IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

C Compiler Design for a Network Processor

J. Wagner, R. Leupers

Abstract— One important problem in code generation for
embedded processors is the design of efficient compilers for
target machines with application specific architectures. This
paper outlines the design of a C compiler for an industrial
application specific processor (ASIP) for telecom applica-
tions. The target ASIP is a network processor with special
instructions for bit-level access to data registers, which is
required for packet oriented communication protocol pro-
cessing. From a practical viewpoint, we describe the main
challenges in exploiting these application specific features
in a C compiler, and we show how a compiler backend has
been designed that accommodates these features by means
of compiler intrinsics and a dedicated register allocator. The
compiler is fully operational, and first experimental results
indicate that C-level programming of the ASIP leads to good
code quality without the need for time-consuming assembly
programming.

I. INTRODUCTION

The use of application specific instruction set processors
(ASIPs) in embedded system design has become quite com-
mon. ASIPs are located between standard “off-the-shelf”
programmable processors and custom ASICs. Hence,
ASIPs represent the frequently needed compromise be-
tween high efficiency of ASICs and low development effort
associated with standard processors or cores. While being
tailored towards certain application areas, ASIPs still offer
programmability and hence high flexibility for debugging
or upgrading. Industrial examples for ASIPs are Tensil-
ica’s configurable Xtensa RISC processor [1] and the con-
figurable Gepard DSP core from Austria Micro Systems
[2].

Like in the case of standard processors, compiler sup-
port for ASIPs is very desirable. Compilers are urgently
required to avoid time-consuming and error-prone assem-
bly programming of embedded software, so that fast time-
to-market and dependability requirements for embedded
systems can be met. However, due to the specialized ar-
chitectures of ASIPs, classical compiler technology is often
insufficient, but fully exploiting the processor capabilities
demands for more dedicated code generation and optimiza-
tion techniques.

A number of such code generation techniques, intended
to meet the high code quality demands of embedded sys-
tems, have already been developed. These include code
generation for irregular data paths [3], [4], [5], [6], [7], ad-
dress code optimization for DSPs [8], [9], [10], [11], and ex-
ploitation of multimedia instruction sets [12], [13], [14]. It
has been shown experimentally, that such highly machine-
specific techniques are a promising approach to generate
high-quality machine code, whose quality often comes close
to hand-written assembly code. Naturally, this has to be
paid with increased compilation times in many cases.

While partially impressive results have been achieved in
code optimization for ASIPs in the DSP area, less empha-

sis has been so far on a new and important class of ASTPs
for bit-serial protocol processing, which are called Network
Processors (NPs). The design of NPs has been motivated
by the growing need for new high bandwidth communica-
tion equipment in networks (e.g. Internet routers and Eth-
ernet adapters) as well as in telecommunication (e.g. ISDN
and xDSL). The corresponding communication protocols
mostly employ bit stream oriented data formats. The bit
streams consist of packets of different length, i.e. there are
variable length header packets and (typically longer) pay-
load packets. Typical packet processing requirements in-
clude decoding, compression, encryption, or routing.

A major system design problem in this area is that the re-
quired high bandwidth leaves only a very short time frame
(as low as a few nanoseconds) for processing each bit packet
arriving at a network node [15]. Even contemporary high-
end programmable processors can hardly keep pace with
the required real-time performance, not to mention the is-
sue of computational efficiency, e.g. with respect to power
consumption.

There are several approaches in ASIC design that deal
with efficient bit-level processing, such as [16], [17], [18],
[19]. However, all these solutions require highly applica-
tion specific hardware. On the other hand, the design of
hardwired ASICs is frequently not desirable, due to the
high design effort and low flexibility. As a special class of
ASIPs, NPs represent a promising solution to this prob-
lem, since their instruction sets are tailored towards effi-
cient communication protocol processing. The advantage
of this is illustrated in the following.

Since the memories of transmitters and receivers nor-
mally show a fixed word length (e.g. 8 or 16 bits), relatively
expensive processing may be required on both sides when
using standard processors (Fig. 1): At the beginning of a
communication the packets to be transmitted are typically
aligned at the word boundaries of the transmitter. For
storing these words into the send buffer, they have to be
packed into the bit stream format required by the network
protocol. After transmission over the communication chan-
nel, the packets have to be extracted again at the receiver
side, so as to align them at the receiver word length, which
may even be different from the transmitter word length.

Obviously, this data conversion overhead reduces the
benefits of the bit stream oriented protocol. In contrast,
NPs may be designed to be capable of directly process-
ing bit packets of variable length, i.e. in the form they are
stored in the receive buffer. This feature largely reduces
the data transport overhead.

NPs are relatively new on the semiconductor market.
There are only a few standard chips (e.g. from Intel and
IBM), and several in-house designs (see the overview in
[15], which also describes NP development efforts at STMi-



IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

Transmitter Receiver
Memory Memory
Send buffer Receive buffer

Network stream
| ||

Fig. 1.

Communication via bit stream oriented protocols

croelectronics). In this paper, we focus on a specific ma-
chine, the Infineon Technologies Network Processor [20].

Efficient compiler design for NPs is at least as challeng-
ing as for DSPs, since the dedicated bit-packet oriented
instructions are not easily generated from a high-level lan-
guage like C. In contrast to the approach taken in [15],
which is based on the retargetable FlexWare tool suite
[21], we decided to develop a nearly full custom compiler
backend. This is essentially motivated by the need to in-
corporate C language extensions and a dedicated register
allocator, which will become clear later. Another approach
related to our work is the Valen-C compiler [22], a retar-
getable compiler that allows the specification of arbitrary
bit widths of C variables. However, there is no direct sup-
port for NP applications.

The purpose of this paper is to show how an efficient C
compiler for an advanced NP architecture has been imple-
mented, and to describe the required machine-specific code
generation techniques. More specifically, we show how bit
packet processing is made available to the programmer at
the C level, and how the register allocator needs to be de-
signed to handle variable-length bit packets in registers,
which is not directly possible by classical techniques.

The remainder of this paper is structured as follows. In
section II, the Infineon NP architecture and its instruction
set are described in more detail. Section III outlines the
problems associated with modeling bit-level processing in
the C language. Section IV describes the compiler design,
with focus on the backend components. Experimental re-
sults are presented in section V. Finally we give conclusions
and mention directions for future work in section VI.

II. TARGET ARCHITECTURE

Fig. 2 shows the overall architecture of our target ma-
chine, the Infineon NP [20]. The NP core shows a 16-bit
RISC-like basic architecture with 12 general-purpose reg-
isters and special extensions for bit-level data access. This
principle is illustrated in Fig. 3.

[ e |

-
machine wordlength

Fig. 3. Processing of variable length bit packets

The NP instruction set permits performing ALU compu-
tations on bit packets which are not aligned at the proces-
sor word length. A packet may be stored in any bit index
subrange of a register, and a packet may even span up to
two different registers. In this way, protocol processing can
be adapted to the required variable packet lengths instead
of the fixed machine word length. However, this packet-
level addressing is only possible within registers, not within
memory. Therefore, partial bit streams have to be loaded
from memory into registers before processing on the ALU
can take place (Fig. 4). The size and position of the differ-
ent bit fields are statically known from the C source code
for each specific application.

Memory

Register File

Fig. 4. Data layout in memory and registers: Bit packets are not
aligned at memory or register word lengths

In order to enable packet-level addressing of unaligned
data, the NP instruction set permits the specification of
offsets and operand lengths within registers. The general
instruction format is as follows:

CMD regl.off, reg2.off, width

“CMD?” denotes the assembly command, “regl.off” and
“reg2.off” denote argument registers with a corresponding
offset, and ”"width” is the bit width of the operation to be



IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

performed. The use is shown in Fig. 5: Any bit packet is
addressed by means of the corresponding register number,
its offset within the register, and the packet bit width. If
offset plus width are larger than the register word length
(16 bits), then the packet spans over two registers (with-
out increasing the access latency, though). Especially this
feature is very challenging from a compiler designer’s view-
point. The width of argument and result packets must be
identical, and one of the two argument registers is also the
result location of any ALU operation. Therefore, two off-
sets and one width parameter per instruction are sufficient.

Register n+1 Register n
-
Operator width
- - @ @-

Machine word size Offset within register n

Fig. 5. Packet-level addressing within registers

III. BIT PACKET PROCESSING IN C

Although possible, the description of bit packet-level ad-
dressing in the C language is inconvenient, since it can only
be expressed by means of a rather complex shift and mask-
ing scheme. The code readability (and thus maintainabil-
ity) is poor, and furthermore the masking constants might
make the code machine-dependent, in case they depend on
the processor word length.

A. Use of compiler-known functions

As outlined in section IT, the NP instruction set allows to
avoid costly shift and mask operations by means of special
instructions for packet-level addressing. In the C compiler,
bit packet manipulation is made visible to the programmer
by means of compiler-known functions (CKFs) or compiler
intrinsics. The compiler maps calls to CKFs not into reg-
ular function calls, but into fixed instructions or instruc-
tion sequences. Thus, CKFs can be considered as C-level
macros without any calling overhead. The CKF approach
has also been used in several C compilers for DSPs, e.g. for
the Texas Instruments C62xx.

Using CKFs, the programmer still has to have detailed
knowledge about the underlying target processor, but read-
ability of the code is improved significantly. In addition,
by providing a suitable set of simulation functions for the
CKFs, C code written for the NP is no longer machine-
dependent but can also be compiled to other host machines
for debugging purposes.

We illustrate the use of CKFs with a simple example.
Consider a case, where we would like to add the constant 2
to a 7-bit wide packet stored in bits 3 to 9 of some register
denoted by the C variable a. In standard C this can only
be expressed by means of a complex assignment as follows:

a = (a & OxFE03) | ((a + (2<<2)) & 0x01FC);

Even though this expression may still be simplified some-
what by standard compiler optimization techniques, e.g.
constant, folding, it would translate into a relatively large
instruction sequence on a standard processor. In contrast,
the NP can implement the entire assignment within a sin-
gle instruction. For this purpose, we introduce a packet
access (PA) CKF of the following form:

PA(int op, int varl, int offl,
int var2, int off2, int width);

Parameter “op” denotes the operator, “varl” and “var2”
are the operands, “off1” and “off2” are the operand packet
offsets, and “width” denotes the packet bit width. The
CKF directly reflects the packet-level NP instructions il-
lustrated in Fig. 5. The “op” parameter selects the opera-
tion (e.g. ADD, SUB, SHIFT, ...) to be performed on the
arguments “varl” and “var2”. In addition, the required
intra-register offsets and the packet bit width are passed
to function PA. Using function PA, the above example can
be expressed very simply in C as follows:

int a, b;

b = 2;
PA(PA_ADD, a, 3, b, 0, 7);

Parameter PA_ADD (selecting an ADD instruction) is
specified as a constant in a C header file. The scalar vari-

ables a and b are mapped to registers in the assembly code
by the register allocator.

B. Bit packet access in loops

As exemplified above, CKF's provide an elegant way to
reduce the description effort of bit packet processing in
C. Most urgently, CKFs are required in case of bit packet
arrays, that are indirectly accessed within loops, so as to
avoid unacceptable quality of compiler-generated code.

Register file

I 3 2 | RL

B : -

S -

HSB LSB
16 bit width

Fig. 6. Array of bit packets

Consider the example in Fig. 6, where we have to process
an array of 8 packets, each of 10 bit length. The bit packet
array in turn is stored in an array of five 16-bit registers (R0
- R4). As a consequence, the bit packets are not aligned
at the register word length, and some packets even cross
register boundaries.



IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

Suppose, we want to compute the sum over the bit pack-
ets within a loop. In standard C, this would require code
as shown in Fig. 7. Due to the unaligned bit packets, the
register file pointer elem must not be incremented in every
loop iteration, but only if a bit packet crosses a register
boundary. Therefore, control code is required within the
loop, which is obviously highly undesirable with respect to
code quality.

int A[5];

int sum = O,offset = 0,elem = 0, bp;
for (bp = 1; bp <= 8; bp++)

{

if (offset+10<=16)
sum += (A[elem] >> offset) & 0x03ff;
else
sum += (A[elem]>>offset)

| (((Alelem+1]1<<(16-offset))& 0x03ff )

offset += 10;

if (offset>15) { elem++; offset -= 16; }

Fig. 7. Bit packet array access in a loop

In order to avoid such overhead, the NP instruction set
architecture provides means for indirect access to unaligned
bit packet arrays via a bit packet pointer register. In the
compiler, we again exploit this feature by CKFs. The mod-
ified C code with CKFs for the above sum computation ex-
ample is given in Fig. 8. The array A is declared with the
C type attribute register. This attribute instructs our com-
piler backend to assign the whole array to the register file.
In contrast, a regular C compiler would store the array (like
other complex data structures) in memory. This concept
of register arrays is required, since the NP machine opera-
tions using packet-level addressing only work on registers,
not on memory. We assume that register arrays always
start a register boundary.

The variables PRI and PR2 are pointers. By being
operands of the CKF INIT they are introduced to the
backend as pointers to bit packets. The compiler checks
that pointers to bit packets are assigned exclusively within
CKFs, since otherwise incorrect code might result. The
backend exploits the knowledge about which pointer be-
longs to which element/array during life time analysis in
the register allocation. In the example, PR2 is used to
traverse the different bit packets of array A, while PR1
constantly points to the sum variable.

If the number of physical registers is lower than the num-
ber of simultaneously required register variables, spill code
will be inserted. The register allocator uses the names of
the pointer registers in such a case to identify the regis-
ter arrays which have to be loaded into the register file
for a given indirect bit packet operation. The INIT CKF
translates to assembly code as the load of a constant into
a register. In this constant the name of the register, the
offset, and the width of the bit packet where the pointer
points to is encoded. In the example from Fig. 8 the pointer
PR2 points to the first element of the bit packet array.

The name of the register where the bit packet is located is
not known before register allocation. Therefore the back-
end works on symbolic addresses before register allocation.
The symbolic addresses are automatically replaced after
the register allocation phase. PAI(ADD,...) is the CKF
for a single indirect addition, like in the C expression “*p
+ *q”. The backend creates a single machine operation
for this CKF. In order to keep the number of CKFs low,
we specify the arithmetic operation as the first parameter
of the CKF instead of having a dedicated CKF for each
operation.

The CKF INC denotes the increment of a bit packet
pointer. Like the increment of a pointer in ANSI C the
pointer will point to the next array element after the call
to INC. Because the NP supports bit packet pointer arith-
metic in hardware, this requires again only a single machine
instruction, independent of whether or not advancing the
Pointer requires crossing a register boundary.

Obviously, the source code in the example is specified
in a very low level programming style. However, the pro-
grammer still gets a significant benefit from use of the com-
piler. First of all, it permits the use of high level language
constructs, e.g. for control code and loops. In addition,
address generation and register allocation are performed
by the compiler, which keeps the code reusable and saves
development time.

register int A[5];
int *PR1, *PR2;

int sum = 0;

INIT(PR1, sum, 10);
INIT(PR2, A, 10);

for (i = 1; i <= 8; i++)
{

PAI(ADD, PR1, PR2);
INC(PR2);

}

Fig. 8. Bit packet array access with CKFs

IV. COMPILER DESIGN

Like most other compilers, the NP C compiler is sub-
divided into a frontend and a backend part. The fron-
tend is responsible for source code analysis, generation
of an intermediate representation (IR), and machine-
independent optimizations, while the backend maps the
machine-independent IR into machine-specific assembly
code.

As a frontend, we use the LANCE compiler system de-
veloped at the University of Dortmund [28]. LANCE is a
machine-independent, optimizing ANSI C frontend. There
is no support for automatic retargeting, but LANCE com-
prises a backend interface that allows for direct coupling
between the generated three address code IR and the data
flow tree format used by contemporary code generator gen-
erator tools.



IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

The C compiler backend is subdivided into code selection
and register allocation modules. The code selector maps
data flow trees as generated by the LANCE C frontend and
its backend interface into NP assembly instructions. As in
many compilers for RISCs, during this phase an infinite
number of virtual registers are assumed, which are later
folded to the available amount of physical registers by the
register allocator.

A. Code selection

The code selector uses the widespread technique of tree
pattern matching with dynamic programming [23] for map-
ping data flow trees (DFTs) into assembly code. The basic
idea in this approach is to represent the target machine in-
struction set in the form of a cost-attributed tree grammar,
and parsing each given DFT with respect to that grammar.
As a result, an optimum derivation for the given cost met-
ric, and hence an optimal code selection, are obtained. The
runtime complexity is only linear in the DFT size.

For the implementation, we used the OLIVE tool (an
extension of IBURG [24] contained in the SPAM compiler
[25]), that generates code selector C source code for a given
instruction set represented by a tree grammar. Specifying
the instruction set with OLIVE is convenient, since the
tool permits to attach action functions to the instruction
patterns, which facilitates book-keeping and assembly code
emission.

The LANCE frontend splits each C function into a set
of basic blocks, each of which contains an ordered list of
DFTs. The DFTs, which are directly generated in the for-
mat required for OLIVE, are passed to the generated code
selector and are translated into assembly code sequences
one after another. During this phase, also the calls to
compiler-known functions (CKFs) are detected and are di-
rectly transformed into the corresponding NP assembly in-
structions. This step is rather straightforward, since CKF's
are simply identified by their name. However, the code
selector, in cooperation with the register allocator, is still
responsible for a correct register mapping, since CKF's are
called with symbolic C variables instead of register names.
The result of the code selection phase is symbolic assem-
bly code with references to virtual registers. This code is
passed to the register allocator described in the following.

B. Register allocation

Although the NP shows a RISC-like basic architecture,
the classical graph coloring approach to global register al-
location [26] cannot be directly used. The reason is the
need to handle register arrays. As explained in section III
(see also Figs. 6 and 8), register arrays arise from indirect
addressing in C programs, where unaligned bit packets are
traversed within loops. As a consequence, virtual regis-
ters containing (fragments of)) bit packet arrays have to be
assigned to contiguous windows in the physical register file.

In order to achieve this, the register allocator maintains
two sets of virtual registers: one for scalar values and one
for register arrays. All virtual registers are indexed by a
unique number, where each register array gets a dedicated,

unique, and contiguous index range. As usual, register al-
location starts with a lifetime analysis of virtual registers.
Potential conflicts in the form of overlapping life ranges
are represented in an interference graph, where each node
represents a virtual register, and each edge denotes a life-
time overlap. The lifetime analysis is based on a standard
def-use analysis of virtual registers [27].

During lifetime analysis, special attention has to be paid
to bit packets indirectly addressed via register pointers,
whose values might not be known at compile time. In or-
der to ensure program correctness, all register array ele-
ments potentially pointed to by some register pointer p are
assumed to be live while p is in use. Liveness of p is deter-
mined by inspecting the pointer initializations in the calls
to compiler-known function INIT (see Fig. 8).

Due to the allocation constraints imposed by register ar-
rays, the mapping of virtual registers to physical registers
is based on a special multi-level graph coloring algorithm.
Physical registers are assigned to those virtual registers first
that belong to register arrays. This is necessary, since regis-
ter arrays present higher pressure for the register allocator
than scalar registers.

First, any node set in the original interference graph that
belongs to a certain register array is merged into a su-
pernode. Then, the interference graph is transformed into
a super-interference graph (SIG), while deleting all edges
internal to each supernode and all scalar virtual register
nodes and their incident edges (Fig. 9).

Fig. 9. Construction of the SIG: In this example, the virtual register
sets {R1, R2} and {R3, R4, R5} are supposed to represent two register
arrays, while R6 refers to a scalar variable.

Next, a weight is assigned to each supernode n, which
is equal to the number of internal virtual registers of n
plus the maximum number of internal virtual registers of
n’s neighbors in the SIG. The supernodes are mapped to
physical registers according to descending weights. This
heuristic is motivated by the fact that supernodes of a lower
weight are generally easier to allocate, because they cause
less lifetime conflicts. Furthermore, in case of a conflict,
it is cheaper to spill/reload a smaller array instead of a
larger one. For any supernode n with r internal virtual
registers, a contiguous range in the register file is assigned.
Since there may be multiple such windows available at a
certain point of time, the selection of this range is based



IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

on the best fit strategy in order to ensure a tight packing
of register arrays in the register file, i.e. in order to avoid
too many spills.

In our approach any element, of a register array can be ac-
cessed in two different ways: first by direct addressing (e.g.
A[3]) or indirectly by the use of a bit packet pointer. In
case of insufficient physical registers using indirect access,
spill code is generated for all virtual registers within a reg-
ister array. Otherwise only the particular virtual register
is spilled. After register allocation all symbolic addresses
for bit packets have to be recalculated because now they
specify a physical register within the register file instead of
the name of a virtual register.

The permissible size of bit packet arrays is constrained by
the size of the physical register file. Therefore no register
allocation can be done for register arrays that are larger
than the register file, and the compiler needs to reject such
code with corresponding error messages. Note that for such
code it would be at least very difficult to find a valid register
allocation even manually. For certain source programs, one
solution to this problem is to split large register arrays into
smaller pieces already in the C source code and to perform
computations on a set of small arrays instead of a single
large one. However, this only works for programs, where
the sub-arrays required at each program point are already
known at compile time. Eventually, a solution can always
be found by mapping bit packet arrays to memory just
like regular data arrays, in which case the advantages of
packet-level addressing are naturally lost in exchange for a
safe fallback position.

After register allocation for the supernodes has been per-
formed, all remaining virtual registers in the original inter-
ference graph are mapped to physical registers by tradi-
tional graph coloring [26], while inserting spill code when-
ever required.

V. RESULTS

The C compiler for the NP described in the previous
sections is fully operational. The performance of the gen-
erated code has been measured by means of a cycle-true
NP instruction set simulator for a set of test programs.

As may be expected, the quality of compiler-generated
code as compared to hand-written assembly code largely
depends on the clever use of the CKFs and the underlying
register array concept. When using CKFs without specific
knowledge of the application, the performance overhead
of compiled code may be several hundred percent, which is
clearly not acceptable for the intended application domain.
This is due to a massive increase in register pressure, when
too many register arrays are simultaneously live, which nat-
urally implies a huge amount of spill code.

On the other hand, a careful use of CKFs, as derived
from detailed application knowledge, generally leads to a
small performance overhead in the order of only 10 %. We
observed that this overhead can be even reduced further by
means of instruction scheduling techniques to reduce regis-
ter lifetimes (and thereby spill code), as well as by peephole
optimizations, which so far have not been implemented.

It is also interesting to consider the improvement offered
by CKF's as compared to regular C code. Table I shows the
performance for six small test routines. These mainly in-
clude packet oriented arithmetic operations on bit streams,
as well as masking, counting, and checksum computations.
The C programs have been compiled into NP machine code.
Columns 2 and 3 give the simulated performance (clock
cycles) of the compiled code without and with the use of
CKFs and register arrays, respectively. Column 4 shows
the performance gain in percent.

without CKFs | with CKFs | gain %
prgl 33 24 27
prg2 41 29 29
prg3 43 29 33
prg4 853 639 25
prgd 103 81 21
prg6 156 106 32
TABLE I

Ezperimental performance results

The use of packet-level addressing resulted in an aver-
age performance gain of 28 % over the original C reference
implementations without CKF's and register arrays. Natu-
rally, this mainly has to be attributed to the NP hardware
itself. However, from a system-level perspective it has been
very important to prove that this performance gain can also
be achieved by means of compiled C programs instead of
hand-written assembly code.

As a result of our evaluation, we believe that the in-
troduction of CKFs and register arrays represents a rea-
sonable compromise between programming effort and code
quality. CKFs give the programmer direct access to dedi-
cated instructions which are important for optimizing the
“hot spots” in a C application program, while the com-
piler still performs the otherwise time-consuming task of
register allocation. For non-critical program parts, where
high performance bit-level operations are hardly an issue,
the productivity gain offered by the compiler versus assem-
bly programming clearly compensates the potential loss in
code quality.

VI. CONCLUSIONS AND FUTURE WORK

We have outlined compiler challenges encountered for
Network Processors, a new class of ASIPs, that allow for
efficient protocol processing by means of packet-level ad-
dressing. We have described the implementation of a C
compiler for a real-life industrial NP. The main concepts
in this compiler, in order to make packet-level addressing
accessible at the C language level, are the use of compiler-
known functions and a special register allocation technique.
Experimental results indicate that these techniques work in
practice, so that the processor features are well exploited.
Although the detailed implementation is machine-specific,
we believe that the main techniques can be easily ported
to similar NPs, for which a growing compiler demand may
be expected in the future. An example is the Intel 1960,



IEEE TRANSACTIONS ON CAD, VOL. 20, NO. 11, NOV 2001, ©@EEE

whose instruction set also partially supports bit packet ad-
dressing.

Improved versions of the NP C compiler are already
planned. Ongoing work deals with gradually replacing
the pragmatic approach of compiler-known functions with
more sophisticated code selection techniques, capable of di-
rectly mapping complex bit masking operations into single
machine instructions. This will be enabled by the use of
special tree grammars that model the instruction set for
the code selector. In addition, we plan to include a tech-
nique similar to register pipelining [29] in order to reduce
the register-memory traffic for multi-register bit packets,
and several peephole optimizations are being developed in
order to further close the quality gap between compiled
code and hand-written assembly code.

REFERENCES
[1] Tensilica Inc., hitp://www.tensilica.com.
[2] Austria Mikro Systeme International,

http://asic.amsint.com/databooks/digital /gepard.html, 2000.

[3] B. Wess, “Automatic Instruction Code Generation based on Trel-
lis Diagrams,” IEEE Int. Symp. on Circuits and Systems (IS-
CAS), 1992.

[4] G. Araujo, S. Malik, “Optimal Code Generation for Embed-
ded Memory Non-Homogeneous Register Architectures,” 8th Int.
Symp. on System Synthesis (ISSS), 1995.

[5] S.Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, “Code Opti-
mization Techniques for Embedded DSP Microprocessors,” 32nd
Design Automation Conference (DAC), 1995.

[6] A. Timmer, M. Strik, J. van Meerbergen, J. Jess, “Conflict Mod-
eling and Instruction Scheduling in Code Generation for In-House
DSP Cores,” 32nd Design Automation Conference (DAC), 1995.

[7] S. Bashford, R. Leupers, “Constraint Driven Code Selection for
Fixed-Point DSPs,” 36th Design Automation Conference (DAC),
1999.

[8] D.H. Bartley, “Optimizing Stack Frame Accesses for Processors
with Restricted Addressing Modes,” Software — Practice and Ez-
perience, vol. 22(2), 1992.

[9] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang, “Storage
Assignment to Decrease Code Size,” ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
1995.

[10] R. Leupers, F. David, “A Uniform Optimization Technique for
Offset Assignment Problems,” 11th Int. System Synthesis Sym-
posium (ISSS), 1998.

[11] E. Eckstein, A. Krall, “Minimizing Cost of Local Variables Ac-
cess for DSP Processors,” ACM Workshop on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES), 1999.

[12] R.J. Fisher, H.G. Dietz, “Compiling for SIMD Within a Reg-
ister,” 11th Annual Workshop on Languages and Compilers for
Parallel Computing (LCPC98), 1998.

[13] R.Leupers, “Code Selection for Media Processors with SIMD In-
structions,” Design Automation € Test in Europe (DATE), 2000.

[14] S. Larsen, S. Amarasinghe, “Exploiting Superword Level Paral-
lelism with Multimedia Instruction Sets,” ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI), 2000.

[15] P. Paulin, “Network Processors: A Perspective on Market
Requirements, Processors Architectures, and Embedded S/W
Tools,” Design Automation & Test in Europe (DATE), 2001.

[16] D. Brooks, M. Martonosi, “Dynamically Exploiting Narrow
Width Operands to Improve Processor Power and Performance,”
High-Performance Computer Architecture (HPCA-5), Jan 1999.

[17] M. Stephenson, J. Babb, S. Amarasinghe, “Bitwidth Analy-
sis with Application to Silicon Compilation,” ACM SIGPLAN
Conference on Program Language Design and Implementation
(PLDI), June 2000.

[18] S.C. Goldstein, H. Schmidt, M. Moe, M. Budiu, S. Cadambi,
R.R. Taylor, R. Laufer, “PipeRench: A Coprocessor for Stream-
ing Multimedia Acceleration,” 26th Annual International Sym-
posium on Computer Architecture (ISCA), 1999.

[19] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R.R.

Taylor, “PipeRench: A Reconfigurable Architecture and Com-
piler,” IEEE Computer, vol. 33, no. 4, 2000.

[20] X. Nie, L. Gazsi, F. Engel, G. Fettweis, “A New Network Proces-
sor Architecture for High-Speed Communications,” IEEE Work-
shop on Signal Processing Systems (SiPS), 1999.

[21] C. Liem, “Retargetable Compilers for Embedded Core Proces-
sors,” Kluwer Academic Publishers, 1997.

[22] A. Inoue, H. Tomiyama, H. Okuma, H. Kanbara, and H. Ya-
suura, “Language and Compiler for Optimizing Datapath Widths
of Embedded Systems,” IEICE Trans. Fundamentals, vol. E81—
A, no. 12, pp. 2595-2604, Dec. 1998.

[23] A.V. Aho, M. Ganapathi, S.W.K Tjiang, “Code Generation Us-
ing Tree Matching and Dynamic Programming,” ACM Trans. on
Programming Languages and Systems, vol. 11, No. 4, 1989.

[24] C.W. Fraser, D.R. Hanson, T.A. Proebsting, “Engineering a
Simple, Efficient Code Generator Generator,” ACM Letters on
Programming Languages and Systems, vol. 1, no. 3, 1992.

[25] A. Sudarsanam, “Code Optimization Libraries for Retargetable
Compilation for Embedded Digital Signal Processors,” Ph.D. the-
sis, Princeton University, Department of Electrical Engineering,
1998.

[26] P. Briggs, “Register Allocation via Graph Coloring,” Ph.D. the-
sis, Dept. of Computer Science, Rice University, Houston/Texas,
1992.

[27] A.V. Aho, R. Sethi, J.D. Ullman, “Compilers - Principles, Tech-
niques, and Tools,” Addison-Wesley, 1986.

[28] R. Leupers, “Code Optimization Techniques for Embed-
ded Processors,” Kluwer Academic Publishers, 2000. Software:
http://LS12-www.cs.uni-dortmund. de/~leupers.

[29] D. Callahan, S. Carr, K. Kennedy, “Improving Register Allo-
cation for Subscripted Variables,” ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
1990.



