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Abstract|Interest in low power embedded systems has in-
creased considerably in the past few years. To produce low

power code and to allow an estimation of power consumption
of software running on embedded systems, a power model
was developed based on physical measurement using an eval-

uation board and integrated into a compiler and pro�ler.
The compiler uses the power information to choose instruc-

tion sequences consuming less power, whereas the pro�ler
gives information about the total power consumed during
execution of the generated program.

The used compiler is parameterized such that e.g. the
register �le size may be changed. The resulting code is
evaluated with respect to code size, performance and power

consumption for di�erent register �le sizes. The extracted
information is especially useful during application analysis

and architecture space exploration in ASIP design. Our
analysis gives the designer the ability to estimate the desir-
able register �le size for an ASIP design.

The size of the register �le should be considered as a
design parameter since it has a strong impact on the energy
consumption of embedded systems.

Keywords|low power, compiler, power model, application
analysis, register �le size

I. Introduction

Recently, energy consumption in embedded systems has
become more and more important, mainly due to the fact
that many systems are now being designed as mobile de-
vices, i.e. they have to operate on battery power instead of
using abundant power from wall sockets. One important
aspect of such devices is their running time. How much
energy saving is possible by modifying software alone was
recently demonstrated by Siemens [1]: the standby time of
one of their mobile phones was increased from 100 to 160
hours without changes in the hardware. Using our energy
aware compiler framework encc we are able to generate low
power code, perform speci�c optimizations aimed at energy
saving and evaluate the resulting program's energy dissi-
pation. The basis for the incorporated power model was
given by physical measurement using an evaluation board.
The fact that the encc compiler is parameterizable en-

ables further studies: By changing the con�guration of the
proposed target processor within the compiler con�gura-
tion �le, it is possible to evaluate the e�ect of architectural
changes on code quality. This is particularly interesting
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for architectural design exploration targeting ASIPs which
have a limited number of variable parameters. ASIC de-
velopment, despite resulting in highly eÆcient designs, is
often too expensive whereas general purpose processors do
not provide the required performance. ASIPs are often
targeted today, since they o�er high 
exibility and perfor-
mance at a relatively low cost. Usually, ASIPs are designed
for a small set of applications which enables the designer
to exploit knowledge about application characteristics so
as to meet the performance, cost and power requirements.
Using the encc compiler in the design process, we show how
to explore the design space provided by the register �le size
in ASIP design.

The rest of this work is organized as follows: Chap-
ter II gives an overview of previous work concerning low
power compiler optimizations, energy models and ASIP de-
sign methodologies. Chapter III introduces the encc com-
piler framework along with the integrated instruction level
power model. Chapter IV gives a short overview of the
ARM7TDMI processor that was used for our experiments.
The following chapter shows the used application bench-
marks, whereas chapter VI explains the experimental setup
and the obtained results. Finally, the last chapter gives a
summary and provides some areas for future work.

II. Related Work

Compiler optimizations like power aware instruction se-
lection, i.e. choosing the instruction sequence that will
cause the least energy dissipation when the program is ex-
ecuted, will not require changes in the hardware to reduce
energy consumption. Often, optimizing for performance
will result in a program that also yields good energy re-
sults. There are cases, however, where these two goals will
result in di�erent instruction sequences. The compiler op-
timization technique `Register Pipelining' is an example for
this e�ect. Usually aimed at performance as well as energy
optimization, this optimization tries to reduce the number
of power hungry o�-chip memory accesses within a loop by
holding array values that are needed in later loop iterations
within the processor registers. This leads to additional in-
structions being inserted into the code, thus prolonging
execution time. Since memory accesses consume up to an
order of magnitude more power than instructions operat-
ing merely on the register �le, the resulting program may
consume less overall energy despite its longer running time.
This particular example can be found in [2].

Another compiler based optimization for power is in-
struction scheduling. Subsequent instructions are ordered
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so as to incur as little change in circuit state as possible.
Some techniques, aimed especially at VLIW architectures,
are described in [3].
Beside these compiler oriented optimizations, there is a

further group of optimizations that combines architectural
changes with modi�cations to the compiler. If e.g. a special
bus encoding used in an architecture is not transparent to
the programming interface, the compiler may need to take
the coding into account to generate correct code. Using a
scratch pad memory within the system's memory hierarchy
may require compiler support to eÆciently take advantage
of this feature, since in contrast to caches, it is not trans-
parent to software. Therefore, either the programmer or
the compiler has to decide which data or instructions are
to be placed within the scratch-pad memory [4], [5].
One architectural parameter that also requires compiler

support is the register �le size. There have been several
approaches to allow compilers to adapt to di�erent target
architectures by supplying them with architectural infor-
mation about the target processor. In the Trimaran com-
piler [6], the machine description language MDES is used
to model the underlying hardware. A di�erent approach
was taken by [7], where a compiler can be retargeted to
di�erent processors of the DSP domain described in MI-
MOLA [8], a VHDL-like hardware description language.
In this approach it is possible to specify the architecture
in the form of an executable speci�cation and at the same
time supply the necessary information for the compiler.
One recent publication by Brooks et al. [9] presents a

framework enabling power analysis and investigation of the
e�ect of hardware modi�cations as well as compiler opti-
mizations. Their power analysis is based on parameter-
izable power models of common structures found in modern
microprocessors.
For VLIW architectures, Zalamea et al. [10] provide re-

sults concerning cycle time, area and power consumption
for register �les of di�erent sizes.
A number of approaches to ASIP design where the design

space consists of a number of architectural parameters like
number and kind of functional units, issue width and the
size of caches have been reported [11]. Most of these search
the design space for an area-time tradeo�. If power is also
evaluated then it is on the basis of circuit power models
which are primarily non-application speci�c [12], [13]. To
our knowledge, this is the �rst work which evaluates energy
consumption by changing an ASIP architectural feature i.e.
register �le size, in an application speci�c evaluation.

III. The encc compiler framework

In this work, the encc compiler framework was chosen for
code generation and evaluation. encc is an energy aware
compiler developed for the RISC class of architectures, ca-
pable of generating code with reduced energy consump-
tion. encc uses a cost function that not only considers the
`traditional' optimization options like code size and execu-
tion time, but also the energy consumption. To be able
to make decisions during code generation, the compiler re-
quires a database containing information about the power

consumption of single instructions. This information can
also be used to determine the energy consumption of an in-
struction sequence by adding the individual contributions
of each instruction and accounting for inter-instruction ef-
fects (c.f. section III-A).
The input for the encc compiler consists of an appli-

cation program written in the programming language C.
Some standard optimizations are performed on this �le us-
ing the LANCE frontend [14]. The backend of the compiler
then generates assembly instructions using the tree pat-
tern matcher olive [15], which employs the energy model
as a cost function during code selection. Register alloca-
tion is performed using the graph coloring based algorithm
described in [16]. Some backend optimizations like instruc-
tion scheduling, register pipelining, memory layout, jump
optimization or peep hole optimizations are also available.

ISS
profiling

information trace file

encc

profiler

energy

Linker
Assembler & executableassemblyC-Code

database

Fig. 1. Work
ow within the encc framework

The use of encc is simpli�ed by a graphical user inter-
face, which gives the user full control over the compilation
process. The available optimization options are made up of
'execution time', 'energy' and 'code size'. Supplemental op-
timizations like instruction scheduling, register pipelining
or support for di�erent kinds of memory are also provided.
Using the GUI, the user can e.g. generate and execute as-
sembly code and run the pro�ler to generate a report on
execution time, memory accesses and energy consumption.
The pro�ler that was used to generate the results pre-

sented in this work will be presented in greater detail in
section III-C.
Several architectural parameters of the targeted proces-

sor can easily be changed in the compiler. After recompi-
lation, the compiler is able to generate code for a modi�ed
target architecture. Examples for these parameters include
the register �le size, number of register used for subrou-
tine parameter passing as well as the available addressing
modes. This feature of encc was used to retarget the com-
piler from the ARM7 to the LEON processor, which is a
SPARC V8 based architecture. The VHDL model of the
LEON is available under the GNU public license [17].
For this work, the compiler con�guration was initially set

up to describe the ARM7TDMI processor [18]. The num-
ber of registers was then successively changed to generate a
compiler for processors di�ering in the number of registers.
The performance of the generated programs was evaluated
in a simulation run using the energy database: The out-
put generated by the instruction set simulator is passed to
the pro�ler which calculates the number of accesses to dif-
ferent kinds of memory, the number of bytes occupied in
instruction and data memory as well as overall energy con-
sumption. In this way, all the executed instructions along
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with their individual contribution to energy dissipation are
considered.

A. Instruction Level Energy Model

In the literature, power and energy are often used syn-
onymously. \Low Power" and \Energy Aware" have de-
veloped into standard phrases. Generally, the important
factor to consider in embedded system design is energy,
since battery lifetime is crucial.

The power model used in the encc compiler is based on
the model developed by Tiwari et al. [19], which distin-
guishes between basic costs and inter-instruction e�ects.
The basic costs consist of the measured current during ex-
ecution of a single instruction. The additional power con-
sumption due to the change of internal circuit states caused
by di�ering subsequent instructions has to be accounted
for. This contribution is summed up in the so-called inter
instruction e�ect.

Our enhancement of Tiwari's power model consists of
the consideration of power consumption within the memory
system [20]. This contribution to overall power should not
be ignored since the energy consumed by o�- chip memory
can be signi�cantly higher than the amount dissipated by
the processor itself.

For our target processor, the ARM7TDMI, neither a
VHDL model that could be simulated to determine power
nor an instruction level power model is available. There-
fore, the instruction level power values had to determined
by experimental physical measurement using an evaluation
board.

B. Physical Power Measurement

To perform the measurements, we used the evaluation
board AT91EB01 by Atmel [21]. The processor used on this
board is an AT91M40400, consisting of an ARM7TDMI
core with 4 KB on-chip scratch-pad memory. Additionally,
the board o�ers 512 KB o�-chip memory. To perform the
power measurements, we used the connections on the board
that allow direct monitoring of the processor current. To
measure memory power consumption, we had to cut all
supply power connections of one of the memory chips and
insert an amperemeter into the electric circuit. The evalua-
tion board with all the connections for power measurement
in place is shown in �gure 2.

The digital multimeter used for the measurements is an
\ESCORT 95". It is characterized by a basic precision of
0.06% and a measuring frequency of 20 measurements per
second. Using this multimeter, one instruction at a time
was measured and its power consumption determined. In
order to do this, the instruction was repeated many times
within a loop. We found 100 instruction instances to suf-
�ce so as to get a stable reading on the digital multimeter
and to be sure we are actually measuring the instruction
within the loop, not the loop's branch instructions. The
average processor and memory currents that can be read
from the multimeter are measured during execution of this
loop, and the result is transferred to the power database

Fig. 2. The evaluation board with measuring connections. Top left:
processor current. Top middle: memory current. Bottom: address
bus monitoring

used by the compiler and by the pro�ler. The results of
these measurements can be found in [22].
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Fig. 3. Measured power consumption of individual instructions

Figure 3 gives an idea of the possible improvements that
can be achieved by using the power model in the code selec-
tion phase of the compiler. Note that the power required
to access external memory is not included in this �gure!
Even without the memory current, it becomes clear that
the instructions that by far consume the most power are
memory access instructions. Consequently, there is a high
potential for optimizations especially in those instructions
involving memory accesses.

Another aspect that has to be considered in the power
model is the inter instruction e�ect that describes the
power consumed by changes in the system state when dif-
ferent instructions are executed in sequence. The in
u-
ence of this e�ect was also measured using the described
methodology using tuples of instructions instead of single
instructions. The exact results of these measurements can
be found in [22]. The overall average inter instruction ef-
fect contributes about 2mA to power consumption, which
is below 5% for nearly all instructions. Therefore, the inter
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instruction e�ect was taken into account in all experiments
by adding these average 2mA to the base costs of the in-
structions. To show that precision does not su�er from this
simpli�cation, we conducted some validation experiments
to determine the precision of our power model. Results
show that the average deviation of our power model pre-
dictions from the measured results was only 1.7% [22]. We
thus claim that handling the inter instruction e�ect in the
way described above is appropriate for our purpose. Our
power model is suÆciently precise to allow it to be used
within a power aware compiler.

C. Integration of Power Model into the encc compiler

The values measured as described in the last section were
transferred into a power database that is used by the com-
piler during code selection and within the pro�ler. The
code selector uses the database to choose optimal instruc-
tion sequences with respect to power, whereas the pro�ler
evaluates the overall power consumption of a program that
is being executed.
The encc compiler uses the LANCE-frontend [14] to

transform the initial C-code to an intermediate representa-
tion in 3-address-format. From this form, the compiler gen-
erates data 
ow trees that can be passed to the code selec-
tor, which performs the actual choice of the corresponding
assembler instructions. As a code selector, we chose olive
[15], the successor of the well-known iburg. olive requires a
grammar to specify which assembly instructions cover the
nodes in the data 
ow tree. According to a supplied cost
function, it will decide on an optimal cover for each tree
and generate the corresponding assembly code structure.
Since olive allows for arbitrary cost functions, the corre-
sponding values are retrieved from the power database and
fed to olive's cost function. The code selector will then
guarantee that an optimal cover is generated for each data

ow tree.
The power information from the database is not only

used during code selection, but also for pro�ling during
simulation runs. Since we are investigating overall energy
consumption of benchmark programs in our work, the pro-
�ler takes the output of the instruction set simulator, which
contains information on executed instructions and memory
accesses, and annotates this information with the corre-
sponding power values from the database. The individual
values are summed up and a statistical output for the com-
plete program is generated.

IV. The ARM7TDMI Processor

The ARM7TDMI 32-bit RISC processor [18] was chosen
for our work since it is widely used in embedded systems
today, and is particularly recommended for ultra low en-
ergy applications, making it a suitable target processor for
the encc compiler. It o�ers a 32 bit RISC instruction set,
16 general purpose registers with 32 bits each as well as an
ALU, a multiplier and a dedicated barrel shifter, but no
data or instruction cache (c.f. �gure 4).
To reduce energy consumption, the ARM7TDMI fea-

tures an additional 16 bit instruction set called THUMB

Fig. 4. Block Diagram of the ARM7TTDMI processor

with less functionality compared to the 32 bit instruction
set. One major restriction is that only eight of the 16
general purpose registers are available in THUMB mode.
Some of the 32-bit instructions using e.g. conditional exe-
cution or the multiply-accumulate operation are also not
supported. The energy savings compared to the 32-bit
instruction set is due to the fact that code density is on
average 30% higher in THUMB mode [23] as only 16 bits
of instruction data have to be fetched for each instruction
instead of 32. Since instruction fetches consume a large
amount of energy, this technique generally results in lower
energy dissipation during program execution. Since execu-
tion times are not signi�cantly longer when the THUMB
instruction set is used, it is the �rst choice for energy aware
embedded systems.

V. Benchmark Suite

To investigate the e�ect of changing the register �le
size, a number of benchmark applications have to be se-
lected. The areas that are covered by ARM processors in-
clude automotive equipment, consumer entertainment, dig-
ital imaging, industrial applications, networking, security,
storage and wireless applications [24].
The chosen benchmarks were taken from the domains of

digital signal processing and multimedia, along with stan-
dard sorting algorithms.
The biquad N sections program, part of the DSP-kernel

benchmark suite [25], performs the �ltering of input val-
ues through N biquad IIR sections. lattice init calculates
the output of a lattice �lter, whereas matrix mult imple-
ments the multiplication of two 2D matrices. me ivlin is
a demonstration for a multimedia application, mainly con-
sisting of integer arithmetic operations. The standard sort-
ing algorithms all sort a given array of integers using dif-
ferent methods.
Note that the ARM7TDMI does not feature a 
oating



5

TABLE I

Benchmarks used for the experiments

� biquad N sections DSP
� lattice init DSP
� matrix-mult mult. of two m x n matrices
� me ivlin media application
� bubble sort standard sorting algorithm
� heap sort standard sorting algorithm
� insertion sort standard sorting algorithm
� selection sort standard sorting algorithm

point unit. Since the use of the data types float or double
would result in ineÆcient library calls, only data of type
integer is generally used in real-world applications. In or-
der to provide realistic benchmark applications, our chosen
programs only consider data of type integer as well.

VI. Experimental Methodology & Results

In this section we �rst present the methodology used to
gather the results presented in this work. Along with the
plots for the obtained values, some application speci�c ex-
planations for the results are given. This analysis allows an
experienced programmer to decide on a minimum number
of registers by analyzing the C source code of an applica-
tion.
Using the compiler encc, the number of registers avail-

able for the application is varied by changing the corre-
sponding value in the compiler con�guration �le. This
modi�ed compiler is then used to compile the benchmarks.
The resulting assembly code is analyzed and executed us-
ing the instruction set simulator for the ARM7TDMI. The
chosen register �le size is limited to the range from three
to eight. Three is the minimum number of registers nec-
essary to execute our benchmarks in THUMB instruction
set mode, and eight is the number of registers in the 'real'
ARM processor. The instruction set simulator does not
provide a means of recon�guring register �le size, hence
simulation is limited to applications using a maximum of
eight registers. This limitation is not a great drawback,
however, since most of the used benchmarks do not bene�t
signi�cantly from more than eight registers. For a static
analysis of the generated assembly code not requiring sim-
ulation, up to 20 registers were considered.
It should be mentioned that we have not taken into ac-

count some of the potential positive e�ects that arise from
using less registers. A smaller register �le size will cause
less chip area to be used and will also bring down power
consumption in the circuitry itself. Another e�ect that was
not considered is the fact that using less registers generally
results in shorter instruction words, since the operands in
registers can be addressed with fewer bits.
`Live values' are values that will be read at a later point

in time during program execution (c.f. [26]). In order to
execute a program that requires more live values than avail-
able registers, additional memory is needed to hold the live
values. Such values are usually stored in external memory

and retrieved just before they are needed. (Another solu-
tion for this problem is data-regeneration, in which values
are not always stored to memory but may also be recalcu-
lated [27]). If the register �le size is very small, the compiler
thus needs to insert code to store values to memory once
they have been computed and to retrieve them from mem-
ory when they are needed. This extra code is called spill

code, as the values are 'spilled' to memory. It is clear that
this will increase the size of the generated program. During
execution of the program, the spill code will require time
to execute, thus prolonging execution time. Finally, since
(o�-chip) memory accesses are usually very power-hungry,
one can expect the power consumption for a program to go
up signi�cantly if a lot of spill code is generated. Conse-
quently, a strong decrease in application performance is to
be expected when the register �le size is too small for an
application.
As mentioned in chapter III-B, the evaluation board used

for the power measurements o�ers a 4 KB on-chip scratch-
pad memory and a 512 KB o�-chip memory (c.f. �gure
5). Scratch-pad memory is like an on-chip cache without
any tag memory or cache organization hardware, i.e. the
management of the scratch-pad memory is left to the pro-
grammer. The encc compiler supports the use of di�erent
memory types in such a way that the developer may spec-
ify where instructions and data are to be stored. Since
on-chip memory is limited to 4 KB, program code and
data do not �t into the scratch-pad memory, so we de-
cided to keep the data o�-chip while transferring the in-
structions to the scratch-pad memory. This makes sense
for our observations, since we are interested in the e�ect
of accesses to data in memory and less in the e�ect of in-
struction fetching. By partitioning the memory objects in
the described way, instruction fetches account only for a
small additional power consumption and execution time,
whereas data transfers which are also required for storing
or retrieving spilled variables show a high contribution to
overall power consumption and execution time. The cho-
sen memory layout also coincides with the situation often
found in embedded systems, where the program is usually
stored in a ROM and only the dynamic data is stored in
external RAM.
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Fig. 5. Memory con�guration of the Atmel AT91M40400 evaluation
board

A. Results for the Ratio of Spill Instructions to Total Static

Code Size

The addition of spill code for decreasing number of reg-
isters leads to a larger code size. The spilling instructions
are made up of memory load and store operations as well as
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the necessary address calculations. Since the total number
of instructions related to spilling is not very meaningful,
the ratio of spill instructions to total code size is given.
The obtained results are shown in �gure 6.
As expected, the ratio of spill code decreases with in-

creasing number of registers. In our observations, we found
that the 'saturation' of the benchmark applications, i.e. the
point where no spillcode is present in the assembly code,
varies between 7 and 19 registers. This value provides an
upper bound for the register �le size: if an ASIP designer
wants to make sure that his application performance is not
impaired by spill code, he will have to determine this 'sat-
uration' value for a particular application. The plot also
provides information about the maximum register pressure,
i.e. the maximum number of values that are live at the
same time.
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Having looked at this �rst static analysis, we found that
the results are useful when minimal code size (a static prop-
erty of the code) is the target. However, the results are of
little use for dynamic runtime analysis of applications: Spill
code introduced within the innermost loop of an applica-
tion is executed many times, but counted only once in this
observation. To be able to estimate the in
uence of spill
code at runtime, we have to make further experiments and
observe the behavior of the applications when they are ex-
ecuted. A dynamic analysis is also necessary to be able to
extract any kind of information on the power consumption
of the application.

B. Results for the Number of Executed Instructions

For the results presented in this section, the pro�ler was
used to count the number of instructions that were exe-
cuted by the instruction set simulator. The results are
shown in �gure 7. The instruction count values for the
di�erent benchmark application were scaled in this �gure
to produce the results in a single plot. This is acceptable
since the trends of the curves are preserved.
As expected, the resulting plots now show more mean-

ingful trends since spill code inserted within an inner loop
is counted each time the loop is executed.
In some curves, there is one remarkable sharp bend, e.g.

in the program insertion sort. When the number of regis-
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Fig. 7. Number of executed instructions over number of registers

ters is increased from four to �ve registers, the instruction
count decreases substantially, whereas an increase from �ve
to six registers hardly changes the number of executed in-
structions. To understand the cause for this behavior, we
take a look at the innermost loop of the application which
is executed more often than any other part of the code and
therefore has a strong in
uence on the dynamic behavior of
the program. The innermost loop is shown in the original C
source code and in the assembly code generated assuming
eight available registers (�gures 8 and 9, respectively).

Fig. 8. Inner loop of insertion sort: C code

Fig. 9. Inner loop of insertion sort: assembly code

It is possible to determine which C variable is stored in
which physical register of the ARM7TDMI processor by
comparing the two code fragments. For example, indx2
is stored in register r3 since it is the result of the �rst
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subtraction in C as well as in the assembly code. indx is
kept in register r6, but since this variable is not read again
within the loop (it is only present in the initialization of the
for-loop), it is not live within the loop and can therefore be
neglected. Continuing the analysis of the assembly code,
we come to the mapping shown in table II. The expression
(indx2-1)*4 is used for addressing the one-dimensional
array This[] whose elements of type int require four bytes
each.
This table provides an explanation of the sharp bend

in the curve for the insertion_sort benchmark: since
�ve registers (r0, r2, r3, r4, r7) are required to hold the
values that are live within the innermost loop, reducing
the number of registers to four will result in spilling within
the innermost loop, which will inevitably lead to a severe
performance degradation of the application. The knees in
the other applications' curves can be explained in a similar
way, i.e. by analyzing the required number of live values
within the innermost loop.

TABLE II

Mapping of variables to registers

Variable Register
indx2 r3

indx2-1, (indx2-1)*4 r2

This[] r0

temp_val r7

cur_val r4

To summarize, an ASIP designer can decide on the min-
imum requirements for register �le size by using a recon-
�gurable compiler and looking at the results of dynamic
runtime analysis. On the other hand, given he has an un-
derstanding of the code generation process for a particular
architecture, he can estimate the number of required reg-
isters by determining the number of live values within the
innermost loop.

C. Results for the Number of Cycles

As the next step, the number of cycles required for execu-
tion of the benchmarks was extracted. The results obtained
for number of cycles are shown in �gure 10. Again, the
values are scaled appropriately.
The general behavior of these curves is similar to the re-

sults shown in the previous �gure concerning instruction
count, since cycles and instructions are strongly interde-
pendent. Each instruction requires a certain amount of
cycles to execute (the so-called CPI value - cycles per in-
struction). For the ARM7TDMI, the CPI has a value be-
tween one and �ve, not taking into account the e�ect of
pipelining. Store and Load operations require more cycles
to complete than arithmetic operations: the latter require
only one cycle, whereas a Store and Load to/from o�-chip
memory takes two and three cycles, respectively. Hence,
one additional spill instruction within the application re-
quires several more cycles every time the spill instruction is
executed. That is why the sharp bends in the curves remain
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Fig. 10. Number of cycles over number of registers

in the same spots while the slope of the curves changes.
Since we are observing the e�ects of spill code in the pro-
gram, the same application characteristics (number of live
values in the innermost loop) that were discussed in the
previous section can be used to explain these observations.

D. Results for Power Consumption

In this section we exploit the fact that the encc compiler
framework is energy aware: the pro�ler is capable of ana-
lyzing the power contributions of every executed instruc-
tion, also taking into account the inter instruction e�ect.
These power contributions are added up to give a value
for the complete program's power consumption during ex-
ecution. The results obtained for the average power con-
sumption in relation to the number of available registers
are shown in �gure 11.
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Fig. 11. Average power consumption over number of registers

Data load and store instructions introduced due to
spilling increase the power consumption signi�cantly since
accesses to o�-chip memory are very power consuming in
RISC architectures. Due to the used memory layout, the
o�-chip data access instructions related to spilling consume
a large percentage of the overall power of the application.

E. Results for Energy Consumption

Coming to one of the most important aspects of embed-
ded system design today, we now take a look at the energy
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consumption of our benchmarks in relation to the register
�le size. The general behavior of the curves in �gure 12
is obvious: since cycle time as well as power consumption
went down with increasing register �le size, energy should
show a very strong decrease for growing number of regis-
ters.
The strong correlation between register �le size and en-

ergy can also which show that, using the con�guration
we chose for our experiments (instructions in scratch-pad
memory, data o�-chip), additional memory accesses re-
quired for spilling consume an order of magnitude more
energy than e.g. an ADD instruction. This information is
given in table III.

TABLE III

Energy consumption of ADD, LDR and STR instructions

Instruction Av. Energy Consumption
@ 32.768 MHz

ADD 4.91 nWs
LOAD 49.4 nWs
STORE 48.7 nWs
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Fig. 12. Energy consumption over number of registers

Since power as well as cycle time contribute to the en-
ergy decrease observed here, it is interesting to investigate
which of these two factors has the higher contribution to
overall energy savings. Figure 13 provides the result of
our investigation: the main contribution to energy savings
comes from saving cycles, only a small amount of energy
is saved due to the use of instructions that consume less
power. This shows that the latency of the used memory
will also have a strong e�ect on the achievable energy sav-
ings. For low-energy compiler systems we can deduce that
optimizing source code for time is generally a good ap-
proach towards energy eÆcient software. The contribution
of power to energy savings should not be neglected, how-
ever, since often (such as in mobile devices), improvements
in power consumption by as little as 5% are regarded as
interesting in the industry.
The fact that the number of registers is an important

factor during the design process of an ASIP is underlined
by the results given in table IV which shows the relative en-
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Fig. 13. Contribution of power and time to energy savings

TABLE IV

Energy savings by changing register file size

benchmark 3 ! 4 4 ! 5 5 ! 6 6 ! 7 7 ! 8
biquad 62.89% 13.35% 11.26% 10.42% 6.71%
lattice init 17.45% 20.97% 18.92% 19.78% 16.84%
matrix-mult 33.44% 18.57% 14.99% 24.26% 23.28%
me ivlin 59.28% 43.16% 36.29% 18.24% 20.47%
bubble sort 39.07% 55.63% 16.78% 0.74% 9.63%
heap sort 22.35% 24.87% 18.27% 33.24% 10.16%
insertion sort 45.47% 57.11% 5.60% 2.63% 0.92%
selection sort 29.68% 22.59% 30.14% 2.94% 0.00%

ergy savings possible by increasing the number of available
registers one by one. The average energy savings possible
in the range from three to eight registers amount to ap-
proximately 22%. Since all curves are starting to level out
even in the range we have considered here, it is clear that
the positive contribution of additional registers becomes
smaller and smaller the more registers are already present
in the design. One should bear in mind, however, that each
additional register will also consume additional energy due
to added capacitances and required chip area. This energy
has not been considered in our approach, but will be the
subject of future work.

VII. Conclusion and Future Work

In this work, we describe the methodology used to de-
sign and implement an instruction level power model for
the encc compiler and show its integration into the com-
piler framework. Physical measurements using an evalua-
tion board were performed to gather data concerning in-
struction level power consumption. In our experiments,
the number of registers for the ARM7TDMI processor was
changed within the encc compiler. This design parameter
is of importance in ASIP design since it strongly in
uences
energy consumption in those embedded systems that are
sensitive to memory accesses. Several benchmark applica-
tions were compiled using the customized compiler. Some
application characteristics responsible for the observed re-
sults concerning number of spill instructions, number of
executed instructions, cycle time required for execution as
well as power consumption and energy dissipation were
identi�ed. The results obtained are useful during the de-
sign of ASIPs, especially at an early stage of design space
exploration where the designer can decide how many reg-
isters an application will need to work within the required
time and/or energy constraints for the �nal processor. Fu-
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ture work concerning the register �le size will consist of
taking additional observations for di�erent architectures,
including the LEON architecture which in contrast to the
ARM7TDMI features both instruction and data cache.
Considering the architectural consequences of modifying
the register �le size as well as changing instruction coding
will also be part of our future work. To further broaden
the considered design space, we plan to develop a retar-
getable instruction set simulator which will enable us to
make measurements for an arbitrary number of registers
instead of being limited to the maximum number the pro-
cessor provides. In the course of the experiments, we hope
to identify other parameters that may have a strong e�ect
on energy consumption of embedded systems. Also, more
experiments will have to be performed using a compiler
that supports speci�c features of the targeted ASIP. We
plan to work on designing and implementing algorithms
for the automatic extraction of application characteristics
to help in an early estimation for number of required reg-
isters in the ASIP design 
ow.
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