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ABSTRACT
One important problem in code generation for embedded
processors is the design of eÆcient compilers for ASIPs with
application speci�c architectures. This paper outlines the
design of a C compiler for an industrial ASIP for telecom ap-
plications. The target ASIP is a network processor with spe-
cial instructions for bit-level access to data registers, which
is required for packet-oriented communication protocol pro-
cessing. From a practical viewpoint, we describe the main
challenges in exploiting these application speci�c features
in a C compiler, and we show how a compiler backend has
been designed that accomodates these features by means of
compiler intrinsics and a dedicated register allocator. The
compiler is fully operational, and �rst experimental results
indicate that C-level programming of the ASIP leads to good
code quality without the need for time-consuming assembly
programming1 .

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors|code gen-
eration

General Terms
Algorithms, Experimentation

Keywords
embedded processors, compilers, network processors

1. INTRODUCTION
The use of application speci�c instruction set processors
(ASIPs) in embedded system design has become quite com-
mon. ASIPs are located between standard "o�-the-shelf"
programmable processors and custom ASICs. Hence, ASIPs
represent the frequently needed compromise between high
eÆciency of ASICs and low development e�ort associated

1Publication: LCTES, Snowbird, Utah, June 2001.

with standard processors or cores. While being tailored to-
wards certain application areas, ASIPs still o�er programma-
bility and hence high 
exibility for debugging or upgrading.
Industrial examples for ASIPs are Tensilica's con�gurable
Xtensa RISC processor [1] and the con�gurable Gepard DSP
core from Austria Micro Systems [2].

Like in the case of standard processors, compiler support
for ASIPs is very desirable. Compilers are urgently required
to avoid time-consuming and error-prone assembly program-
ming of embedded software, so that fast time-to-market and
dependability requirements for embedded systems can be
met. However, due to the specialized architectures of ASIPs,
classical compiler technology is often insuÆcient, but fully
exploiting the processor capabilities demands for more ded-
icated code generation and optimization techniques.

A number of such code generation techniques, intended to
meet the high code quality demands of embedded systems,
have already been developed. These include code genera-
tion for irregular data paths [3, 4, 5, 6, 7], address code
optimization for DSPs [8, 9, 10, 11], and exploitation of
multimedia instruction sets [12, 13, 14]. It has been shown
experimentally, that such highly machine-speci�c techniques
are a promising approach to generate high-quality machine
code, whose quality often comes close to hand-written as-
sembly code. Naturally, this has to be paid with increased
compilation times in many cases.

While partially impressive results have been achieved in code
optimization for ASIPs in the DSP area, less emphasis has
been so far on a new and important class of ASIPs for bit-
serial protocol processing, which are called Network Pro-
cessors (NPs). The design of NPs has been motivated by
the growing need for new high bandwidth communication
equipment in networks (e.g. Internet routers and Ethernet
adapters) as well as in telecommunication (e.g. ISDN and
xDSL). The corresponding communication protocols mostly
employ bitstream-oriented data formats. The bitstreams
consist of packets of di�erent length, i.e. there are variable
length header packets and (typically longer) payload pack-
ets. Typical packet processing requirements include decod-
ing, compression, encryption, or routing.

A major system design problem in this area is that the re-
quired high bandwidth leaves only a very short time frame
(as low as a few nanoseconds) for processing each bit packet
arriving at a network node [15]. Even contemporary high-



end programmable processors can hardly keep pace with the
required real-time performance, not to mention the issue
of computational eÆciency, e.g. with respect to power con-
sumption.

There are several approaches in ASIC design that deal with
eÆcient bit-level processing. In [16] it is shown that narrow
bitwidth operations are detectable in hardware at runtime.
The processor uses the knowledge about the bitwidth of an
operation either to reduce power consumption or to increase
performance. Furthermore it is possible to identify a signif-
icant number of unused bits at compile time. According to
[17] up to 38% of all computed most signi�cant bits in the
SpecINT95 benchmarks are discarded. Therefore, for eÆ-
cient use of hardware operations, reduced bitwidth applica-
tion speci�c processors might achieve a reasonable saving on
hardware resources. The approaches in [18, 19, 20] use infor-
mation on bitwidth of operands for reducing the size of the
datapath and functional units in a recon�gurable processor.

All these solutions require highly application speci�c hard-
ware. On the other hand, the design of hardwired ASICs is
frequently not desirable, due to the high design e�ort and
low 
exibility. As a special class of ASIPs, NPs represent
a promising solution to this problem, since their instruction
sets are tailored towards eÆcient communication protocol
processing. The advantage of this is exempli�ed in the fol-
lowing.

Since the memories of transmitters and receivers normally
show a �xed wordlength (e.g. 8 or 16 bits), a relatively ex-
pensive processing may be required on both sides when using
standard processors (�g. 1): At the beginning of a commu-
nication the packets to be transmitted are typically aligned
to the word boundaries of the transmitter. For storing these
words into the send bu�er, they have to be packed into the
bitstream format required by the network protocol. After
transmission over the communication channel, the packets
have to be extracted again at the receiver side, so as to
align them to the receiver wordlength, which may even be
di�erent from the transmitter wordlength.

Obviously, this data conversion overhead reduces the bene-
�ts of the bitstream-oriented protocol. In contrast, NPs may
be designed to be capable of directly processing bit packets
of variable length, i.e. in the form they are stored in the re-
ceive bu�er. This feature largely reduces the data transport
overhead.

NPs are relatively new on the semiconductor market. There
are only a few standard chips (e.g. from Intel and IBM), and
several in-house designs (see the overview in [15], which also
describes NP development e�orts at STMicroelectronics).
In this paper, we focus on a speci�c machine, the In�neon
Technologies Network Processor [21], for which an ANSI C
compiler has been developed within an industrial project.

The design of a C compiler for the In�neon NP has been an
important goal in order to avoid time-consuming assembly
programming and to ensure a relatively compiler-friendly ar-
chitecture by means of "processor/compiler codesign". As
also observed in [15], this approach turns out to be essential
in order to avoid an expensive compiler/architecture mis-
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Figure 1: Communication via bitstream-oriented protocols

match right from the beginning.

However, eÆcient compiler design for NPs is at least as chal-
lenging as for DSPs, since the dedicated bit-packet oriented
instructions are not easily generated from a high-level lan-
guage like C. In contrast to the approach taken in [15], which
is based on the retargetable FlexWare tool suite [22], we de-
cided to develop a nearly full custom compiler backend. This
is essentially motivated by the need to incorporate C lan-
guage extensions and a dedicated register allocator, which
will become clear later. Another approach related to our
work is the Valen-C compiler [23], a retargetable compiler
that allows the speci�cation of arbitrary bitwidths of C vari-
ables. However, there is no direct support for NP applica-
tions.

The purpose of this paper is to show how a complete C
compiler for an advanced NP architecture has been imple-
mented, and to describe the required new code generation
techniques. We believe that these or similar techniques can
also be used for further NP architectures, for which a grow-
ing compiler demand may be expected in the future.

The remainder of this paper is structured as follows. In sec-
tion 2, the In�neon NP architecture and its instruction set
are described in more detail. Section 3 outlines the problems
associated with modeling bit-level processing in the C lan-
guage. The next two sections describe the actual compiler
design, which is coarsely subdivided into frontend (section
4) and backend (section 5) components. Experimental re-
sults are presented in section 6. Finally we give conclusions
and mention directions for future work.

2. TARGET ARCHITECTURE
Fig. 2 shows the overall architecture of our target machine,
the In�neon NP [21]. The NP core shows a 16-bit RISC-like
basic architecture with special extensions for bit-level data
access. This principle is illustrated in �g. 3.

The NP instruction set permits performing ALU computa-
tions on bit packets which are not aligned to the proces-
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sor wordlength2 . A packet may be stored in any bit index
subrange of a register, and a packet may even span up to
two di�erent registers. In this way, protocol processing can
be aligned to the required variable packet lengths instead
of the �xed machine wordlength. However, this packet-level
addressing is only possible within registers, not within mem-
ory. Therefore, partial bitstreams have to be loaded from
memory into registers before processing on the ALU can
take place (�g. 4).

Register FileMemory

ALU

Figure 4: Data layout in memory and registers: Bit packets
are not aligned to memory or register wordlengths

In order to enable packet-level addressing of unaligned data,
the NP instruction set permits the speci�cation of o�sets
and operand lengths within registers. This is shown in �gs.
5 and 6: A bit packet is addressed by means of the corre-
sponding register number, its o�set within the register, and
the packet bit width. If o�set plus width are larger than
the register wordlength (16 bits), then the packet spans
over two registers (without increasing the access latency,
though). Especially this feature is very challenging from a

2Also some standard processors, such as the Intel i960 pro-
cessor family, support bit-oriented data access, however
without corresponding arithmetic capabilities.

compiler designer's viewpoint. The width of argument and
result packets must be identical, and one of the two argu-
ment registers is also the result location of any ALU oper-
ation. Therefore, two o�sets and one width parameter per
instruction are suÆcient.

Register
number

Offset
within
register

CMD Reg1.Off, Reg2.Off, Width

Command
Assembly Width of both

operands

Figure 5: NP assembly instruction format
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Figure 6: Packet-level addressing within registers

3. BIT PACKET PROCESSING IN C
Although possible, the description of bit packet-level ad-
dressing in the C language is inconvenient, since it can only
be expressed by means of a rather complex shift and mask-
ing scheme. An example is given in �g. 7, which shows a
fragment of a GSM speech compression algorithm (imple-
mentation by the Communications and Operating Systems
Research Group at the TU Berlin). Here, some pointer c
is used to traverse an array of unaligned bit packets as has
been shown in �g. 4.

gsm_byte * c;
word xmc[8];

xmc[0] = (*c >> 4) & 0x7;

xmc[1] = (*c >> 1) & 0x7;

xmc[2] = (*c++ & 0x1) << 2;
xmc[2] |= (*c >> 6) & 0x3;

xmc[3] = (*c >> 3) & 0x7;
xmc[4] = *c++ & 0x7;

xmc[5] = (*c >> 5) & 0x7;
xmc[6] = (*c >> 2) & 0x7;

xmc[7] = (*c++ & 0x3) << 1;

xmc[7] |= (*c >> 7) & 0x1;

Figure 7: Bit packet processing example from GSM speech
compression

Obviously, this is not a convenient programming style, and
the situation becomes even worse in case of multi-register
packets. The code readability (and thus maintainability)
is poor, and furthermore the masking constants generally
make the code highly machine-dependent.



3.1 Use of compiler-known functions
As outlined in section 2, the NP instruction set allows to
avoid these costly shift and mask operations by means of
special instructions for packet-level addressing. In the C
compiler, bit packet manipulation is made visible to the
programmer by means of compiler-known functions (CKFs)
or compiler intrinsics. The compiler maps calls to CKFs
not into regular function calls, but into �xed instructions
or instruction sequences. Thus, CKFs can be considered as
C-level macros without any calling overhead. The CKF ap-
proach has also been used in several C compilers for DSPs,
e.g. for the Texas Instruments C62xx.

Using CKFs, the programmer still has to have detailed knowl-
edge about the underlying target processor, but readability
of the code is improved signi�cantly. In addition, by provid-
ing a suitable set of simulation functions for the CKFs, C
code written for the NP is no longer machine-dependent but
can also be compiled to other host machines for debugging
purposes.

We illustrate the use of CKFs with a simple example. Con-
sider a case, where we would like to add the constant 2 to
a 7-bit wide packet stored in bits 2 to 8 of some register
denoted by the C variable a. In standard C this can only be
expressed by means of a complex assignment as follows:

a = (a & 0xFE03) | ((a + (2<<2)) & 0x01FC)

On a standard processor, this would translate into a rela-
tively large instruction sequence. In contrast, the NP can
implement the entire assignment within a single instruction.
For this purpose, we introduce a packet access (PA) CKF as
shown in �g. 8. The CKF directly re
ects the packet-level
NP instructions illustrated in �gs. 5 and 6. The Operator
parameter selects the operation (e.g. ADD, SUB, SHIFT,
. . . ) to be performed on the arguments V arName1 and
V arName2. In addition, the required intra-register o�sets
and the packet bitwidth are passed to function PA.

CKF Name

Operator name Offset of the

PA(int Operator, int VarName1, int Off1, int VarName2, int Off2, int Width);

packet width

Name of result
and first operand

Name of the
second operand

Offset of the packet
second packetwithin the first operand

Figure 8: Format of compiler-known function PA

Using function PA, the above example can be expressed very
simply in C as follows:

int a, b;
...

b = 2;

PA(PA_ADD, a, 3, b, 0, W7);

Here, PA ADD (selecting an ADD instruction) and W7
(specifying a bitwidth of 7) are de�ned as constants in a

C header �le. The scalar variables a and b are mapped to
registers in the assembly code by the register allocator.

3.2 Bit packet access in loops
As exempli�ed above, CKFs provide an elegant way to re-
duce the description e�ort of bit packet processing in C.
Most urgently, CKFs are required in case of bit packet ar-
rays, that are indirectly accessed within loops, so as to avoid
unacceptable quality of compiler-generated code.
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Figure 9: Array of bit packets

Consider the example in �g. 9, where we have to process an
array of 8 packets, each of 10 bit length. The bit packet
array in turn is stored in an array of 5 16-bit registers (R0
- R4). As a consequence, the bit packets are not aligned to
the register wordlength, and some packets even cross register
boundaries.

Suppose, we want to compute the sum over the bit packets
within a loop. In standard C, this would require code as
shown in �g. 10. Due to the unaligned bit packets, the
register �le pointer elem must not be incremented in every
loop iteration, but only if a bit packet crosses a register
boundary. Therefore, control code is required within the
loop, which is obviously highly undesirable with respect to
code quality.

int A[5];

int sum = 0,offset = 0,elem = 0, bp;
for (bp = 1; bp <= 8; bp++)

{
if(offset+10<=16)

sum += (A[elem] >> offset) & 0x03ff;

else
sum += (A[elem]>>offset)

| (((A[elem+1]<<(16-offset))& 0x03ff );
offset += 10;

if (offset>15) { elem++; offset -= 16; }
}

Figure 10: Bit packet array access in a loop

In order to avoid such overhead, the NP instruction set ar-
chitecture provides means for indirect access to unaligned
bit packet arrays via a bit packet pointer register. In the



compiler, we again exploit this feature by CKFs. The mod-
i�ed C code with CKFs for the above sum computation ex-
ample is given in �g. 11. The array A is declared with the
C type attribute register. This attribute instructs our com-
piler backend to assign the whole array to the register �le.
In contrast, a regular C compiler would store the array (like
other complex data structures) in memory. This concept of
register arrays is required, since the NP machine operations
using packet-level addressing only work on registers, not on
memory.

The variables PR1 and PR2 are pointers. By being operands
of the CKF INIT they are introduced to the backend as
pointers to bit packets. The backend uses the knowledge
about which pointer belongs to which element/array for life
time analysis in the register allocation. In the example, PR2
is used to traverse the di�erent bit packets of array A, while
PR1 constantly points to the sum variable.

If the number of physical registers is lower than the number
of simultaneously required register variables, spill code will
be inserted. The register allocator uses the names of the
pointer registers in such a case to identify the register ar-
rays which have to be loaded into the register �le for a given
indirect bit packet operation. The INIT CKF translates to
assembly code as the load of a constant into a register. In
this constant the name of the register, the o�set, and the
width of the bit packet where the pointer points to is en-
coded. In the example from �g. 11 the pointer PR2 points
to the �rst element of the bit packet array. The name of
the register where the bit packet is located is not known
before register allocation. Therefore the backend works on
symbolic addresses before register allocation. The symbolic
addresses are automatically replaced after the register allo-
cation phase. PAI(ADD,...) is the CKF for a single indirect
addition, like in the C expression "*p + *q". The backend
creates a single machine operation for this CKF. In order to
keep the number of CKFs low, we specify the arithmetic op-
eration as the �rst parameter of the CKF instead of having
a dedicated CKF for each operation.

The CKF INC denotes the increment of a bit packet pointer.
Like the increment of a pointer in ANSI C the pointer will
point to the next array element after the call to INC. Be-
cause the NP supports bit packet pointer arithmetic in hard-
ware, this requires again only a single machine instruction,
independent of whether or not advancing the pointer re-
quires crossing a register boundary.

Obviously, the source code in the example is speci�ed in a
very low level programming style. However, the programmer
still gets a signi�cant bene�t from use of the compiler. First
of all, it permits the use of high level language constructs,
e.g. for control code and loops. In addition, address genera-
tion and register allocation are performed by the compiler,
which keeps the code reusable and saves a lot of development
time.

4. FRONTEND DESIGN
Like most other compilers, the NP C compiler is subdivided
into a frontend and a backend part. The frontend is respon-
sible for source code analysis, generation of an intermedi-
ate representation (IR), and machine-independent optimiza-

register int A[5];

int *PR1, *PR2;
...

int sum = 0;
INIT(PR1, sum, 10);

INIT(PR2, A, 10);

for (i = 1; i <= 8; i++)
{

PAI(ADD, PR1, PR2);
INC(PR2);

}

Figure 11: Bit packet array access with CKFs

tions, while the backend maps the machine-independent IR
into machine-speci�c assembly code (see section 5).

As a frontend, we use the LANCE compiler system devel-
oped at the University of Dortmund [28]. We give a brief
description here for sake of completeness. LANCE is a
machine-independent, optimizing C frontend system, that
includes a backend interface for retargeting to di�erent pro-
cessors. There is, however, no support for automatic re-
targeting. The current version LANCE V2.0 comprises the
following main components:

ANSI C frontend: The C frontend analyzes the C source
code and generates a low-level, three address code IR.
In case of syntax or semantical errors in the C code,
error messages similar to those of GNU's gcc are emit-
ted. The IR is almost machine-independent, only the
bit width of the C data types and their memory align-
ment have to be speci�ed in the form of a con�guration
�le.

IR library: LANCE comprises a C++ class library for IR
access, analysis, and manipulation. This includes �le
I/O, control and data 
ow analysis, symbol table main-
tenance, and modi�cation of IR statements. In addi-
tion, there are auxiliary classes frequently required for
compiler tools, such as lists, sets, stacks, and graphs.

IR optimization tools: Based on the IR library, LANCE
contains a set of common "Dragon Book" [29] machine-
independent code optimizations, such as constant fold-
ing, dead code elimination, as well as jump and loop
optimizations. Dependent on the required optimiza-
tion level, the optimization tools can be called sepa-
rately or can be iterated via a shell script. Since all
optimization tools operate on the same IR format, new
optimizations can be plugged in at any time.

Backend interface: The backend interface transforms the
three address code IR into data 
ow trees (DFTs) of
maximum size. Each DFT represents of piece of com-
putation in the C code and comprises arguments, oper-
ations, storage locations, as well as data dependencies
between those. The generated DFT format is compat-
ible to code generator generator tools like iburg and
olive. This feature strongly facilitates retargeting to
new processors.



What mainly distinguishes LANCE from other C frontends
such as those provided with gcc [30] or lcc [32], is the ex-
ecutable IR. The basic IR structure is three address code,
that consists of assignments, jumps, branches, labels, and
return statements, together with the corresponding symbol
table information for identi�ers. The three address code
format mainly serves to facilitate the implementation of IR
optimization tools, since the IR structure is much simpler
than that of the original C source language.

Executability is achieved by de�ning the IR itself as a very
low level, assembly-like subset of the C language. In the
IR generated by the C frontend, all high-level constructions
(e.g. loops, switch, and if-then-else statements) are replaced
by equivalent branch statement constructs. In addition, all
implicit loads and stores, address arithmetic for array and
structure accesses, as well as type casts are made explicit
in the IR. The SUIF compiler system [31] has similar C
export facilities for the IR, but it does not generate pure
three address code.

int main()
{
static int A[16], B[16], C[16], D[16];

register int *p_a = &A[0], *p_b = &B[0];
register int *p_c = &C[0], *p_d = &D[0];
register int i;

for (i = 0; i < 16; i++)
*p_d++ = *p_c++ + *p_a++ * *p_b++;

return(0) ;
}

Figure 12: Example C source code

An example for a C source code (taken from DSPStone [33])
and a fraction of its corresponding IR is given in �gs. 12 and
13. The IR contains auxiliary variables and labels inserted
by the frontend. All local identi�ers have been assigned
a unique numerical suÆx. As can be seen, the IR is still
valid low-level C code, which can be compiled, linked, and
executed on the compiler host machine.

The most signi�cant advantage of this executable C-based
IR (in particular in the context of industrial compiler projects,
where correctness is more important than optimizations) is
that a validation methodology as sketched in �g. 14 can be
applied to check correctness of the frontend part of the com-
piler. The key idea is that both the original C program and
its IR are compiled with a native C compiler on the host
machine. The equivalence of the two executables is checked
by means of a comparison between their outputs for some
test input data. Any di�erence in the outputs indicates an
implementation error. For regression tests, this validation
process can be easily automated.

Although this approach naturally cannot provide a correct-
ness proof, it ensures a good fault coverage in practice, when
using a representative suite of C programs and test inputs.
In our case, we used a large and heterogeneous set of C ap-
plications (including complex program packages like MP3,
JPEG, GSM, a BDD package, GNU 
ex, bison, and gzip,

static int _static_A_3[16], _static_B_4[16];

static int _static_C_5[16], _static_D_6[16];

int main()
{ char *t1,*t3;

int t2,*t4;

...

/* register int *p_a = &A[0], *p_b = &B[0] ; */

...

/* register int *p_c = &C[0], *p_d = &D[0] ; */

...

/* for (i = 0 ; i < 16 ; i++) */

i_11 = 0;
L3:

/* *p_d++ = *p_c++ + *p_a++ * *p_b++ ; */

t20 = p_c_9;
t22 = (char *)p_c_9;

t21 = t22 + 4;
t23 = (int *)t21;
p_c_9 = t23;
t24 = p_a_7;
t26 = (char *)p_a_7;

t25 = t26 + 4;
t27 = (int *)t25;
p_a_7 = t27;
t28 = p_b_8;
t30 = (char *)p_b_8;

t29 = t30 + 4;
t31 = (int *)t29;
p_b_8 = t31;
t32 = *t24 * *t28;
t33 = *t20 + t32;

t34 = p_d_10;
t36 = (char *)p_d_10;
t35 = t36 + 4;
t37 = (int *)t35;

p_d_10 = t37;
*t34 = t33;

...

return 0;
}

Figure 13: Partial IR code for C code from �g. 12

a VHDL parser, and a 6502 C compiler) to validate the C
frontend, all IR optimizations, as well as the backend in-
terface of LANCE. The latter is achieved by exporting the
generated DFTs in C syntax again.

This has been very helpful from a practical point of view,
since non-executable IR formats cannot be validated at all
without processor-speci�c backends, instruction-set simula-
tors, and (frequently very slow) cross-simulation runs. Nat-
urally, validation of machine-speci�c backends still requires
instruction-set simulation. However, as the frontend part
typically contributes the largest part of the total compiler
source code, most compiler bugs may be expected to be �xed
already before that phase.

5. BACKEND DESIGN
The C compiler backend is subdivided into code selection
and register allocation modules. An instruction scheduler
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Figure 14: Frontend validation methodology

has not been implemented so far. The code selector maps
data 
ow trees as generated by the LANCE frontend into
NP assembly instructions. As in many compilers for RISCs,
during this phase an in�nite number of virtual registers are
assumed, which are later folded to the available amount of
physical registers by the register allocator.

5.1 Code selection
The code selector uses the widespread technique of tree pat-
tern matching with dynamic programming [24] for mapping
data 
ow trees (DFTs) into assembly code. The basic idea
in this approach is to represent the target machine instruc-
tion set in the form of a cost-attributed tree grammar, and
parsing each given DFT with respect to that grammar. As a
result, an optimum derivation for the given cost metric, and
hence an optimal code selection, are obtained. The runtime
complexity is only linear in the DFT size. The tree parsing
process can be visualized as covering a DFT by a minimum
set of instruction pattern instances (�g. 15).

+

-

+

*

dc

a b

e

+

-

+

*

dc

a b

e

ADD

SUB

MAC

b) c)a)

MAC

SUBADD
+ -

+*

Figure 15: Visualization of DFT-based code selection: a)
data 
ow tree, b) instruction patterns, c) optimal tree cover

For the implementation, we used the olive tool (an exten-
sion of iburg [25] contained in the SPAM compiler [26]), that
generates code selector C source code for a given instruction
set, or tree grammar, respectively. Specifying the instruc-
tion set with olive is convenient, since the tool permits to
attach action functions to the instruction patterns, which
facilitates book-keeping and assembly code emission.

The LANCE frontend splits each C function into a set of ba-
sic blocks, each of which contains an ordered list of DFTs.
The DFTs, which are directly generated in the format re-
quired for olive, are passed to the generated code selector
and are translated into assembly code sequences one after
another. During this phase, also the calls to compiler-known
functions (CKFs) are detected and are directly transformed
into the corresponding NP assembly instructions. This step
is rather straightforward, since CKFs are simply identi�ed
by their name. However, the code selector, in cooperation

with the register allocator, is still responsible for a correct
register mapping, since CKFs are called with symbolic C
variables instead of register names. The result of the code
selection phase is symbolic assembly code with references to
virtual registers. This code is passed to the register allocator
described in the following.

5.2 Register allocation
Although the NP shows a RISC-like basic architecture, the
classical graph coloring approach to global register alloca-
tion [27] cannot be directly used. The reason is the need to
handle register arrays. As explained in section 3 (see also
�gs. 9 and 11), register arrays arise from indirect addressing
in C programs, where unaligned bit packets are traversed
within loops. As a consequence, virtual registers contain-
ing (fragments of) bit packet arrays have to be assigned to
contiguous windows in the physical register �le.

In order to achieve this, the register allocator maintains two
sets of virtual registers: one for scalar values and one for
register arrays. All virtual registers are indexed by a unique
number, where each register arrays gets a dedicated, unique,
and contiguous index range. As usual, register allocation
starts with a lifetime analysis of virtual registers. Potential
con
icts in the form of overlapping life ranges are repre-
sented in an interference graph, where each node represents
a virtual register, and each edge denotes a lifetime overlap.
The lifetime analysis is based on a def-use analysis of virtual
registers.

During lifetime analysis, special attention has to be paid to
bit packets indirectly addressed via register pointers, whose
values might not be known at compile time. In order to
ensure program correctness, all register array elements po-
tentially pointed to by some register pointer p are assumed
to be live while p is in use. Liveness of p is determined by
inspecting the pointer initializations in the calls to compiler-
known function INIT (see �g. 11).

Due to the allocation constraints imposed by register ar-
rays, the mapping of virtual registers to physical registers
is based on a special multi-level graph coloring algorithm.
Physical registers are assigned to those virtual registers �rst
that belong to register arrays. This is necessary, since regis-
ter arrays present higher pressure for the register allocator
than scalar registers.

First, any node set in the original interference graph that
belongs to a certain register array is merged into a super-
node. Then, the interference graph is transformed into a
super-interference graph (SIG), while deleting all edges in-
ternal to each supernode and all scalar virtual register nodes
and their incident edges (�g. 16).

Next, a weight is assigned to each supernode n, which is
equal to the number of internal virtual registers of n plus the
maximum number of internal virtual registers of n's neigh-
bors in the SIG. The supernodes are mapped to physical
registers according to descending weights. This heuristic is
motivated by the fact that supernodes of a lower weight are
generally easier to allocate, because they cause less lifetime
con
icts. Furthermore, in case of a con
ict, it is cheaper to
spill/reload a smaller array instead of a larger one. For any
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Figure 16: Construction of the SIG: In this example, the
virtual register sets fR1; R2g and fR3;R4; R5g are supposed
to represent two register arrays, while R6 refers to a scalar
variable.

supernode n with r internal virtual registers, a contiguous
range in the register �le is assigned. Since there may be
multiple such windows available at a certain point of time,
the selection of this range is based on the best �t strategy
in order to ensure a tight packing of register arrays in the
register �le, i.e. in order to avoid too many spills.

In our approach any element of a register array can be ac-
cessed in two di�erent ways: �rst by direct addressing (e.g.
A[3]) or indirectly by the use of a bit packet pointer. In
case of insuÆcient physical registers using indirect access,
spill code is generated for all virtual registers within a reg-
ister array. Otherwise only the particular virtual register is
spilled. After register allocation all symbolic addresses for
bit packets have to be recalculated because now they spec-
ify a physical register within the register �le instead of the
name of a virtual register. The size of arrays of bit packets
is restricted by the size of the register array. Therefore the
compiler needs to reject code where no register allocation
can be done. Note that for such code it would be impossible
to �nd an equivalent assembly code even manually. Such a
case can be encountered for too large register arrays or by
a control 
ow which gives multiple de�nitions of a pointer
variable to multiple register arrays. In such a case all pos-
sibly accessed register arrays must be assumed to be live at
the same time. Therefore the register �le has to be large
enough to hold all of them simultaneously.

After register allocation for the supernodes, all remaining
virtual registers in the original interference graph are mapped
to physical registers by traditional graph coloring, while in-
serting spill code whenever required.

6. RESULTS
The C compiler for the NP described in the previous sections
is fully operational. The performance of the generated code
has been measured by means of a cycle-true NP instruction
set simulator for a set of test programs. These mainly in-
clude arithmetic operations and checksum computation on
bitstreams. The test programs are relatively small, due to
the e�ort required to rewrite the source code with compiler-
known functions (CKFs).

As may be expected, the quality of compiler-generated code
largely depends on the clever use of the CKFs and the un-
derlying register array concept. When using CKFs with-
out speci�c knowledge of the application, the performance
overhead of compiled code may be several hundred percent,
which is clearly not acceptable for the intended application
domain. This is due to a massive increase in register pres-
sure, when too many register arrays are simultaneously live,
which naturally implies a huge amount of spill code. In this
case, even using standard C programs (without the use of
CKFs) might well result in more eÆcient code.

On the other hand, a careful use of CKFs, as derived from
detailed application knowledge, generally leads to a small
performance overhead in the order of only 10 %. We ob-
served that this overhead can be even reduced further by
means of instruction scheduling techniques to reduce regis-
ter lifetimes (and thereby spill code), as well as by peephole
optimizations, which so far have not been implemented.

It is also interesting to consider the improvement o�ered by
CKFs as compared to regular C code. Table 1 shows the
performance for six test routines. These have been speci-
�ed in C and have been compiled into NP machine code.
Columns 2 and 3 give the performance (clock cycles) with-
out and with CKFs and register arrays enabled, respectively.
Column 4 shows the performance gain in percent.

without CKFs with CKFs gain %
prg1 33 24 27
prg2 41 29 29
prg3 43 29 33
prg4 853 639 25
prg5 103 81 21
prg6 156 106 32

Table 1: Experimental performance results

The use of packet-level addressing resulted in an average
performance gain of 28 % over the standard C reference im-
plementations. Naturally, this mainly has to be attributed
to the NP hardware itself. However, from a system-level
perspective it has been very important to prove that this
performance gain can also be achieved by means of com-
piled C programs instead of hand-written assembly code.

As a result of our evaluation, we believe that the introduc-
tion of CKFs and register arrays represents a reasonable
compromise between programming e�ort and code quality.
CKFs give the programmer direct access to dedicated in-
structions which are important for optimizing the "hot spots"
in a C application program, while the compiler still performs
the otherwise time-consuming task of register allocation.
For non-critical program parts, where high performance bit-
level operations are hardly an issue, the productivity gain
o�ered by the compiler versus assembly programming clearly
compensates the potential loss in code quality.

7. CONCLUSIONS AND FUTURE WORK
Modern embedded systems are frequently designed on the
basis of programmable ASIPs, which allow for high 
exibil-
ity and IP reuse. Compiler support for ASIP software devel-



opment is urgently required in order to avoid time-intensive
assembly programming. However, special compiler backend
techniques have to be developed in order to make optimal
use of the dedicated architectural features of ASIPs.

In this contribution, we have outlined compiler challenges
encountered for Network Processors, a new class of ASIPs,
that allow for eÆcient protocol processing by means of packet-
level addressing. We have described the implementation
of a C compiler for a representative, industrial NP. The
main concepts in this compiler, in order to make packet-
level addressing accessible at the C language level, are the
use of compiler-known functions and a special register allo-
cation technique. Experimental results indicate that these
techniques work in practice, so that the processor features
are well exploited. Although the detailed implementation is
rather machine-speci�c, we believe that the main techniques
can be easily ported to similar forthcoming NPs.

Improved versions of the NP C compiler are already planned.
Ongoing work deals with gradually replacing the pragmatic
approach of compiler-known functions with more sophisti-
cated code selection techniques, capable of directly mapping
complex bit masking operations into single machine instruc-
tions. This will be enabled by the use of special tree gram-
mars that model the instruction set for the code selector.
In addition, we plan to include a technique similar to reg-
ister pipelining [34] in order to reduce the register-memory
traÆc for multi-register bit packets, and several peephole
optimizations are being developed in order to further close
the quality gap between compiled code and hand-written
assembly code.
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