
Scratchpad Memory : A Design Alternative for Cache On-chip memory
in Embedded Systems

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, Peter Marwedel
banakarj mbala@cse.iitd.ernet.in

Indian Institute of Technology, Delhi 110 016

steinkej lee j marwedel@ls12.cs.uni-dortmund.de

University of Dortmund, Dept. of Computer Science

Otto-Hahn-Strasse 16 44221 Dortmund, Germany

Abstract

In this paper we address the problem of on-chip mem-
ory selection for computationally intensive applications, by
proposing scratch pad memory as an alternative to cache.
Area and energy for different scratch pad and cache sizes
are computed using the CACTI tool while performance was
evaluated using the trace results of the simulator. The tar-
get processor chosen for evaluation was AT91M40400. The
results clearly establish scratchpad memory as a low power
alternative in most situations with an average energy re-
duction of 40%. Further the average area-time reduction
for the scratchpad memory was 46% of the cache memory.1

1 Introduction

The salient feature of portable devices is light weight and
low power consumption. Applications in multimedia, video
processing, speech processing, DSP applications and wire-
less communication require efficient memory design since
on chip memory occupies more than 50% of the total chip
area [1]. This will typically reduce the energy consump-
tion of the memory unit, because less area implies reduc-
tion in the total switched capacitance. On chip caches using
static RAM consume power in the range of 25% to 45%
of the total chip power [2]. Recently, interest has been fo-
cussed on having on chip scratch pad memory to reduce the
power and improve performance. On the other hand, they
can replace caches only if they are supported by an effec-
tive compiler. Current embedded processors particularly in
the area of multimedia applications and graphic controllers
have on-chip scratch pad memories. In cache memory sys-
tems, the mapping of program elements is done during run-
time, whereas in scratch pad memory systems this is done

1This project is supported under DST-DAAD grants project number
MCS 216

either by the user or automatically by the compiler using
suitable algorithm.
Although prior studies into scratch pad memory behavior
for embedded systems have been conducted, the impact
on area have not been addressed. This paper compares
cache/scratch pad area models along with their energy mod-
els. Specifically we address the following issues

1. To support comparison of memory systems we gen-
erate area models for different cache and scratchpad
memory. Further, energy consumed per access for
cache and scratchpad is computed for different sizes
of cache and scratchpad.

2. We develop a systematic framework to evaluate the
area-performance tradeoff of cache/scratch pad based
systems. Experimental environment requires the use
of a packing algorithm (which is a compiler support)
to map the elements onto the scratchpad memory.

3. Finally, we report the performance and energy con-
sumption for different cache and scratchpad sizes, for
the various applications. We include the main mem-
ory energy consumption to study the complete system
energy requirements.

The rest of the paper is organized as follows. In section 2
we explain the scratch pad memory area and energy models.
In section 3, we present cache memory used in our work.
Section 4 describes the methodology and the experimental
setup and section 5 contains the results. In section 6 we
conclude and also specify the future work.

2 Scratch pad memory

The scratch pad is a memory array with the decoding and
the column circuitry logic. This model is designed keeping
in view that the memory objects are mapped to the scratch

1



pad in the last stage of the compiler. The assumption here is
that the scratch pad memory occupies one distinct part of the
memory address space with the rest of the space occupied
by main memory. Thus, we need not check for the availabil-
ity of the data/instruction in the scratch pad. It reduces the
comparator and the signal miss/hit acknowledging circuitry.
This contributes to the energy as well as area reduction.

The scratch pad memory array cell is shown in Fig. 1(a)
and the memory cell in 1(b).

oVdd Vdd

Word  select

bit bit_bar
(c)

(a)

(b) Six Transistor Static RAM

Memory array

Memory Cell

Word Select

bit_barbit

Figure 1: Scratch memory array

The 6 transistor static RAM cell is shown in Fig 1(c).
The cell has one R/W port. Each cell has two bit-lines, bit
and bit bar, and one word-line.The complete scratch pad
organization is as shown in Fig. 2.

From the organization shown in Fig. 2, the area of the
scratch pad is the sum of the area occupied by the decoder,
data array and the column circuit. LetAs be the area of the
scratch pad memory.

Unit
Decoder

Column Circuitry

S
cr

at
ch

 P
ad

 M
em

or
y 

C
ol

um
ns

(Sense amplifiers, column
mux, output drivers, pre−
charge logic)

Memory Array

Figure 2: Scratch pad memory organization

As= Asde+Asda+Asco+Aspr+Asse+Asou (1)

whereAsde, Asda, Asco, Aspr, AsseandAsou is the area of
the data decoder, data array area, column multiplexer, pre-
charge, data sense amplifiers and the output driver units re-
spectively.
The scratch pad memory energy consumption can be esti-
mated from the energy consumption of its components i.e.
decoderEdecoderand memory columnsEmemcol.

Escratchpad= Edecoder+Ememcol (2)

Energy in the memory array consists of the energy con-
sumed in the sense amplifiers, column multiplexers, the out-
put driver circuitry, and the memory cells due to the word-
line, pre-charge circuit and the bit line circuitry. The major
energy consumption is due to the memory array unit. The
procedure followed in the CACTI tool to estimate the en-
ergy consumption is to first compute the capacitances for
each unit. Then, energy is estimated. As an example we
only describe the energy computation for the memory ar-
ray. Similar analysis is performed for the decoder circuitry
also, taking into account the various switching activity at
the inputs of each stage.

Let us consider the energy dissipationEmemcol. It consists
of the energy dissipated in the memory cell. Thus

Ememcol=Cmemcol�V2
dd �P0�>1 (3)

Cmemcolin equation (3) is the capacitance of the memory
array unit. P0�>1 is taken as 0.5 is the probability of a bit
toggle.

Cmemcol= ncols� (Cpre+Creadwrite) (4)

Cmemcol is computed from equation (4). It is the sum of
the capacitances due to pre-charge and read access to the
scratch pad memory.Cpre is the effective load capacitance
of the bit-lines during pre-charging andCreadwrite is the ef-
fective load capacitance of the cell read/write.ncols is the
number of columns in the memory.

In the preparation for an access, bit-lines are pre-charged
and during actual read/write, one side of the bit lines are
pulled down. Energy is therefore dissipated in the bit-lines
due to pre-charging and the read/write access. When the
scratch pad memory is accessed, the address decoder first
decodes the address bits to find the desired row. The tran-
sition in the address bits causes the charging and discharg-
ing of capacitances in the decoder path. This brings about
energy dissipation in the decoder path. The transition in
the last stage, that is the word-line driver stage triggers the
switching in the word-line. Regardless of how many ad-
dress bits change, only two word-lines among all will be



switched. One will be logic 0 and the other will be logic 1.
The equations are derived based on [4].

Esptotal= SPaccess�Escratchpad (5)

whereEsptotal is the total energy spent in the scratch pad
memory. In case of a scratch pad as a contrast to cache
we do not have events due to write miss and read miss.
The only possible case that holds good is the read or write
access.SPaccessis the number of accesses to the scratch pad
memory.Escratchpadis the energy per access obtained from
our analytical scratch pad model.

3 Cache memory

Caches are mainly used to exploit the temporal and spa-
tial locality of memory accesses. The basic organization of
the cache is taken from [4] and is shown in Fig. 3.

,

Figure 3: Cache Memory organization[4]

The area model that we use in our work is based on the
transistor count in the circuitry. All transistor counts are
computed from the designs of circuits.

From the organization shown in Fig. 3, the area of the
cache (Ac) is the sum of the area occupied by the tag array
(Atag) and data array (Adata).

Ac = Atag+Adata (6)

Atag andAdata is computed using the area of its compo-
nents.

Atag = Adt +Ata+Aco+Apr +Ase+Acom+Amu (7)

whereAdt, Ata, Aco, Apr, Ase, Acom andAmu is the area of
the tag decoder unit, tag array, column multiplexer, the pre-
charge, sense amplifiers, tag comparators and multiplexer
driver units respectively.

Adata= Ade+Ada+Acol+Apre+Asen+Aout (8)

where Ade, Ada, Acol, Apre, Asen, Aout is the area of
the data decoder unit, data array, column multiplexer, pre-
charge, data sense amplifiers and the output driver units re-
spectively. The estimation of power can be done at different
levels, from the transistor level to the architectural level [6].
In CACTI [4], transistor level power estimation is done. The
energy consumption per access in a cache is the sum of en-
ergy consumptions of all the components identified above.
The analysis is similar to that described for the scratch pad
memory.

4 Overview of our methodology

Clock cycle estimation is based on the ARMulator trace
output for cache or scratch pad memory. This is assumed
to directly reflect performance i.e. the larger the number of
clock cycles the lower the performance. This is under the
assumption that the change in the on-chip memory config-
uration (cache/scratch pad memory and its size) does not
change the clock period. This assumption though restric-
tive does not affect our results. This is because we always
compare the same size cache with scratch pad memory and
the delay of cache implemented with the same technology
will always be higher. Thus the performance improvement
predicted for scratch pad can only increase if both effect the
clock period. The identification and assignment of critical
data structures to scratch pad was based on a packing algo-
rithm briefly described in 4.3.

4.1 Scratch pad memory accesses

From the trace file it is possible to do the performance
estimation. As the scratch pad is assumed to occupy part
of the total memory address space, from the address values
obtained by the trace analyzer, the access is classified as go-
ing to scratch pad or memory and an appropriate latency is
added to the overall program delay. One cycle is assumed if
it is a scratch pad read or write access. If it is a main mem-
ory 16 bit access then we take it as one cycle plus 1 wait
state (refer to Tabel 1 ). If it is a main memory 32 bit access
then, we consider it as one cycle plus 3 wait states. The to-
tal time in number of clock cycles is used to determine the
performance. The scratch pad energy consumption is the
number of accesses multiplied by the energy per access as
described in equation 5.

4.2 Cache memory accesses

From the trace file it is possible to obtain the number of
cache read hits, read misses, write hits and write misses.



Access Number of cycles
Cache Using Table 2

Scratch pad 1 cycle
Main Memory 16 bit 1 cycle + 1 wait state
Main Memory 32 bit 1 cycle + 3 wait states

Table 1: Memory access cycles

From this data we compute the number of accesses to cache
based on Table 2, where the number of cycles required for
each type of access is listed in Table 1. The cache is a write
through cache. There are four cases of cache access that we
consider in our model.

� Cache read hit : When the CPU requires some data,
the tag array of the cache is accessed. If there is a cache
read hit, then data is read from the cache. No write to
the cache is done, and main memory is not accessed
for a read or write.

� Cache read miss: When there is a cache read miss,
it implies that the data is not in the cache, and the line
has to be brought from main memory to cache. In this
case we have a cache read operation, followed by L
words to be written in the cache, where L is the line
size. Hence there will be a main memory read event of
size L with no main memory write.

� Cache write hit : If there is a cache write hit, we have
a cache write, followed by a main memory write.

� Cache write miss: In case of a cache write miss, a
cache tag read (to establish the miss) is followed by
the main memory write. There is no cache update in
this case.

Access type Caread Cawrite Mmread Mmwrite

Read hit 1 0 0 0
Read miss 1 L L 0
Write hit 0 1 0 1

Write miss 1 0 0 1

Table 2: Cache memory interaction model

Using this model we derive the cache energy equation as

Ecache= (Nc�read+Nc�write)�E (9)

WhereEcacheis the energy spent in cache.Nc�read is the
number of cache read accesses andNc�write is the number of
cache write accesses. Energy E is computed like in equation

(3), taking the appropriate load and the number of cycles
into consideration. In the trace analyzer we model the cache
as described above and use it in our performance and energy
estimations.

4.3 Experimental setup and flow diagram

In this subsection, we explain the experimental setup and
flow diagram used in our work to compare on-chip scratch
pad memory with cache memory. We use the AT91M 40400
as our target architecture. The AT91M 40400 is a member
of the ATMEL AT91 16/32 bit microcontroller family based
on the ARM7TDMI embedded processor. This processor is
a high performance RISC with a very low power consump-
tion. It has an on-chip scratch pad memory of 4 KBytes.
The ARM7TDMI comes with a 32 bit data path and two
instruction sets.

Energy estimates

Energy aware
Compiler

ARMulator
trace analysis

Trace analysis

Cache/Scratch
Pad Size

CACTI

Analytical model

Mapping Algorithm

Compiler Support

C
benchmark

Number of cycles

Number of cycles

Cache

Scratch Pad

Area estimates

Figure 4: Experimental flow diagram

Fig. 4 shows the flow diagram. The energy aware (encc)
compiler [7] generates the code for the ARM7 core. It is
a research compiler used for exploring the design and new
optimization techniques. The input to this compiler is an
application benchmark written in C. As a post pass option,
encc uses a special packing algorithm, known as the knap-
sack algorithm [5], for assigning code and data blocks to
the scratch pad memory. This algorithm identifies the fre-
quently referred data and instruction blocks and maps to
the scratch pad memory address space. The cost of addi-
tional jumps introduced due to mapping consecutive blocks
to scratch pad and main memory is accounted for by the al-
gorithm. The result is that blocks of instructions and data
which are frequently accessed, and are likely to generate
maximum energy savings, are assigned to the scratch pad.
The output of the compiler is a binary ARM code which
can be simulated by the ARMulator to produce a trace file.
For on-chip cache configuration, the ARMulator accepts the
cache size as parameter and generates the performance as
the number of cycles. The predicted area and energy is



,
64

75000

15000

30000 Sc
ra

tc
h 

pa
d 

ba
se

d 
m

em
or

y

45000

60000

90000

100005

120000

135000

150000
A

re
a 

(i
n 

nu
m

be
r 

of
 tr

an
si

st
or

s)
 

@
@

@

@

&
&

&

 

Size of cache/scratch pad in bytes

@

@

&

 &

   &

128     256     512     1024   2048

Cache based memory

Figure 5: Comparison of cache and scratch pad memory
area

based on the CACTI [4] model for 0.5µm technology. The
models themselves are described in sections 2 and 3.

5 Results

To demonstrate the merits of using on-chip scratch pad
memory and on-chip caches, we conducted a series of ex-
periments for both of these configurations. The trace analy-
sis for the scratch pad and the cache was done in the design
flow after the compilation phase. We use a 2-way set as-
sociative cache configuration for comparison. The area is
represented in terms of number of transistors. These are ob-
tained from the cache and scratch pad organization. Fig.
5 shows the comparison of area of the cache and scratch
pad memory for varying sizes. We find that on an average
the area occupied by the scratch pad is less than the cache
memory by 34%.

Table 3 gives the area/performance tradeoff. Column 1
is the size of scratch pad or cache in bytes. Columns 2 and
3 are the cache and scratch pad area in transistors. Columns
4 and 5 are the number of CPU cycles in 1000s for cache-
and scratch-pad based memory systems, respectively. Col-
umn 6 gives the area reduction due to replacing a cache by
a scratch pad memory while column 7 corresponds to the
reduction in the number of cycles. Column 8 gives the the
improvement of the area-time product AT (assuming con-
stant cycle times).

The area time product AT is computed using

AT = (As�Ns)=(Ac�Nc) (10)

The average area, time, and AT product reductions
are 34%, 18% and 46%, respectively for this example.

llllll

xxx
xx

x

x

x

x Scratch Pad      

quick sort

matrix mult

xBiquad

Cache

E
ne

rg
y 

in
 n

J

220200018001600140012001000800
Size in bytes 

600
0

4002000

250000

200000

150000

100000

50000

Figure 6: Energy consumed by the memory system

Cache per access (2 kbytes) 4.57 nJ
Scratch pad per access (2 kbytes) 1.53 nJ
Main memory read access, 2 bytes24.00 nJ
Main memory read access, 4 bytes49.30 nJ
Main memory write access, 4 bytes41.10 nJ

Table 4: Energy per access for various devices

Our cycle count considerations in performance evaluation
are based on the static RAM chips found on an ATMEL
evaluation board. To compare the energy, we need to
account for the energy consumption of the main memory
as well. The energy required per access by various devices
is listed in table 4. The cache and scratch pad values for
size 2048 bytes were obtained from models in section 2
and 3, the main memory values were obtained from actual
measurements on the ATMEL board [5].

Thus we take the main memory energy, along with
the on-chip memory energy consumption into account.
Fig.6 shows the energy consumed for biquad, matrixmult
and quicksort examples for both cache and scratch pad. In
all the cases we observe that scratch pad consumes less
energy for the same size of cache, except for quicksort
with cache size of 256 bytes. On an average we found
energy consumption to be reduced by 40% using scratch
pad memory.

6 Conclusion and future work

In this paper we have presented an approach for selec-
tion of on-chip memory configurations. The paper presents
a comprehensive methodology for computing area, energy
and performance for various sizes of cache and scratch
pad memories. Results indicate that, scratch-pad based
compile-time memory outperform cache-based run-time
memory on almost all counts. We observe that the area-
time product (AT) can be reduced by 46% (average) by re-



Size Area Area CPU cycles CPU cycles Area Time Area-time
bytes Cache Scratchpad cache Scratchpad reduction reduction Product

Ac As Nc Ns

64 6744 4032 481.9 347.5 0.40 0.28 0.44
128 11238 7104 302.4 239.9 0.37 0.21 0.51
256 21586 14306 264.0 237.9 0.34 0.10 0.55
512 38630 26722 242.6 237.9 0.31 0.10 0.61
1024 74680 53444 241.7 192.0 0.28 0.21 0.55
2048 142224 102852 241.5 192.0 0.28 0.20 0.57

Average 0.33 0.18 0.54

Table 3: Area/Performance ratios for bubble-sort

placing cache by the scratch pad memory. We found that,
for most applications and memory configurations, the total
energy consumption of scratch pad based memory systems
is less than that of cache-based systems. The average reduc-
tion was 40% in the application considered. Since memory
bandwidth and on-chip memory capacity are limiting fac-
tors for many applications, DRAM based memory compar-
isons should be studied. The cache and scratch pad energy
models need to be validated by real measurements.

References

[1] Doris Keitel-Sculz and Norbert Wehn.,Embedded
DRAM Development Technology, Physical Design,
and Application Issues, IEEE Design and Test of
Computers, Vol 18 Number 3, Page 7-15, May/June
2001.

[2] Preeti Ranjan Panda, Nikhil Dutt, Alexandru Nicolau
: Memory issues in embedded systems on-chip - Opti-
misations and exploration, Kluwer Academic Publish-
ers, 1999.

[3] V. Zivojnovic, J. Velarde, and C. Schlager :DSPStone
: A DSP-oriented benchmarking methodology, In Pro-
ceedings of the 5th International Conference on Sig-
nal Processing Applications and Technology, October
1994.

[4] S Wilton and Norm Jouppi :Cacti : An enhanced ac-
cess and cycle time model, IEEE Journal of Solid State
Circuits, May 1996.

[5] Rajeshwari Banakar, S Steinke, B S Lee, M Balakr-
ishnan and P Marwedel,Comparison of cache and
scratch pad based memory system with respect to per-
formance, area and energy consumption, Technical
Report 762, University of Dortmund, Sep 2001.

[6] Rajeshwari M Banakar, Ranjan Bose, M Balakrish-
nan :Low power design - Abstraction levels and RTL
design techniques, VLSI test and design Workshop,
VDAT 2001 Bangalore, Aug 2001

[7] ls12-www.cs.uni-dortmund.de/research/encc

[8] Luca Benini, Alberto Macii, Enrico Macii, Massino
Poncino :Synthesis of application specific memories
for power optimisation in embedded systems, DAC
2000 Los Angeles, California, pp 300-303.

[9] J Kin, M Gupta and WH Mangonie-Smith :The fil-
ter cache: An energy efficient memory structure, IEEE
Micro-30 December 1997.

[10] T Ishihara and H Yasuura :A power reduction tech-
nique with object code merging for application spe-
cific embedded processors, Proceedings of Design
Automation and Testing, Europe Conference (DATE
2000), March 2000.


