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Abstract

In recent years, the application of optimization techniques at the level of program
source codes has increasingly attracted interest due to the high effectiveness and
the inherent retargetability of such approaches. In this report, a novel source code
transformation technique for control flow optimization called loop nest splitting is
presented. The goal of this optimization is to reduce runtimes and energy consump-
tion by minimizing the number of if-statements executed in loop nests of typical em-
bedded multimedia applications. Complementary to already known optimizations
in this area, we explicitly focus on the optimization of loop-variant if-statements.
The analysis techniques required for performing loop nest splitting are illustrated
in detail. They base on precise mathematic models combined with genetic algo-
rithms. The analysis is done statically at compile time and does not rely on profil-
ing.
For a detailed evaluation of the benefits of loop nest splitting, the effects of our op-
timization with respect to instruction pipeline and cache behavior, runtimes, energy
consumption and code sizes are shown. The application of our implemented tools
for loop nest splitting to three real-life multimedia benchmarks leads to average
reductions of pipeline stalls between 19.7% and 64.8% and an average decrease
of instruction cache misses between 8.9% and 45.3%. Measurements on a vari-
ety of different programmable processors show average speed-ups between 23.6%
and 62.1% of the benchmarks, whereas reductions of energy dissipation between
19.2% and 57.6% are observed.
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1. Introduction

Embedded systems have always been very cost-sensitive. During the earlier peri-
ods of embedded system design, the main focus has been on area-efficient designs
meeting constraints due to performance and design time. During the last couple
of years, power dissipation has become an additional major design measure for
many systems next to these traditional measures. More and more applications be-
come portable because this is felt as an added value for the product (e. g. wireless
phones, multimedia terminals,. . . ). The less power they consume, the longer their
batteries last and the lighter their batteries can be made. As a consequence, power
efficient design has become a crucial issue for a broad class of applications.

Many of these embedded applications turn out to be data-dominated, especially
in the multimedia and network protocol domains. Experiments have shown that
for these applications, a very large part of the power consumption is due to data
transfers from and to memories.

1.1. Control Flow Overhead in Data-dominated Applications

Data-dominated applications such as medical image processing and video com-
pression algorithms typically use a very large amount of data memory. For being
able to manipulate its large quantities of data in an effective way, the program code
of a data-dominated application often has a certain structure where particular con-
structs of the programming language are used. Typically, such applications consist
of deeply nestedfor-loops. With the help of the index variables of the loops, mem-
ory access pointers are calculated that are used for data manipulation. The main
algorithmic part is usually located in the innermost loop. Very often, a multimedia
algorithm has to treat particular parts of its data in a specialized way, e. g. pixels at
the border of an image require a slightly modified algorithm than pixels situated in
the center of an image. This boundary checking is implemented with the help of
if-statements in the innermost loop that check certain values of the index variables.
A typical code fragment taken from an MPEG 4 full search motion estimation ker-
nel [5] written in ANSI-C is depicted in figure 1.

Although already written in an optimized manner (common subexpressions are
eliminated and loop-invariant code is moved out of loops [23]), this code in its
original structure has several properties that make it sub-optimal with respect to
runtime and energy consumption. First, theif-statements in the innermost loop lead
to a very irregular control flow. Any change in the linear control flow of a machine
program, i. e. a jump instruction, causes a control hazard for pipelined processor
architectures. This means that the pipeline needs to be stalled for a certain number
of instruction cycles, so as to prevent execution of incorrectly prefetched instruc-
tions. Delay slots of a pipeline can sometimes be filled with useful instructions, but
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for (z=0; z<20; z++)

for (x=0; x<36; x++) {
x1=4*x;

for (y=0; y<49; y++) {
y1=4*y;

for (k=0; k<9; k++) {
x2=x1+k-4;

for (l=0; l<9; l++) {
y2=y1+l-4;

for (i=0; i<4; i++) {
x3=x1+i; x4=x2+i;

for (j=0; j<4; j++) {
y3=y1+j; y4=y2+j;

if (x3 < 0 || 35 < x3 || y3 < 0 || 48 < y3)

then block 1;

else

else block 1;

if (x4 < 0 || 35 < x4 || y4 < 0 || 48 < y4)

then block 2;

else

else block 2; }}}}}}
Figure 1. A typical Loop Nest

for deeply pipelined processors, this is not always the case leading to high jump
penalties (Philips TriMedia TM1000: 3 instruction cycles / jump [25]; TI C6201: 5
cycles / jump [30]).

Second, the pipeline performance of a processor is also influenced by data accesses,
since pipelines may have to be stalled during the execution of memory transfers.
To realize the boundary checking mentioned above, the induction variables are ac-
cessed very frequently resulting in pipeline stalls, if these variables can not be kept
in processor registers. Degraded pipeline performance not only leads to increased
execution times but also to a higher energy consumption due to the forced inac-
tivity of the processor. Additionally, since it has been shown that 50% – 75% of
the power consumption in embedded multimedia systems is caused by memory
accesses [26, 31, 35], frequently repeated transfers of induction variables across
memory hierarchies via system buses also contribute negatively to the total energy
balance.

Finally, many instructions are required to evaluate the conditions of theif-state-
ments. In the case of the motion estimation kernel shown above, these arithmetic
and logical operations are in total as complex as the computations performed in
the then- and else-blocks of theif-statements. This also demonstrates that exe-
cution time and energy consumption of such multimedia applications are affected
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adversely byif-statements in loop nests.

1.2. Splitting of Loop Nests for Control Flow Optimization

In this report, a new formalized method for the analysis and transformation of
if-statements occuring in arbitrarily nested loops is presented solving a particular
class of the NP-complete problem of the satisfiability of integer linear constraints.
Considering the example shown in figure 1, our techniques are able to detect that

• the conditionsx3 < 0 andy3 < 0 of the firstif-statement are never true,

• both if-statements are true forx ≥ 10 ory ≥ 14.

Information of the first type can be used to detect conditions not having any influ-
ence on the control flow of an application. This is a difference compared to conven-
tional dead code, because dead code is defined as those instructions in a program
that compute only values that are not used on any executable path leading from the
instruction [23]. Since the boolean results computed by the conditions mentioned
above are used within anif-statement, they will not be removed by a classical dead
code elimination. Furthermore, a study of the assembly codes emitted by a large
variety of state-of-the-art optimizing compilers (see table 2 on page 28) shows that
the compilers do not perform an induction variable analysis to determine that these
conditions are unnecessary. Therefore, the removal of this kind of useless code
with the help of our techniques leads to reductions of code sizes and computational
complexity of a program and thus improves runtimes and energy consumption.

With the help of information of the second kind, the entire loop nest can be rewrit-
ten in such a way that the total number of executedif-statements is minimized.
Therefore, a newif-statement (called thesplitting-if) is inserted in they loop test-
ing the conditionx >= 10 || y >= 14 . Theelse-part of this newif-statement
is an exact copy of the body of the originaly loop. Since it is known that allif-
statements are fulfilled when the splitting-if is true, thethen-part consists of the
body of they loop without anyif-statements and their associatedelse-blocks.

To ensure that the splitting-if will not be evaluated repeatedly without need for
values ofy ≥ 14, a secondy loop is inserted in thethen-part of the splitting-if
counting from the current value ofy to the upper bound 48. After the execution
of this secondy loop, the index variabley has to be decremented by 1 so that
y contains the correct value of 49 after the execution of the entire loop nest. It
is important to see that this secondy loop modifies the index variabley which is
also accessed by the original outery loop. Because of this fact, it is assured that the
execution of both the new and the originaly loop leads to the assignment of exactly
the same sequence of values toy as before the optimization so that the semantical
correctness of loop nest splitting is given. At the same time, these twofoldy loops



4 1. INTRODUCTION

for (z=0; z<20; z++)

for (x=0; x<36; x++) {
x1=4*x;

for (y=0; y<49; y++)

if (x >= 10 || y >= 14) { /* Splitting-If */

for (; y<49; y++) /* Second y loop */

for (k=0; k<9; k++)

for (l=0; l<9; l++)

for (i=0; i<4; i++)

for (j=0; j<4; j++) {
then block 1;

then block 2; }
y--; }

else {
y1=4*y;

for (k=0; k<9; k++) {
x2=x1+k-4;

for (l=0; l<9; l++) {
y2=y1+l-4;

for (i=0; i<4; i++) {
x3=x1+i; x4=x2+i;

for (j=0; j<4; j++) {
y3=y1+j; y4=y2+j;

if (0 || 35 < x3 || 0 || 48 < y3)

then block 1;

else

else block 1;

if (x4 < 0 || 35 < x4 || y4 < 0 || 48 < y4)

then block 2;

else

else block 2; }}}}}}
Figure 2. Loop Nest after Splitting

lead to the minimization of executions of the splitting-if. The transformed code is
illustrated in figure 2.

As can be seen from this example, our technique is able to generate linear control
flow in the hot-spots of an application. Furthermore, references to memory are re-
duced significantly, because a large amount of branching, arithmetic and logical in-
structions and induction variable accesses are removed from the code. Using these
factors, our loop nest splitting technique is able to achieve considerable speed-
ups combined with reductions of energy consumption at the expense of slightly
increased code size.
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The techniques presented in this report are fully implemented and integrated into
a tool for the automated splitting of loop nests. Since the analysis of loop charac-
teristics is crucial for the application of our techniques, a high-level intermediate
representation preserving loop information is required. The fact that many state-of-
the art optimizing compilers use intermediate representations where control flow is
modeled only in the form of simple conditional and unconditional branches (e. g.
Sun-IR [22], LANCE [15]) leads to the consequence that our optimizations are not
integrated into specific compiler frameworks. In contrast, we are focusing on the
area of source code transformations where an optimized ANSI-C program is the
result of our loop nest splitting tool. Since ANSI-C is standardized [12], this ap-
proach has the additional benefit that it is highly retargetable, because the generated
C source codes are accepted and compiled by any ANSI compatible C compiler re-
gardless of the actual processor for which a compilation is initiated. This processor
independence allows us to perform a very detailed benchmarking on a variety of
ten different programmable processors as shown in section 5.

The remainder of this report is organized as follows: A survey of work related to
loop optimizations and source code transformations is provided in section 2. Be-
cause the techniques for loop nest splitting described here are based on genetic
algorithms, section 3 is dedicated to an overview of the main principles of genetic
optimization. Section 4 presents the analytical models and algorithms for loop nest
splitting. Section 5 contains a description of the applications serving as bench-
marks and of the impacts of our optimization on pipelines and caches, runtimes,
energy dissipation and code sizes. Section 6 summarizes and concludes this report.
Appendix A contains a detailed list of the data gathered during benchmarking.
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2. Related Work

Loop restructuring transformations have been described in literature on compiler
design for many years (see e. g. [2, 23]) and are often integrated into state-of-the-
art optimizing compilers. Conventionalloop splitting(also calledloop distribution
or loop fission) takes a loop that contains multiple statements and splits it into two
loops with the same iteration-space traversal, such that the first loop contains some
of the statements inside the original loop and the second one contains the others as
shown in figure 3.

for (i=1; i<n; i++) { for (i=1; i<n; i++)

a[i]=a[i]+c; a[i]=a[i]+c;

x[i+1]=x[i]*7+x[i+1] −→ for (i=1; i<n; i++)

+a[i]; } x[i+1]=x[i]*7+x[i+1]

+a[i];

Figure 3. Conventional Loop Splitting

The main goal of this optimization is to create subloops with fewer data dependen-
cies allowing parts of an original loop to be executed in parallel [2]. Moreover,
instruction cache performance may be increased, because locality is improved due
to the smaller loop bodies. Additionally, the smaller loop bodies can have the ef-
fect that code size constraints of a processor architecture with respect to hardware
do-loops are now met. As a consequence, control flow modifications after each
loop iteration can be performed by the processor hardware making explicit branch
instructions in the code unnecessary. If hardwaredo-loops can not be applied to
a loop, the control flow becomes more irregular after the application of loop split-
ting, because a single loop is broken into many loops. Kandemir et al. [11] have
shown that loop splitting leads to increased energy consumption of the processor
core as well as the memory system. Also, computational complexity during loop
execution is not reduced by this optimization, so that this technique is not suitable
for solving the problems discussed in section 1.1.

for (i=1; i<n; i++) { if (x<7)

a[i]=a[i]+c; for (i=1; i<n; i++) {
if (x<7) a[i]=a[i]+c;

b[i]=a[i]*c[i]; −→ b[i]=a[i]*c[i]; }
else else

b[i]=a[i-1]*b[i-1]; } for (i=1; i<n; i++) {
a[i]=a[i]+c;

b[i]=a[i-1]*b[i-1]; }
Figure 4. Conventional Loop Unswitching

Classicalloop unswitchingas depicted in figure 4 is applied when a loop contains
anif-statement with a loop-invariant test condition [23]. The loop is then replicated
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inside each branch of the conditional check, saving the overhead of conditional
branching inside the loop, reducing the code size of the loop bodies, and possibly
enabling the parallelization of one branch of theif-statement [2]. The goals of loop
unswitching and the way how the optimization is performed on a loop are equiva-
lent to the topics of section 1. The main disadvantage of loop unswitching making
it completely unsuitable for applying it to typical multimedia programs is the fact
that theif-statements must not depend on index variables. It is the contribution
of the transformation technique presented in this report that we explicitly focus
on loop-variant conditions for loop splitting. Since our analysis techniques go far
beyond those required for conventional loop splitting or unswitching and have to
deal with entire loop nests and sets of index variables, we call our optimization
techniqueloop nest splitting.

Kim et al. [13] have evaluated the effect of several high-level compiler optimiza-
tions (loop unrolling, loop interchange, loop fusion and loop tiling) on memory
system energy considering both instruction and data accesses. The authors have
observed that these techniques are effective in minimizing the energy consumed
due to data accesses, but that the energy consumed due to instruction accesses are
increased significantly. They draw the conclusion that techniques are required for
the simultaneous optimization of the locality of data and instruction accesses. The
results given in this report show that loop nest splitting is able to achieve these
aims.

Liveris et al. [18] have applied conventional loop splitting in conjunction with
function call insertion as source code transformation for improving the instruc-
tion cache performance. After the application of loop splitting, the authors report
a large reduction of instruction cache misses for one benchmark. All other param-
eters (instruction and data memory accesses, data cache misses) are worse after
the transformation. Unfortunately, the results are generated with cache simulation
software which is known to be unprecise. The effects of the optimizations on the
runtime of the benchmark are not reported.

Source code transformation frameworks for data locality and cache performance
improvement have been studied recently in literature. In [9], a series of array and
loop transformations is illustrated by means of a medical image processing algo-
rithm [3]. The transformation methodology proposed by the authors focuses on
the minimization of data transfers between background memories and processing
units. In particular, transformations for data reuse, in-place mapping and loop
folding and merging are presented. In the code examples, the authors only con-
centrate on the illustration of the optimized data flow thereby neglecting that the
control flow becomes very irregular due to the insertion of a variety of additional
if-statements by the loop transformations. Furthermore, complex arithmetic for
address calculation is introduced into the application. This increased complexity
with respect to the control flow and arithmetic expressions leads to the fact that
the runtimes of the benchmark increase by a factor of 5 after the application of the
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transformation methodology. Additional transformations have been proposed [4]
for a reduction of the arithmetical complexity, but an optimization of the control
flow has not yet been targeted. As we will demonstrate in section 5, our loop
nest splitting is capable of removing the control flow overhead introduced by the
transformations proposed in [9].
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3. Overview of Genetic Algorithms

Genetic algorithms (GA) have proven to solve complex optimization problems by
imitating the natural optimization process (see e. g. [1, 8] for an overview). A
population of a GA consists of several individuals, each of them representing a po-
tential solution for the optimization problem. The representation of an individual
is given by achromosomewhich is subdivided intogenes. The genes are used to
encode the variables of the optimization problem. This means that finding a suit-
able combination ofalleles (concrete values) for the genes is the same as finding
good solutions for the optimization problem. By applying genetic operators like
selection, mutationandcrossoverto the members of the population, the fitness of
the individuals will increase in the course of the generations. An overview of the
main steps of the optimization process of genetic algorithms is given in figure 5.

3. Selection

2. Evaluation

4. Crossover 6. Evaluation

1. Initialization

Best Individual

5. Mutation

Figure 5. Optimization Steps of a Genetic Algorithm

First, all individuals of the population are initialized (1) and evaluated (2). For the
concrete problem of loop nest splitting, a population size of 100 individuals1 is
used. Individuals worth inheriting their genes to the next generation are selected
probabilistically in the following step (3). The crossover operator (4) performs a
recombination of the genetic information by choosing two individuals and swap-
ping genes between these individuals. Afterwards, mutation (5) creates new gene
material by changing alleles. The resulting individuals are evaluated again (6).

The optimization process is iterated until a termination condition is met. Here, the
algorithm stops either if the best solution does not change within 100 generations,
or if the maximum number of 1,000 generations1 has been processed. It is an im-
portant characteristic of genetic algorithms that suitable gene material is passed to
the subsequent generations. The selection ensures that only the 50 fittest individu-
als are kept and taken into the next iteration. This permits one to revise unfavorable
decisions made in a previous optimization phase.

For this reason, genetic algorithms are adequate for solving non-linear optimization
problems and have been successfully utilized in the domains of code generation for
irregular architectures [16, 19] or hardware synthesis and codesign [14, 24].

1This value equals to a default value of the genetic library [17] used for the implementation of
loop nest splitting and has proven to be effective w. r. t. optimization quality and runtime.
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4. Analysis and Optimization Algorithm

In this section, the analysis and optimization techniques required for loop nest
splitting are presented.

The core analysis algorithm (excluding the steps of parsing the input and genera-
tion of the output C source code) consists of four sequentially executed tasks (see
also figure 6). In the beginning, all conditions in a loop nest are analyzed sepa-
ratly without considering any interdependencies between them. First, it is detected
if conditions ever evaluate to true or not (see section 4.2). Second, all satisfiable
conditions are analyzed and an optimized search space for each condition is con-
structed (4.3). In a third step, all local search spaces are combined to a global
search space (4.4) which has to be explored leading to the optimized result for loop
nest splitting (4.5).

Before describing the optimization techniques in detail, some general definitions
and preconditions are defined in section 4.1.

4.1. Preliminaries

A loop nest is characterized by the following definition.

Definition 1
1. LetΛ = {L1, . . . , LN} be aloop nestof depthN , whereLl denotes a single

loop.

2. Let il, lbl andubl be theindex variable, lower boundandupper boundof
loop Ll ∈ Λ with lbl ≤ il ≤ ubl (lbl, il, ubl ∈ Z).

The optimization goal for loop nest splitting is to determine valueslb ′
l andub ′

l for
every loopLl ∈ Λ with the following properties:

Definition 2
1. For a loopLl ∈ Λ, the valueslb ′

l andub ′
l define a range of values for the

index variableil. Therefore,lb ′
l andub ′

l must be within the loop bounds of
Ll: lb ′

l ≥ lbl andub ′
l ≤ ubl.

2. All loop-variant if-statements inΛ are satisfied for all loopsLl ∈ Λ and all
values of their index variablesil within these ranges:lb ′

l ≤ il ≤ ub ′
l.

3. Loop nest splitting by all valueslb ′
l andub ′

l leads to the minimization of
if-statement execution.

All these valueslb ′
l andub ′

l define maximum ranges of values for all index vari-
ables where allif-statements are true. These values are used for the construction of
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Relevant Polytopes

Polytopes for Conditions

Condition
Satisfiability

Section 4.2

Optimized Polytopes

Global Search Space
Construction

Section 4.4

- Loop Nest Detection
- If-Statement Detection
- Condition Extraction
- Polytope Generation

C Code Analysis

Code Transformation

- Splitting-If Creation
- Loop Nest Replication
- Loop Bound Adaption

Transformed ANSI-C Program

for(x=0;x<36;x++){
  x1=4*x;
  for(y=0;y<49;y++)
    if(x>=10 || y>=14)
      for(;y<49;y++)
        for(k=0;k<9;k++)...
    else{
      y1=4*y;...
}}

Original ANSI-C Program

for(z=0;z<20;z++)
  for(x=0;x<36;x++){
    x1=4*x;
    for(y=0;y<49;y++){
      y1=4*y;
      for(k=0;k<9;k++){
        x2=x1+k-4;
        for(l=0;l<9;l++)...
}}}

Result Polytope

Condition
Section 4.3

Global Search Space

Optimization

Global Search Space
Exploration

Section 4.5

Figure 6. Designflow of Loop Nest Splitting
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the condition of the splittingif-statement. The techniques described in the follow-
ing require that some preconditions are met.

Preconditions:

1. All loop boundslbl andubl are constants.

2. All if-statements have the formatif ( C1 ⊕ C2 ⊕ . . .) whereCx are loop-
variant conditions that are combined with logical operators⊕ ∈ {&&,|| }.

3. Loop-variant conditionsCx are affine expressions ofil and can have the

formatCx '
N∑

l=1

(c ′
l ∗ il) + c ′ ⊗

N∑
l=1

(c ′′
l ∗ il) + c ′′ for constant valuesc ′

l, c
′′
l ,

c ′, c ′′ ∈ Z and comparators⊗ ∈ {<,≤, >,≥}. For the sake of simplicity,
we only consider the following normalized equivalent format of conditions

in the following, whereCx =
N∑

l=1

(cl ∗ il) + c ≥ 0 for constantscl, c ∈ Z.

Precondition 2 is only due to the current state of implementation of our tools and
thus does not impose a general restriction on our optimization approach. By appli-
cation ofde Morgan’srule on expressions like!( C1 ⊕ C2) and inversion of the
comparators inC1 andC2, the logicalNOTcan also be modeled inif-statements.
Since all boolean functions can be expressed with&&, || and ! , precondition 2
does not constrain the way how conditions can be combined.

A condition like (a == b) can be rewritten as(a ≥ b) && (a ≤ b) without
loss of generality ((a != b) analogous), so that the set⊗ of supported compara-
tors defined in precondition 3 is not a restriction either.

By application offorward substitution[23] to induction variables not being an
index variableil of the loop nestΛ (e. g. x1 , . . . ,x4 , y1 , . . . ,y4 in figure 1), it is
assured thatCx only depends on the index variablesil as stated in precondition 3.

Example 1
After having applied the forward substitution to the code shown in figure 1, theif -
statements have the following form:

if (4*x + i < 0 || 35 < 4*x + i ||
4*y + j < 0 || 48 < 4*y + j)

if (4*x + k + i - 4 < 0 || 35 < 4*x + k + i - 4 ||
4*y + l + j - 4 < 0 || 48 < 4*y + l + j - 4)

It is obvious that theseif -statements meet precondition 2. For obtaining the nor-
malized format mentioned in precondition 3, the conditions of theif -statements are
translated to the following appearance which will serve as example throughout the
remainder of this report:

if (-4*x - i - 1 >= 0 || 4*x + i - 36 >= 0 ||
-4*y - j - 1 >= 0 || 4*y + j - 49 >= 0)

respectively
if (-4*x - k - i + 3 >= 0 || 4*x + k + i - 40 >= 0 ||

-4*y - l - j + 3 >= 0 || 4*y + l + j - 53 >= 0)
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4.2. Condition Satisfiability

In the first phases of the optimization algorithm, all affine conditionsCx in a loop
nest are analyzed separately. Every single condition defines a particular subset
of the total iteration space of a loop nestΛ. This total iteration space forms an
N -dimensional geometric space limited by all loop boundslbl andubl. An affine
conditionCx can thus be modeled by a polytope according to the following defini-
tion 3.

Definition 3
1. A setP = {x ∈ Z

N | Ax = a, Bx ≥ b} is called apolyhedronfor matrices
A,B ∈ Z

m×N and vectorsa, b ∈ Z
m andm ∈ N.

2. A polyhedronP is called apolytope, if |P | < ∞.

Example 2
The condition4*x + 3*i - 36 >= 0 , where the index variablesx andi iterate
through the intervals[0, 35] and [0, 3] resp., has the following polytope representa-
tion:

P =


x ∈ Z

2

∣∣∣∣∣



4 3
1 0

-1 0
0 1
0 -1


x ≥




36
0

-35
0

-3







The first constraint ofP represents the condition itself, whereas the remaining four
inequations constrain the polytope to the intervals ofx and i mentioned above.
Transformed into a graphical illustration, the condition above defines the shape
shown in figure 7.

x

i

Figure 7. Conditions as Polytopes

Every affine conditionCx in a loop nest is transformed into its polytope represen-
tation Px. For this purpose, an improved variant of the Motzkin algorithm [21]
is used in combination with some simplifications in order to remove redundant
constraints [33].

Hereafter, we can determine in constant time if the number of equalitiesAx = a
of Px (see definition 3.1) is equal to the dimension ofPx plus 1. If this is the case,
Px is overconstrained and thus defines the empty set as proven by Wilde [33]. As
a consequence,Cx is shown to be unsatisfiable. If instead,Px only contains the
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constraints modeling the loop boundslbl andubl, the conditionCx is shown to be
satisfied for all values of the index variablesil.

Such conditions that are always satisfied or unsatisfied are replaced by their ac-
cording truth value in theif-statements and are no longer considered during further
analysis.

4.3. Condition Optimization

Satisfiable conditionsC =
N∑

l=1

(cl ∗ il) + c ≥ 0 are optimized in the next step.

C is analyzed in isolation without considering any other conditions in the loop
nestΛ. During this stage, it is assumed thatΛ contains only oneif-statement
which contains exactly one condition, namelyC. The result of the optimization
is a polytopePC which is generated out of valueslb ′

C,l andub ′
C,l for all loops

Ll ∈ Λ such thatC is satisfied for all index variablesil with lb ′
C,l ≤ il ≤ ub ′

C,l.
These values are determined in such a way that a loop nest splitting according to
lb ′

C,l andub ′
C,l would minimize the number of executions ofC.

Since affine expressions as defined in precondition 3 are linear monotone functions,
it is not necessary to deal with pairslb ′

C,l andub ′
C,l of values. IfC is true for a

certain valuev ∈ [lb ′
C,l, ub ′

C,l] andcl > 0, thenC must be true also forv+1, v+2,
. . . It is impossible thatC is true forv and false forv + 1. The same holds for
cl < 0; in this case,C must be true forv, v − 1, v − 2, . . . This implies that either
lb ′

C,l = lbl or ub ′
C,l = ubl. For these reasons, the optimization algorithm only

calculates valuesv ′
C,l for a conditionC and all loopsLl ∈ Λ with v ′

C,l ∈ [lbl, ubl].
This value designates one bound of the former interval[lb ′

C,l, ub ′
C,l], the other

bound is set to the the appropriate upper or lower loop bound.

For the optimization of an affine conditionC, the chromosome length of our first
genetic algorithm (GA) is equal to the number of index variablesil thatC depends
on. For every such index variable, a gene on the chromosome is allocated rep-
resentingv ′

C,l. Thus, the chromosome length is equal to|{cl | cl 6= 0}|. Using
the v ′

C,l values of the fittest individual of the final GA population, the optimized
polytopePC is generated as the result of this phase:

PC = {(x1, . . . , xN ) ∈ Z
N | lbl ≤ xl ≤ ubl, Ll ∈ Λ,

xl ≥ v ′
C,l if cl > 0,

xL ≤ v ′
C,l if cl < 0}

Example 3
When considering the conditionC = 4*x + k + i - 40 >= 0 taken from ex-
ample 1, the genetic algorithm presented in this section can generate the individual
I = (10, 0, 0). SinceC only depends on the index variablesx , k and i , I has a
chromosome length of 3. The numbers encoded inI denote the valuesv ′

C,x, v ′
C,k

andv ′
C,i:
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v ′
C,x = 10 v ′

C,k = 0 v ′
C,i = 0

Due to the fact that the index variablesx , k andi are multiplied by positive constants
in C (i. e. 4, 1 and 1),C is satisfied for all values of these index variables ranging
from v ′

C,l up to the corresponding upper loop bound. For this reason, the intervals
[lb ′

C,l, ub ′
C,l] for the entire loop nest and conditionC are defined as follows:

z ∈ [0, 19] x ∈ [10, 35] y ∈ [0, 48] k ∈ [0, 8] l ∈ [0, 8] i ∈ [0, 3] j ∈ [0, 3]

Since conditionC is not influenced by the index variablesz , y , l andj , the intervals
[lb ′

C,, ub ′
C,l] for these four index variables are not computed explicitly by the genetic

algorithm, but they are set to the lower and upper loop bounds.

Out of these particular intervals, the following polytopePC can be generated:

PC =


(z , x , y , k , l , i , j ) ∈ Z

7

∣∣∣∣∣
0 ≤ z ≤ 19, 0 ≤ y ≤ 48,
0 ≤ l ≤ 8, 0 ≤ j ≤ 3,
10 ≤ x ≤ 35, 0 ≤ k ≤ 8, 0 ≤ i ≤ 3




For a given individualI of the genetic algorithm, the corresponding fitness value is
the higher, the fewerif-statements would be executed when splittingΛ according
to the valuesv ′

C,l encoded inI. Since the GA only selects those individuals in
a population with the highest fitness values, the genetic optimization leads to the
minimization of the number of executedif-statements. Consequently, an invalid
individual whose encoded values imply thatC is not satisfied, has a very low fitness
value.

Given a conditionC =
N∑

l=1

(cl ∗il)+c ≥ 0 and a set of valuesv ′
C,l generated by the

GA, it is necessary to compute the number of executedif-statementsIFTot for the
evaluation of the fitness of an individualI. For these computations, the following
values are required.

Definition 4
1. Thetotal iteration space(TS) of a loop nestΛ is the total number of execu-

tions of the body of loopLN :

TS=
N∏

l=1

(ubl − lbl + 1)

2. Theconstrained iteration space(CS) is the total iteration space reduced to
the intervals represented byv ′

C,l and represents the size of the polytopePC :

CS=
N∏

l=1

rl andrl =

{ ubl − lbl + 1 if cl = 0,
ubl − v ′

C,l + 1 if cl > 0,
v ′

C,l − lbl + 1 else

3. Theinnermost loopλ is the index of the loop where a loop nest splitting has
to be done for a given set ofv ′

C,l values:
λ = max{ l | Ll ∈ Λ, rl 6= ubl − lbl + 1}
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The total number ofif-statements executed after loop nest splitting is the sum
of the executions of the originalif-statements in theelse-part of the splittingif-
statement – if the splittingif’s condition is not met – and the executions of the
splitting-if itself: IFTot = IFOrig + IFSplit (see e. g. figure 2). The number of loop
nest iterations in which an originalif-statement is executed is equal to the total
iteration space without the constrained iteration space:IFOrig = TS− CS. The
splitting if-statement is executed as often as itsthen- andelse-parts are executed:
IFSplit = TPSplit + EPSplit .

SinceCS counts the total number of iterations in which the splitting-if is true,
TPSplit mainly depends onCS. But TPSplit is much smaller thanCS, becauseCS
includes all the iterations of the loop nest located inside thethen-block. In contrast,
TPSplit counts how often the entire loop nest located inside thethen-block is exe-
cuted. By dividingCSby all loop nest iterations inside thethen-block, the correct

value forTPSplit is obtained:TPSplit = CS/
N∏

l=λ+1

(ubl−lbl+1)∗rλ. With the same

kind of argumentation,EPSplit can be determined:EPSplit = IFOrig /
N∏

l=λ+1

(ubl −
lbl + 1).

The computation ofIFSplit is that complex because the duplication of the inner-
most loopλ in thethen-part of the splitting-if (e. g. they loop in figure 2) has to be
considered. SinceIFTot does not depend linearly onv ′

C,l, a modeling of this op-
timization problem using integer linear programming (ILP) is impossible, so that
we chose to use a genetic algorithm.

Example 4

When considering the intervals[lb ′
C,l, ub ′

C,l]
z ∈ [0, 19] x ∈ [10, 35] y ∈ [0, 48] k ∈ [0, 8] l ∈ [0, 8] i ∈ [0, 3] j ∈ [0, 3]

already used in example 3, the following peace of C code would be generated as a
result of loop nest splitting:

for (z=0; z<20; z++)
for (x=0; x<36; x++)

if (x >= 10) {
for (; x<36; x++)

...
for (j=0; j<4; j++) { ... }

x--; }
else

for (k=0; k<9; k++)
...

for (j=0; j<4; j++) {
if (...) ... else ...; }

The total and constrained iteration spaces of this loop nest are computed as follows:
TS= 20 ∗ 36 ∗ 49 ∗ 9 ∗ 9 ∗ 4 ∗ 4 = 45, 722, 880
CS= 20 ∗ 26 ∗ 49 ∗ 9 ∗ 9 ∗ 4 ∗ 4 = 33, 022, 080

Since only the iteration space of the index variablex is constrained by the above
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intervals, the innermost loopλ refers to thex loop.

The formulas given in this section indicate that the two originalif -statements which
can be found in theelse-part of the splitting-if are executed

IFOrig = 45, 722, 880− 33, 022, 080 = 12, 700, 800
times. The calculation of executions ofthen-and else-parts of the splitting-if are
performed as follows

TPSplit = 33, 022, 080 / (49 ∗ 9 ∗ 9 ∗ 4 ∗ 4 ∗ 26) = 20
EPSplit = 12, 700, 800 / (49 ∗ 9 ∗ 9 ∗ 4 ∗ 4) = 200

leading to the following values for the number of executions of the splitting-if and of
all if -statements in the code fragment shown above:

IFSplit = 20 + 200 = 220
IFTot = 12, 700, 800 + 220 = 12, 701, 020

4.4. Global Search Space Construction

After the step described in section 4.3, a set ofif-statementsIFi = (Ci,1 ⊕ Ci,2 ⊕
. . . ⊕ Ci,n) consisting of affine conditionsCi,j together with their associated opti-
mized polytopesPi,j is given. In order to determine index variable values for which
all if-statements in a program are satisfied, a polytopeG modeling the global search
space has to be constructed out ofPi,j .

In a first step, a polytopePi is built for everyif-statementIFi. Therefore, the condi-
tions of IFi are traversed in their natural execution orderπ which is defined by the
associativity and precedence rules of the operators&&and|| . For initialization,Pi

is set to the optimized polytope of the first condition:Pi = Pi,π(1). While travers-
ing the conditions ofif-statementi, Pi andPi,π(j) are connected either with the
intersection or union operators for polytopes. If two conditions are connected with
the logicalAND in anif-statement, the intersection of polytopes is used. In the case
of the logicalOR, unions of polytopes are built:∀j ∈ {2, . . . , n} : Pi = Pi]Pi,π(j)

with ] =
{ ∩ if Ci,π(j−1) &&Ci,π(j)

∪ if Ci,π(j−1) || Ci,π(j)

The polytopesPi now model the ranges of values of the index variables for which
a singleif-statementi is satisfied. Since for loop nest splitting, allif-statements
need to be satisfied, the global search space is constructed by intersecting allPi:
G =

⋂
Pi.

Example 5

In this example, we consider the twoif -statements already given in example 1:

IF1 = -4*x - i - 1 >= 0 || 4*x + i - 36 >= 0 ||
-4*y - j - 1 >= 0 || 4*y + j - 49 >= 0

IF2 = -4*x - k - i + 3 >= 0 || 4*x + k + i - 40 >= 0 ||
-4*y - l - j + 3 >= 0 || 4*y + l + j - 53 >= 0
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After the first two steps of our optimization algorithm, the following polytopes are
associated with each condition:

P1,1 = ø, P1,2 = {x ≥ 9}, P1,3 = ø, P1,4 = {y ≥ 13}
P2,1 = {x = 0 ∧ k = 0}, P2,2 = {x ≥ 10},
P2,3 = {y = 0 ∧ l = 0}, P2,4 = {y ≥ 14}

Since polyhedra are not closed under the union operator, the geometrical objects
Pi defined above are – strictly spoken – no polytopes. Instead, an implementation
for finite unions of polyhedra is used for which all operations on sets, especially the
union, are closed [33]. For these reasons,P1 and P2 for the example are shown
explicitly as a union of polytopes:

P1 = {x ≥ 9} ∪ {y ≥ 13}
P2 = {x = 0 ∧ k = 0} ∪ {x ≥ 10} ∪ {y = 0 ∧ l = 0} ∪ {y ≥ 14}

After logical simplification, the intersection ofP1 andP2 modeling the global search
space looks as follows:

G = {x = 0 ∧ k = 0 ∧ y ≥ 13} ∪ {x ≥ 10} ∪
{y = 0 ∧ l = 0 ∧ x ≥ 9} ∪ {y ≥ 14}

4.5. Global Search Space Exploration

After the construction ofG as described in the previous section, the global search
spaceG has the following structure:

Definition 5
1. G generally has the structure of a finite union ofM polytopesRr with

1 ≤ r ≤ M : G = R1 ∪ R2 ∪ . . . ∪ RM .

2. Each polytopeRr of G defines a region of the total iteration space where all
if-statements in a loop nestΛ are satisfied.

The final stage of the loop nest split optimization (compare figure 6 on page 11)
consists of the selection of appropriate regionsRr of G such that once again the
total number of executedif-statements is minimized after loop nest splitting.

Since unions of polytopes (i. e. the logicalORof constraints) can not be modeled
using ILP, a second genetic algorithm is used for the exploration ofG and selection
of appropriate regionsRr. For a given search spaceG = R1 ∪ R2 ∪ . . . ∪ RM ,
each individualI of a population consists of a bit-vector of lengthM , where each
bit Ir determines whether regionRr of G is selected or not:I = (I1, I2, . . . , IM )

with Ir =
{

1 if Rr is selected,
0 else

In analogy to section 4.3, the indexλ of the innermost loop where the loop nest
would be split has to be defined for each individualI of the genetic algorithm. In
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IFI = 0;
∀i1 ∈ [lb1, ub1]

. . .
∀iλ ∈ [lbλ, ubλ]

IFI = IFI + 1;
if (GI = true for(i1, . . . , iλ))

iλ = ubλ;
else

IFI = IFI + IFλ+1;

Figure 8. Global If-Statement Counter

order to be able to count how manyif-statements are executed when splitting a loop
nest using the regions selected byI, some more definitions are necessary:

Definition 6
1. For an individualI, GI is the global search spaceG reduced to only those

regions selected byI:
GI =

⋃
Rr with Ir = 1

2. λr denotes the index of the innermost loop referenced by regionRr of G.
For the example given in the previous section, theλr values point to thek ,
x , l andy loops respectively.

3. Theinnermost loopλ for a given individualI is the index of the loop where
the loop nest has to be split when considering all regions selected byI:
λ = max{λr | r ∈ [1,M ], Ir = 1}

4. ιl denotes the number ofif-statements which are located in the body of loop
Ll but not in any other loopL ′

l which is nested inLl. For the code of figure 1,
ιj is equal to 2, all other valuesιl are zero.

5. IFl denotes the number ofif-statements that are evaluated when the loop nest
Λ ′ = {Ll, . . . , LN} would be executed:

IFl = (ubl − lbl + 1) ∗ (IFl+1 + ιl)
IFN+1 = 0

The genetic algorithm described in this section uses the same parameters (i. e. pop-
ulation size, number of generations, stopping criteria,. . . ) as the one used for con-
dition optimization (see section 3 for concrete values). The fitness of an individual
I represents the total numberIFI of if-statements that are executed when splitting
Λ and considering the regionsRr selected byI. For the fitness evaluation,IFI is in-
cremented by one for every execution of the splitting-if. If the splitting-if evaluates
to true, the counter retains this value. In the other case,IFI has to be incremented
by the number of executed originalif-statements as depicted in figure 8.
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After the termination of the genetic algorithm, the best place for inserting the
splitting-if in the loop nest is determined using the innermost loopλ of the fittest
individual. The regionsRr selected by this individual serve for the generation of
the conditions of the splitting-if and lead to the minimization ofif-statement exe-
cutions.
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5. Benchmarking Results

The techniques presented in section 4 have been fully implemented and integrated
into a single tool for source code transformation. The well-known class hierar-
chy SUIF [34] is used as intermediate representation for ANSI-C programs. The
polyhedral and genetic algorithms are based on the Polylib [33] and PGAPack [17]
libraries.

Our loop nest splitting tool was applied to the source codes of three multimedia
applications from the image processing domain. The first one is a medical image
processing application (CAVITY[3]) which extracts contours from images to help
physicians detect brain tumors. Since this application has served as test driver for
the so called DTSE transformations described in [9], we use it as benchmark in this
report to show that loop nest splitting is able to remove the overhead introduced by
DTSE. The cavity detector consists of two nested loops scanning an image in its x
and y dimensions. The index variables iterate from 0 to 1,002 (y) and 0 to 1,282
(x) leading to a total amount of 1,286,849 loop iterations. During each iteration,
13 if-statements suitable for loop nest splitting are executed containing 40 index
variable accesses and 71 arithmetical logical ANSI-C operations.

The second benchmark is the MPEG 4 full search motion estimation kernel [5]
(ME) which already served as example throughout this report. From figure 1 it can
be seen that the sevenfold loop nest defines an iteration space of size 45,722,880.
In the innermost loop of the ME benchmark, there are twoif-statements with a total
of eight variable accesses and 14 C operations.

Finally, the QSDPCM algorithm [29] for scene adaptive coding serves as third test
driver. Like the previous benchmark, its loop nest has a depth of seven so that
12,830,400 iterations of the innermost loop are executed. In the hot-spot of this ap-
plication, oneif-statement containing 12 variable references and 19 computational
operations can be found.

The runtimes of our loop nest splitting tool are very low. For the optimization of
CAVITY including the polyhedral and genetic algorithms and the transformation
of the code on an AMD Athlon (1.3 GHz), 1.58 CPU seconds are required (ME:
0.84 s, QSDPCM: 0.41 s). The main characteristics of the benchmarks are summa-
rized in table 1.

In section 5.1, the impacts of loop nest splitting on CPU pipeline and cache behav-
ior are illustrated. Section 5.2 shows how the execution times and code sizes of
the benchmarks are affected by loop nest splitting on a variety of different proces-
sors. Section 5.3 demonstrates that the techniques explained in this report are able
to reduce the energy consumption of the benchmarks considerably. Measurements
based on a precise energy model for the ARM7TDMI embedded RISC core are
presented here.
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CAVITY ME QSDPCM

Nest depth 2 7 7

# Iterations 1.286.849 45.722.880 12.830.400

# If-statements 13 2 1

# Variable accesses 40 8 12

# Operations 71 14 19

Optimization runtime 1.58 s 0.84 s 0.41 s

Table 1. Characteristical Properties of Benchmarks

5.1. Pipeline and Cache Behavior

In this section, the effects of loop nest splitting on several cache and pipeline pa-
rameters of three different processors are demonstrated. Because of their easy to
access on-chip debugging and profiling facilities, the results reported in this sec-
tion have been measured with an Intel Pentium III processor (section 5.1.1), a Sun
UltraSPARC III CPU (section 5.1.2) and a MIPS R10000 (section 5.1.3).

5.1.1. Intel Pentium III

Following the definition given by Hennessy and Patterson [7], the Intel Pentium III
processor is a typical Harvard architecture having a single main memory but sepa-
rate instruction and data caches as illustrated in figure 9. Internally, the processor
communicates with its level 1 caches via separate data and instruction buses. The
on-chip level 1 data and instruction caches each have a size of 16 kB and use a
4-way set-associative mapping with 32 bytes per cache line. The off-chip level 2
cache is a unified cache storing both data and instructions. It has a size of 256 kB
with 32 bytes per line using an 8-way set-associative mapping.
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Bus Traffic

L1 I-MissL1 I-Fetch
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Load/Store
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Figure 9. Structure of the Intel Pentium III architecture

Figure 10 shows how the instruction pipeline, the caches and the transfers of data
and instructions on the system buses are affected by loop nest splitting. For obtain-
ing these results, the benchmarks were compiled and linked with a performance
measuring library [6] that makes use of hardware performance-monitoring coun-
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ters of the Pentium processor [10]. This way, reliable values can be generated
by profiling without using erroneous cache simulation software. The probe-points
where the data shown in figure 10 was measured within the Pentium III architecture
are indicated in figure 9. The results for the optimized benchmarks after loop nest
splitting are given as a percentage of the unoptimized versions denoted as 100%.
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Figure 10. Pipeline and Cache Behavior for Intel Pentium III

As can be seen from the columnsBranch Taken and I-Pipe Stall, loop nest split-
ting is able to generate a more regular control flow for all three benchmarks.
The number of taken branch instructions is reduced between 8.1% (CAVITY) and
72.9% (ME) consequently leading to similar reductions of pipeline stalls (10.4% –
56.5%).

The fact that loop nest splitting removes control flow overheads and thereby sig-
nificantly improves the runtime behavior of caches is reflected by the columnsL1
I-Fetch andL1 I-Miss of figure 10. As can be seen, the number of instruction fetches
is reduced by 26.7% (QSDPCM) resp. 73.6% (ME), and the total amount of in-
struction cache misses is improved between 14.8% (CAVITY) and 68.5% (ME).
Due to the removal of conditions and the involved reduction of index variable ac-
cesses, the L1 data cache also benefits from the optimization. Data fetches from
the cache are reduced by 16% (CAVITY) resp. 85.4% (ME); only in the case of
the QSDPCM benchmark does the amount of data fetches increase by 3.9% due
to the insertion of spill code by the compiler. Furthermore, figure 10 shows that
the absolute amount of data cache misses drops by 7.2% (CAVITY) up to 27.2%
(ME).

Transfers of instructions and data between L1 caches, the unified L2 cache and
main memory are optimized likewise. As can be seen from columnL2 Requests
from figure 10, the L2 cache is referenced 13.1% (CAVITY) up to 53.8% (ME)
less than before the optimization. When focusing on the system bus connecting the
Pentium with the main memory, between 9.9% (CAVITY) and 43.8% (ME) less
traffic can be observed.

All in all, the factors mentioned above lead to a speed-up of our benchmarks (see
columnCycles) between 26.7% (QSDPCM) and 73.5% (ME). Given that a con-
siderable amount of the total energy consumption results from memory accesses,
loop nest splitting leads to significant energy savings, because activities on system
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buses between functional units, L1 and L2 caches and main memory are reduced by
25.9% (CAVITY), 77.8% (ME) and 18.7% (QSDPCM, average values for columns
L1 I-Fetch, L1 D-Fetch, L2 Requests andBus Traffic).

5.1.2. Sun UltraSPARC III

In principle, the architecture of the Sun UltraSPARC III processor [32] is compa-
rable to the one of the Pentium III, since it also consists of separate level 1 data
and instruction caches and a unified level 2 cache (compare figure 11). As in the
case of the Pentium, this CPU allows processor event counting for performance
measurements.
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Figure 11. Structure of the Sun UltraSPARC III architecture

The main difference between these processors is the size of the various memories.
The on-chip level 1 instruction cache of the UltraSPARC III has a size of 32 kB, the
level 1 data cache is 64 kB large. Both caches use a 4-way set associative mapping
with 32 bytes per cache line. The external level 2 cache has a size of 8 MB with
512 bytes per line using a 2-way set-associative mapping. The Sun processor has
a very large register file containing 160 general purpose integer registers and up to
32 floating point registers. The floating point registers can be loaded automatically
by using the prefetch cache and its associated speculative hardware controller2.
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Figure 12. Pipeline and Cache Behavior for Sun UltraSPARC III

2Since floating point computations are not performed by the applications considered in this sec-
tion, the UltraSPARC III prefetch cache is not taken into account during benchmarking.
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Figure 12 shows the effects of loop nest splitting on the instruction pipeline and the
caches of the UltraSPARC III processor. This processor has a very long instruction
pipeline consisting of fourteen stages which is very sensitive to stalls due to its
complexity. For this reason, loop nest splitting leads to very high gains for the
SPARC processor as can be seen from the columnsBranch Taken andI-Pipe Stall.
The total number of pipeline stalls is reduced by 29.1% in the case of the CAVITY
benchmark. For the QSDPCM application, improvements of 55.5% have been
observed, and the optimization of the ME benchmark leads to 73.1% less pipeline
stalls.

When considering the number of taken branches as an indicator of the linearity of
the control flow, similar improvements can been observed. After loop nest splitting,
the execution of the QSDPCM benchmark leads to 54% less branches, in the case
of the MPEG-4 motion estimation, a reduction by 88.3% can be reported. The
fact that the branching behavior of the CAVITY detector becomes worse by 5.3%
after the optimization is remarkable. Further experiments and measurements have
shown that this effect is caused by the current version (6.2) of the Sun Workshop
compiler used and that this is not a misconduct of loop nest splitting itself.

In the code of the CAVITY benchmark, a sequence of eightif-statements checking
data-dependent conditions can be found. Theseif-statements are not suitable for
loop nest splitting. Therefore, they are duplicated by our transformation – one time
in the then-part of the splitting-if, and one time in theelse-part. It has turned out
that theseif-statements are the reason for the increase of taken branches when using
the Sun compiler. When commenting out these data-dependentif-statements, the
CAVITY detector only containsif-statements that can be processed by loop nest
splitting. Under these circumstances, the branching behavior of the benchmark is
improved as expected by 28.4%. This number shows that the gains achieved by
our optimization of loop-variantif-statements are compensated by some particular
transformations of this Sun compiler applied to the data-dependentif-statements.
The presumption that this current compiler version is the reason for the behavior
observed can be validated when using the previous version 6.1 instead. In this case,
a reduction of 33.7% of taken branches is observed.

As in the case of the Pentium processor, the number of accesses to the L1 instruc-
tion cache is reduced significantly. The improvements vary between 28.2% (CAV-
ITY) and 82.7% (ME). In contrast, the amount of I-cache misses is only reduced
for the ME benchmark (10.4% improvement). For the other benchmarks, the num-
ber of cache misses remains nearly unchanged (less than 0.1% of improvement for
QSDPCM and 2.6% degradation for CAVITY).

When focusing on the level 1 data cache, it can be seen that the number of accesses
to it is only reduced after the optimization of the CAVITY benchmark. In this case,
21.2% less data transfers concerning this cache are performed. For the other bench-
marks, the number of data fetches stays constant. The reason for this behavior is
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the large register file of the UltraSPARC processor. Since the ME and QSDPCM
benchmarks only use very few local variables, the compiler is able to store them
entirely in the processor registers even before loop nest splitting. The number of
L1 data cache misses is reduced between 2.9% (ME) and 51.4% (CAVITY).

As can be seen from the columnsL2 Requests and L2 Miss, the level 2 unified
cache also benefits from loop nest splitting. In the case of the CAVITY benchmark,
the number of accesses to this cache is reduced by 17.2%, whereas no changes
have been observed for the other benchmarks. L2 cache misses are only reduced
for the ME benchmark (improvement of 28.6%), the transformation of the other
applications leads only to marginal improvements (1.1% for CAVITY, 2.3% for
QSDPCM).

In their combination, the improvements of cache and pipeline behavior lead to
large speed-ups of all benchmarks for the Sun UltraSPARC III processor. The
columnCycles denotes the number of clock cycles required for the execution of
the benchmarks. It can be seen that the speed-ups range from 33.3% (CAVITY) up
to 75.8% (ME).

5.1.3. MIPS R10000

With respect to the first and second level caches, the architecture of the MIPS
R10000 processor is equivalent to the one of the Intel Pentium III. In the case of
the MIPS, the sizes of the level 1 instruction and data caches are 32 kB. Both caches
are 2-way set-associative, the block size of the instruction cache is 16 words, the
data cache uses 8 words per block. The secondary unified cache has a size of 1 MB
and is also 2-way set-associative.
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Figure 13. Pipeline and Cache Behavior for MIPS R10000

Since the MIPS performance counters [20] are not able to profile the performance
of the instruction pipeline, no detailed data with respect to pipeline stalls and
branching behavior can be given. Only the total number of executed branch in-
structions can be measured. The columnBranch Instrs of figure 13 denotes all
branch instructions – taken branches as well as untaken jumps – evaluated during
the execution of the benchmarks. This column shows that reductions of executed
branch instructions between 66.3% (QSDPCM) and 91.8% (CAVITY) have been
achieved by loop nest splitting.



5.2. Execution Times and Code Sizes 27

The MIPS caches benefit from our optimization for a large extent. As can be seen
in figure 13, loop nest splitting is able to reduce the number of accesses to the
level one caches significantly. Instruction fetches are decreased between 31.5%
(CAVITY) and 81% (ME), whereas data cache accesses are alleviated between
36.4% (CAVITY) and 67.3% (QSDPCM). Due to these improvements of cache
accesses, the number of cache misses is reduced also. The number of level 1 in-
struction cache misses is diminished between 14.7% (CAVITY) and 56.9% (ME),
data cache misses occur between 15.2% (ME) and 34.8% (QSDPCM) less frequent
after the optimization.

Improvements related to the level 2 unified cache are observed likewise. The num-
ber of read/write requests to this cache is reduced between 15.4% (CAVITY) and
38.3% (ME). Level 2 cache misses are slightly increased by 3.3% for the QSDPCM
benchmark and are decreased by 25% (CAVITY) respectively 87% (ME).

Accumulated, the enhancements reported in detail for the MIPS R10000 processor
lead to an acceleration of the benchmarks between 26.1% (CAVITY) and 63.4%
(QSDPCM).

5.2. Execution Times and Code Sizes

In this section, we show that the improvements reported in section 5.1 are not re-
stricted to the platforms presented there. A large collection of different processors
including embedded RISC architectures, VLIW machines, DSPs and RISC work-
stations was used to measure the runtimes and code sizes of the benchmarks.

For generating the data presented in this section, the source codes of the bench-
marks before and after loop nest splitting were compiled for a Sun UltraSparc
III, Intel Pentium Pro MMX, HP-PA 9000, MIPS R10000, PowerPC G3, DEC
Alpha EV4, Philips TriMedia TM-1000, Texas Instruments TMS320C62 and an
ARM7 TDMI core, the latter both in 16-bit thumb-mode and 32-bit arm-mode.
Since it is known that optimizations in state-of-the art compilers are hardly ever
able to cross control flow boundaries, loop nest splitting has an enabling effect on
the compiler optimizations due to the explicit elimination of such boundaries in
the hot-spots of an application. For exploring this implicit optimization potential
of our transformation, compilers were always invoked using the highest degree of
optimization. The compilers used for the different processors are listed in table 2
together with their corresponding command line options.

Runtimes are measured by executing and profiling the compiled programs on ex-
isting hardware using either available workstations or evaluation boards. Since a
detailed profiling as done in section 5.1 including cache statistics can not be done
for most of these processors due to the lacking hardware profiling support, only the
runtimes of the benchmarks are reported here.
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ProcessorCompiler Version Command line options

Sun UltraSparc III Sun WorkShop 6.2 CC -fast -xtarget=ultra3 -xarch=v9b

Intel Pentium Pro Sun WorkShop 6.2 CC -fast -xtarget=pentiumpro
-xarch=pentiumpro

HP-PA 9000/785 HP Softbench A.01.18 aCC +O4

MIPS R10000 MIPSpro 7.2.1 CC -mips4 -r10000 -O2

PowerPC G3 GNU gcc 2.95.4 gcc -O7

DEC Alpha EV4 GNU gcc 2.95.4 gcc -O7

TriMedia-1000 Philips TriMedia SDE V5.3.4 tmcc -O3 -host WinNT

TI TMS320C62 TI Code Generation Tools3.01 cl6x -o3

ARM7 TDMI thumb ARM SDT 2.50 tcc -O2 -Otime

ARM7 TDMI arm ARM SDT 2.50 armcc -O2 -Otime

Table 2. Compilers and Optimization Levels for Runtime Measurements

The code sizes of the benchmarks are determined by compilation of the C source
codes in the way described above and generation of assembly listings instead of
executable binaries. The total amount of assembly instructions occurring in the
generated files is then taken as a measure for the code sizes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Sun Pentium HP MIPS PowerPC DEC Alpha TriMedia TI C6x ARM7 thmb ARM7 arm Average

Cavity Motion Estimation QSDPCM

Figure 14. Runtimes after Loop Nest Splitting

As can be seen in figure 14, the runtimes of the CAVITY benchmark are improved
between 7.7% (TI C6x) and 35.7% (HP). On the average over all processors, a
speed-up of 23.6% has been measured. The fact that loop nest splitting is able to
generate a very regular control flow in the innermost loop of the ME benchmark
leads to very high gains for this benchmark. This application is accelerated by
62.1% in average. The minimum speed-up amounts to 36.5% (TriMedia), whereas
the Sun platform honors the optimization with an acceleration of 75.8%. For the
QSDPCM benchmark, the improvements range from 3% (PowerPC) up to 63.4%
(MIPS). On the average, loop nest splitting leads to an acceleration of 29.3% for
QSDPCM.

As for every code replicating optimization, the large improvements of loop nest
splitting with respect to execution times entail increases in code sizes. In the case
of the CAVITY benchmark, the average speed-up of 23.6% leads to an average in-
crease of code sizes of 60.9%. The assembly code generated by the MIPS compiler
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Figure 15. Code Sizes after Loop Nest Splitting

after loop nest splitting is the most condensed one, since it is only 34.7% larger than
the original code. In the case of the DEC Alpha, an increase of 82.8% of code size
has been measured. Among all benchmarks considered in this report, it is the ME
application for which loop nest splitting leads to the highest accelerations. In ad-
dition, figure 15 shows that our optimization also leads to the smallest increases in
code size in this case. In the average, an increase of only 28% has been observed
whereby the minimum and maximum growths amount to 9.2% (MIPS) and 51.4%
(HP). Finally, the increases of code size for the QSDPCM application vary between
8.7% (MIPS) and 101.6% (TI C6x) leading to an average augmentation of 61.6%.

5.3. Energy Consumption of an ARM7TDMI Core

The increases of code sizes by a few hundred instructions (see the previous sec-
tion 5.2) are not a serious drawback of our optimization, since the added energy
required for storing these instructions is compensated by the savings achieved by
loop nest splitting. The results given in this section demonstrate that loop nest split-
ting is a powerful technique for reducing the energy dissipation of embedded multi-
media applications. Using the instruction-level energy model for an ARM7TDMI
embedded RISC core presented in [27], we are able to compute the energy con-
sumption of our benchmarks before and after loop nest splitting with an accuracy
of 1.7%.

The energy measurements have been performed by firstly compiling the source
code of the benchmarks using the energy aware compilerencc[28]. The gener-
ated assembly code is then processed by assembler and linker to form a binary
executable that is executed using a simulator. A particular energy profiler takes
as input the information generated by the simulator, which includes information
on number and kind of executed instructions as well as different kinds of accesses
to memories. Additionally, the profiler also reads from a database that contains
information about the energy consumption of each individual instruction as well
as memory accesses. The individual values are summed up, considering inter-
instruction effects, and the final result, the performance statistics of the complete
program, is generated. These statistics include – among others – the number of
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executed instructions, number of memory accesses and the energy consumption.
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Figure 16. Energy Consumption after Loop Nest Splitting

The first four columns of figure 16 confirm the observations already presented in
section 5.1 that loop nest splitting leads to a higher locality of instructions and
data thereby reducing memory bandwidth and bus demand. In the case of the
ARM7, between 23.5% (CAVITY) and 56.9% (ME) fewer instructions are fetched
from the memory. Accesses to data stored in the memory are likewise optimized.
From columnData Read, it can be seen that data transfers from the memory to
the ARM7 core are reduced between 7.1% (CAVITY) and 65.3% (ME). Since data
is read much more frequently than it is written to memory, the fact that 24.5%
more memory stores occur in the case of CAVITY is not significant. This increase
is due to the fact that the compiler needs to insert some spill code during register
allocation. The contrary holds for the QSDPCM benchmark, where the elimination
of spill code leads to a reduction of memory stores by 95.4%. When focusing on
the total energy dissipation of the entire memory system, only the absolute number
of memory accesses is important. ColumnMem Accesses clearly shows that loop
nest splitting leads to large reductions, ranging from 20.8% up to 57.2%.

These improvements consequently lead to large diminuitions of the energy dissipa-
tion of the memory system (see columnMem Energy). The energy profiling shows
that we are able to achieve savings between 19.6% (CAVITY) and 57.7% (ME). In
addition, the benefits of loop nest splitting are not limited to the memory system.
As can be seen from columnCPU Energy, the amount of energy consumed by the
ARM7 core itself is reduced by the same order of magnitude; gains reaching from
18.4% (CAVITY) up to 57.4% (ME) have been observed. Accumulated, the total
energy consumption of the processor and its memory is reduced between 19.2%
(CAVITY) and 57.6% (ME). These results demonstrate that loop nest splitting is
capable of optimizing the locality of instruction and data accesses simultaneously
as desired by Kim et al. [13].
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6. Conclusions

In this report, a novel source code transformation called loop nest splitting is pre-
sented which is able to remove redundancies in the control flow of embedded
multimedia applications. With the help of polyhedral and genetic algorithms,if-
statements occurring in loop nests are analyzed. Conditions having no effect on the
control flow of an application are removed. Ranges of values of the index variables
are identified for which allif-statements are provably satisfied. With the help of
these ranges of values, the source code of an application is transformed in such a
way that the total number ofif-statements evaluated during the execution of a loop
nest is minimized.

Detailed benchmarking of three complex benchmarks shows that loop nest splitting
is able to improve the branching and pipeline behavior significantly. For the three
processors supporting profiling of the instruction pipeline (Intel Pentium III, Sun
UltraSPARC III, MIPS R10000), average reductions of pipeline stalls in a range
between 19.7% and 64.8% are measured. Furthermore, the caches also benefit
from our optimization because the average number of I-cache misses is decreased
by 8.9% – 45.3% (D-cache misses: 15.1% – 24.7%). Since the number of in-
struction and data transfers via system buses is reduced to a large extent, loop nest
splitting entails a higher locality of instructions and data. This less bus demand ob-
served during benchmarking consequently leads to large power savings. Concrete
reductions of energy dissipation are measured on an ARM7TDMI embedded RISC
processor. For this environment, it has been shown that our optimizations lead to
improvements between 19.2% and 57.6%. The measurements have shown that
these total energy savings attribute from savings both of the instruction and data
memory. An extended benchmarking using a set of ten different programmable
processors shows that we are able to speed up the runtimes of the benchmarks
between 23.6% and 62.1% on the average.

The selection of the benchmarks used in this report demonstrates that our optimiza-
tion is a very general and powerful technique. It is not only able to improve the
code of typical real-life multimedia applications. But in addition, loop nest splitting
can be used to eliminate the negative effects of other source code transformation
frameworks introducing a large control flow overhead into an application.

In the future, efforts will be made for generalizing our analytical models so that
more classes of loop nests can be treated. In particular, extensions to loops not
having constant bounds will be developed. Furthermore, if the global search space
introduced in section 4.4 defines the empty set due toif-statements which can not
be satisfied at the same time, our algorithm terminates without having performed
any optimization. Our future work will also include extensions of the methods
presented in section 4 so that only a promising subset of allif-statements will be
considered in that case.
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A. Benchmarking Data

In this appendix, all data measured during the benchmarking of loop nest splitting
is listed. Out of the material presented in the following sections, all results given in
section 5 can be reproduced. In section A.1, the data for rating the behavior of the
instruction pipelines and caches is given. Section A.2 lists the exact runtimes of the
benchmarks for all processors considered in section 5.2 whereas the material con-
cerning the evolution of code sizes for these processors is specified in section A.3.
Finally, data related to the energy dissipation of an ARM7TDMI core is presented
in section A.4.

A.1. Values of Performance-Monitoring Counters

A.1.1. Intel Pentium III

This section contains all pipeline and cache related counter values determined with
the help of the PMC library [6] for the Intel Pentium III processor. In the following
tables, the absolute numbers of events recorded by this library during the execu-
tion of the benchmarks are listed. To avoid side-effects of other running processes
being measuered during the execution of the benchmarks, all periodically active
processes were terminated beforehand. Furthermore, each measurement was done
twenty times. After that, the minimum and maximum values measured were dis-
carded and average values over the remaining eighteen measurements were com-
puted.

Table 3 shows the average values for the original versions of the benchmarks,
whereas the results after loop nest splitting are given in table 4. Out of these values,
the diagram shown in figure 10 (see page 23) was generated.

Original CAVITY ME QSDPCM

Cycles 457,882,3611,057,369,204416,172,096
Branch Taken 15,503,809 209,133,207 35,145,643

I-Pipe Stall 3,724,967 4,269,815 5,256,488
L1 I-Fetch 453,220,7371,051,974,908406,400,954
L1 I-Miss 10,122 17,424 39,100

L1 D-Fetch 277,196,342 597,853,395144,444,058
L1 D-Miss 136,056 43,693 46,332

L2 Requests 113,894 86,109 157,424
Bus Traffic 148,941 69,129 58,746

Table 3: PMC Values for Original Benchmark Versions
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Loop Nest Split CAVITY ME QSDPCM

Cycles 312,217,838279,831,507304,873,722
Branch Taken 14,248,396 56,755,097 26,928,781

I-Pipe Stall 3,338,489 1,858,695 3,994,489
L1 I-Fetch 308,599,829277,828,106297,909,549
L1 I-Miss 8,626 5,494 28,699

L1 D-Fetch 232,823,980 87,489,875150,062,180
L1 D-Miss 126,279 31,809 38,419

L2 Requests 99,009 39,770 121,331
Bus Traffic 134,209 38,857 48,418

Table 4: PMC Values for Benchmarks after Loop Nest Splitting

A.1.2. Sun UltraSPARC III

The pipeline and cache related material presented in section 5.1.2 for the Sun Ul-
traSPARC III processor was collected with the help of the performance instrumen-
tation counters (PIC) [32] of the processor and thecputrack utility of the Solaris
operating system. Each measurement was done twenty times. Hereafter, the minu-
mum and maximum values measured were discarded and average values over the
remaining eighteen measurements were computed.

Table 5 shows the average values for the original versions of the benchmarks,
whereas the results after loop nest splitting are given in table 6. Out of these values,
the diagram shown in figure 12 (see page 25) was generated.

Original CAVITY ME QSDPCM

Cycles 393,472,375868,531,375237,383,891
Branch Taken 26,211,162147,832,045 27,915,617

I-Pipe Stall 13,157,318 34,530,345 6,123,507
L1 I-Fetch 147,889,880412,710,424128,183,341
L1 I-Miss 18,293 15,786 11,767

L1 D-Fetch 89,690,758 6,007,608 24,754,265
L1 D-Miss 259,081 168,838 140,497

L2 Requests 66,330,936 5,812,883 24,571,642
L2 Miss 25,121 10,179 3,558

Table 5: PIC Values for Original Benchmark Versions

Loop Nest Split CAVITY ME QSDPCM

Cycles 262,503,992210,301,284133,130,265
Branch Taken 27,598,854 17,314,895 12,836,237

I-Pipe Stall 9,335,217 9,300,382 2,727,359
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Loop Nest Split CAVITY ME QSDPCM

L1 I-Fetch 106,189,973 71,526,680 67,382,877
L1 I-Miss 18,778 14,139 11,760

L1 D-Fetch 70,652,809 5,903,200 25,050,442
L1 D-Miss 126,011 163,925 128,130

L2 Requests 54,952,441 5,764,959 24,655,932
L2 Miss 24,850 7,265 3,476

Table 6: PIC Values for Benchmarks after Loop Nest Splitting

A.1.3. MIPS R10000

For accessing the MIPS R10000 performance counters [20] (PC), theperfex util-
ity was used. As in the section before, every measurement was performed twenty
times for obtaining stable values. The following tables 7 and 8 show the average
results of all measurements.

Original CAVITY ME QSDPCM

Cycles 364,843,119 729,839,198124,772,234
Branch Instrs 55,231,492 249,296,813 53,268,372

L1 I-Fetch 576,065,6641,115,530,132282,093,449
L1 I-Miss 61,616 51,843 2,947

L1 D-Fetch 199,546,246 39,341,594 24,406,526
L1 D-Miss 155,691 41,550 7,396

L2 Requests 217,277 93,376 10,347
L2 Miss 13,922 11,879 436

Table 7: PC Values for Original Benchmark Versions

Loop Nest Split CAVITY ME QSDPCM

Cycles 269,520,370285,561,09445,706,635
Branch Instrs 4,532,214 40,149,31617,973,082

L1 I-Fetch 394,699,884211,966,73697,632,479
L1 I-Miss 52,555 22,365 1,887

L1 D-Fetch 126,904,539 21,892,341 7,985,215
L1 D-Miss 131,260 35,238 4,819

L2 Requests 183,898 57,647 6,707
L2 Miss 10,442 1,558 451

Table 8: PC Values for Benchmarks after Loop Nest Splitting
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A.2. Execution Times

In this section, the absolute runtimes of the benchmarks on the ten processors con-
sidered in this report are shown. The values given in the tables below for the
Pentium, HP, PowerPC, DEC and TriMedia processor denote the number of CPU
seconds required for the execution of a benchmark. For the Sun, MIPS, TI and
ARM processor, the total amount of clock cycles is given. Table 9 shows the run-
times before the optimization. The speed-ups reported in figure 14 (see page 28)
have been generated by comparing this data with the runtimes after loop nest split-
ting which can be found in table 10.

Original CAVITY ME QSDPCM

Sun 393,472,375 868,531,375 237,383,891
Pentium 0.35 1.10 0.29

HP 0.56 1.87 0.30
MIPS 364,843,119 729,839,198 124,772,234

PowerPC G3 0.82 2.41 0.48
DEC Alpha 4.61 12.76 3.46

TriMedia 5.10 21.92 3.38
TI C6x 1,264,823,1382,681,116,4851,237,341,543

ARM7 thumb 146,308,9388,230,155,0082,137,855,898
ARM7 arm 172,938,8929,663,200,1902,005,827,480

Table 9: Runtimes of Original Benchmark Versions

Loop Nest Split CAVITY ME QSDPCM

Sun 262,503,992 210,301,284 133,130,265
Pentium 0.29 0.34 0.23

HP 0.36 0.55 0.12
MIPS 269,520,370 285,561,094 45,706,635

PowerPC G3 0.58 0.61 0.46
DEC Alpha 2.99 6.01 2.60

TriMedia 3.89 13.93 2.74
TI C6x 1,167,015,404 733,300,141 867,214,454

ARM7 thumb 122,616,2563,305,386,9001,891,857,950
ARM7 arm 152,914,1524,367,474,9721,840,264,050

Table 10: Runtimes of Benchmarks after Loop Nest Splitting
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A.3. Code Sizes

In the following tables 11 and 12, the code sizes before and after loop nest splitting
for a variety of processors are given. The values listed in this section denote the
number of assembly instructions emitted by the compilers used.

Original CAVITY ME QSDPCM

Sun 634 369 165
Pentium 482 241 138

HP 444 492 176
MIPS 691 456 242

PowerPC G3 594 264 160
DEC Alpha 615 302 143

TriMedia 1,750 960 585
TI C6x 577 295 184

ARM7 thumb 601 300 273
ARM7 arm 469 216 136

Table 11: Code Sizes of Original Benchmark Versions

Loop Nest SplitCAVITY ME QSDPCM

Sun 951 418 303
Pentium 791 297 238

HP 673 745 224
MIPS 931 498 263

PowerPC G3 964 325 269
DEC Alpha 1,124 387 254

TriMedia 2,580 1,235 825
TI C6x 1,042 373 371

ARM7 thumb 1,010 437 485
ARM7 arm 784 282 215

Table 12: Code Sizes of Benchmarks after Loop Nest Splitting

A.4. Energy Consumption of an ARM7TDMI Core

This section contains the material gathered when using an accurate instruction-
level energy model [27] for an ARM7 embedded RISC core during benchmarking.
The first four rows of the following tables denote the absolute number of different
kinds of memory accesses. In the lower part of these tables, the energy dissipation
of the benchmarks is given inµJ . Table 13 shows the data of the energy model
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before loop nest splitting, whereas table 14 gives the values after our optimization.

Original CAVITY ME QSDPCM

Instruction Read 1,488,952,642 4,187,759,099 1,436,042,507
Data Read 171,633,720 800,612,554 397,077,933
Data Write 36,299,715 95,364,299 29,922,359

Total Memory Accesses 1,696,886,077 5,083,735,952 1,863,042,799

CPU Core Energy Consumption19,996,772.345 63,456,704.57724,112,184.733
Memory Energy Consumption44,051,984.515143,911,901.10054,457,644.234

Total Energy Consumption64,048,756.860207,368,605.67778,569,828.967

Table 13: Energy Consumption of Original Benchmark Versions

Loop Nest Split CAVITY ME QSDPCM

Instruction Read 1,138,610,481 1,804,375,600 874,713,006
Data Read 159,407,055 278,139,796 205,511,633
Data Write 45,190,087 93,331,459 1,369,659

Total Memory Accesses 1,343,207,623 2,175,846,855 1,081,594,298

CPU Core Energy Consumption16,320,808.97727,015,207.37613,489,391.884
Memory Energy Consumption35,406,147.93260,858,791.53830,364,170.438

Total Energy Consumption51,726,956.90987,873,998.91443,853,562.322

Table 14: Energy Consumption of Benchmarks after Loop Nest Splitting
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