIW processors, the branch delay penalty
is signi�cantly larger than for other processors, because
each of the branch delay slots could hold a full instruc-
tion packet, not just a single instruction. For example,
for the C6xx, the branch delay penalty is 5 � 8 = 40 in-
structions. In order to avoid this branch delay penalty,
most VLIW processors support predicated execution for a
large number of condition code registers. Predicated exe-
cution can be employed for eÆciently implementing small
IF-statements. For large IF-statements, however, condi-
tional branches are more eÆcient, since these allow mutual
exclusion of THEN- and ELSE-branches to be exploited
in hardware allocation. The precise tradeo� between the
two methods for implementing IF-statements can be found
with proper optimization techniques [21], [22], [23]
� Due to the large branch delay penalty, in-lining is an-
other optimization that is very useful for VLIW processors.
Traditional in-lining techniques rely on the user identify-
ing functions to be in-lined. This is a problem in systems
on a chip. For such systems, the size of the instruction
memory is very critical. Hence, it is important being able
to constrain the size of the instruction memory and to let



the compiler �nd out automatically which of the functions
should be in-lined for a certain size of the memory. Two
approaches for doing this are known [24], [25].

VI. Conclusion

Currently available compilers typically generate poor
code for DSP, multimedia- and VLIW processors since they
mostly do not exploit the special hardware characteristics
for these processors. In this paper, we have provided a brief
overview over new optimization techniques which aim at
making assembly language programming of embedded sys-
tems obsolete. In addition to reducing the code size (which
is very important for systems on a chip), new techniques
for reducing the energy consumption of mobile software are
being designed.
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