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Abstract

The number of embedded systems is increasing and a re-
markable percentage is designed as mobile applications.
For the latter, the energy consumption is a limiting fac-
tor because of today’s battery capacities. Besides the pro-
cessor, memory accesses consume a high amount of en-
ergy. The use of additional less power hungry memories
like caches or scratchpads is thus common.

Caches incorporate the hardware control logic for mov-
ing data in and out automatically. On the other hand, this
logic requires chip area and energy. A scratchpad memory
is much more energy efficient, but there is a need for soft-
ware control of its content.

In this paper, an algorithm integrated into a compiler is
presented which analyses the application and selects pro-
gram and data parts which are placed into the scratchpad.
Comparisons against a cache solution show remarkable ad-
vantages between 12% and 43% in energy consumption for
designs of the same memory size.1

1. Introduction

The number of mobile applications is steadily increas-
ing. Many of them include processors which control their
functionality, as well as memories for data storage, e.g. au-
dio information. The limiting factors for mobile systems
are their size, weight and their battery capacity. Improve-
ments concerning battery capacity have been made, but the
rate is low (for example, only a factor of two in the last 30
years for rechargeable Ni-Cd batteries [17]). Compared to
this, the increase of energy consumption of common pro-
cessors and memories is very much higher. Additionally,
the heat which stems from the consumed energy has to be
removed from the system. The size of some laptops can-
not be reduced further because of the surface necessary for

1This work has been supported by Agilent Technologies, USA.

heat dissipation [5]. Due to this increasing gap, computer
architects have the task to reduce the energy consumption
to overcome this limitation and permit new applications or
reduced size and weight of embedded systems.

Besides shrinking technology sizes, new hardware tech-
niques are being developed. Today, the CMOS technology
is mostly used, where the switching activity of a transistor is
responsible for 70 to 90 % of the total energy consumption
[16]. This energy consumption depends on the number of
switching operations and the load capacity of the attached
nets. Therefore, it is most promising to focus on the reduc-
tion of the switching activity.

Another way of energy reduction is to build up a memory
hierarchy. The off-chip main memory is the slowest and
the most energy consuming memory type. EnergyE is the
product of timet, currentI and voltageVdd. The timet is
the number of cyclesn multiplied with the cycle timeT .

E = Vdd � I � t = Vdd � I � n � T

The low speed which leads to a high number of cycles
n and the high amount of main memory accesses are the
main reasons for the relatively high energy cost of the main
memory. Additional memories like caches or scratchpads -
smaller memories - are able to reduce the number of main
memory accesses for frequently used instructions or vari-
ables. Caches are well known and included in many pro-
cessor designs. Besides the data memory itself, they con-
sist of two additional components. Firstly, a tag memory
is required for the storage of valid addresses. Secondly,
logic components are necessary for a fast comparison of ad-
dresses with the contents of the tag memory, so that cache
hits and misses can be detected. These memory parts are
all energy consuming since accesses to the tag array and the
comparisons are performed during each memory access.

The advantage of caches is the easy integration with the
software of the system. The detection of a cache hit or miss
is done automatically. If the accessed data is currently not
available in the cache, the hardware control automatically
copies the data into the cache. This mechanism allows the



use of software without any adaption to the changed mem-
ory hierarchy. A disadvantage of caches occurs in realtime
embedded systems where a certain response time has to be
guaranteed. For the worst case execution time (WCET), a
cache miss has to be assumed meaning that the WCET does
not benefit from the presence of a cache. Scratchpad us-
ing static assignment may be considered to improve WCET.
However, because the tag array and comparators are not
necessary, the software has to be adapted in order to con-
trol the filling of the scratchpad depending on the executed
software.

In this work, a compiler extension is presented which
analyses the most frequently executed instructions and ac-
cessed variables. The best set of instructions and variables
is then identified using integer linear programming [9] and
the selected objects are placed in the scratchpad. Possible
program parts are functions or basic blocks (sequentially
executed instructions without a jump).

In the next section we describe related research work. In
section 3 a memory model of cache and scratchpad memo-
ries is presented together with their energy costs. The algo-
rithm for identification and selection of program parts and
variables is presented in section 4.

The experimental environment used for our simulations
is described in section 5 and the presentation of the results
of the comparison for different memory sizes in section 6.

The conclusion of this work is given in section 7.

2. Related Work

The optimization of energy consumption by changing
the software has been a research topic for nearly ten years.
One of the first energy models was published by Tiwari et
al. [18][19]. For each processor instruction, a certain en-
ergy amount calledbase costwas determined and a change
from the execution of one instruction to another was named
interinstruction cost. With several measurement series a
database was built up and was used for different optimiza-
tions which showed an energy reduction of up to 40%. This
energy model can be used especially for the use in compil-
ers, because the compiler can rate every selected instruction
and can thus choose the most energy efficient one.

The limitation of this model is its lack of taking other
system components into account. Especially for low power
processors, the energy consumption of the memory accesses
must not be neglected. Explicitly modeling memory ac-
cesses is useful since the compiler can then take the costs
of memory accesses into account. If this is not done, the
generated code can be optimal for the processor energy but
not for the whole system including memory.

Simunic et al. [13] presented a different approach where
the processor and memory energy consumption is based on
the manufacturer’s data sheet. Simunic distinguishes be-

tween the energy consumption in the active and the idle
state. This model is used for simulation and estimation
of the energy consumption of complete systems. The po-
tential of optimization was shown by Kandemir et al. [8],
who studied several compiler optimizations and caches with
different organizations and their impact on the energy con-
sumption.

To overcome the limitation of the energy model of Ti-
wari, Steinke et al. [15] presented an energy model which
was developed especially for optimizing the bus encoding
and therefore takes the state of each bus line as well as the
consumption of the different memories into account.

The efficient use of the memory hierarchy was presented
by Panda et al. [10][11] who analyzed the accesses to vari-
ables and chose a set of variables to be placed within the
scratchpad memory. A further approach by Sj¨odin et al.
[14] places some variables into the scratchpad, based on a
static analysis, showing that this is sufficiently precise and
no dynamic analysis is needed. A further power reduction
technique by Ishihara et al. [6] merges frequently executed
sequences of object codes.

Whereas these approaches are based solely on a software
solution, Benini et al. [3] generated application-specific
memories which are scratchpad memories with an ad-
ditional decoder for distinguishing between a hit and a
miss. These memories show a significant improvement con-
cerning energy consumption of 12% to 68% compared to
caches.

For a comparison of scratchpad and cache memory, de-
tailed values of the energy consumption of both architec-
tures are necessary. This work was done by Wilton et al.
[20][21] who presented a cache model named CACTI. This
model was also used for our evaluation of the cache. To
compare it to a scratchpad of the same technology, we used
the values for the data memory array of the cache, ignoring
the energy consumption of the tags and comparators. The
detailed model was described by Banakar et al. [2]. The
following section describes these memory models in depth.

3. Memory Models

For this work, two systems were compared, one with a
cache and the second with a scratchpad memory. The latter
was used together with the algorithm presented here for the
allocation of program segments and of variables.

3.1 Cache model

Both cache and scratchpad comprise a data memory ar-
ray, the data column multiplexers, the data sense amplifiers
and the data output driver. Additionally, the cache requires
a decoder, tag memory array, tag column multiplexers, tag
sense amplifiers and tag output drivers. The processor we
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used to analyse the memory interface is the ARM7T pro-
cessor [1], which is an ultra low power processor with a 16
bit Instruction Set for low power applications. The number
of accesses for the different access types are presented in
table 1. For a read hit, one cache read is executed. If the re-
quested data is not available in the cache (read miss), a read
of the main memory consisting ofL words (=blocksize) and
a corresponding write into the cache have to be executed be-
fore the cache read. The architecture uses write-through and
therefore executes a write into the cache as well as the main
memory following a write hit. A write miss is recognized
by a cache read and followed by a main memory write.

For comparison with the available ARM7T processor,
a 4-way set associative organization was selected with a
write-through architecture and a block size of 8 bytes.

Table 1. number of accesses for cache system
Access Type cache cache main main

read write memory memory
read write

read hit 1 0 0 0
read miss 1 L L 0
write hit 0 1 0 1

write miss 1 0 0 1

3.2 Scratchpad model

The scratchpad memory uses software to control the lo-
cation assignment of data. As a design comparable to a
scratchpad memory, we can use the cache architecture pre-
sented in the previous subsection without the tag memory
array, tag column multiplexer, tag sense amplifier and tag
output drivers. The energy consumption of this subset of
the cache can be calculated using the CACTI cache model.
This results in a fair comparison because both memories are
designed using the same technology and design.

The kind of memory access from the processor depends
on the selected address. Accesses to the scratchpad address
space require only 1 cycle and no wait state. Accesses to
the main memory depend on the data width and cause 1 or
3 wait states (c.f. table 2).

Table 2. processor cycles for scratchpad system
Access Type number of cycles
scratchpad 1 cycle
main memory 16 bit 1 cycle + 1 wait state
main memory 32 bit 1 cycle + 3 wait states

3.3 Energy values

For the calculation of the energy consumption of cache
and scratchpad accesses, the CACTI model was used. This
model determined the values shown in table 3 for a 0.5�m
technology memory which is the technology used for the
ARM7T. The memory sizes vary from 64 bytes to 2048
bytes. For 64 bytes and 128 bytes, the values were ob-
tained by approximation because CACTI does not support
these small memory sizes. The compared scratchpad always
shows lower energy values as expected because it consists
of a subset of the cache. In the last column, the ratio be-
tween cache and scratchpad energy consumption is calcu-
lated. For example, 1 single cache access consumes nearly
the same amount of energy as 4 scratchpad accesses for a
memory size of 4 KByte.

Table 3. energy consumption of memories
memory size cache scratchpad ratio

64 bytes 2.87 nJ 0.49 nJ 5.9
128 bytes 3.15 nJ 0.53 nJ 5.9
256 bytes 3.32 nJ 0.61 nJ 5.4
512 bytes 3.48 nJ 0.69 nJ 5.0

1024 bytes 3.75 nJ 0.82 nJ 4.6
2048 bytes 4.04 nJ 1.07 nJ 3.8
4096 bytes 4.71 nJ 1.21 nJ 3.9
8192 bytes 5.39 nJ 2.07 nJ 2.6

4. Algorithm

In this section we explain how the algorithm within the
compiler assigns a set of memory objects (functions, ba-
sic blocks and variables) to the scratchpad on a static ba-
sis. First we describe the identification and evaluation of
instructions. Then, the identification and evaluation of vari-
ables and finally the selection of the best set of memory
objects is explained.

4.1 Program memory objects

The execution of each function is started at its beginning
and is terminated by a return statement. There are no further
jumps into a function. Thus, each function can be handled
as one memory object which can possibly be moved into the
scratchpad and which requires neither changing any of the
included instructions nor the corresponding function call.

To compute the energy consumption of a function,i, we
sum up the product of the number of executionsmk of each
instructionk within functioni with the energy consumption
of a single instruction fetchEinstr fetch:
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E(Fi) =
X
k

mk �Einstr fetch

A function can be decomposed into basic blocks which
can also be treated as program memory objects.

Moving basic blocks instead of complete functions re-
quires the addition of jump instructions to jump from blocks
mapped to regular memory to blocks stored in the scratch-
pad and back. The jump instructions are an overhead espe-
cially if there is a number of small basic blocks. In order
to minimize jump instructions, moving consecutive basic
blocks is preferred.

For each basic blockj, we can compute the energy con-
sumption by multiplying the number of instructionsm, the
number of executions of this basic blocknj and the energy
consumption of a single instruction fetchEinstr fetch. Ad-
ditionally, we have to add the energy costs forl jumps from
main memory to scratchpad or vice versa.

E(BBj) = m � nj �Einstr fetch + l �E(jump)

Note that the program is statically allocated to the
scratchpad memory. There is no dynamic reloading of
memory blocks even though this could be useful for long
programs having more hot spots than the scratchpad can ac-
comodate. The extension to dynamic reloading (a kind of
program-controlled overlay) is part of our future work.

4.2 Data memory objects

Apart from the program, variables can also be allocated
to scratchpad. Each variable is viewed as one data mem-
ory object. This is limited to global scalar and non scalar
variables because local variables may exist as multiple in-
stances in recursive functions. The number of accesses to a
global variableacc(v) is the sum of the number of accesses
acci(v) in each of the blocksi. acci(v) is computed as the
number of static referencesstati(v) to variablev in block i
multiplied by the number of executionsni of block i:

acc(v) =
X
i

acci(v) =
X
i

stati(v) � ni

For the energyE(v) consumed by all accesses to the
variable, this number of accesses has to be multiplied by the
energy costEdata of a single memory access with a load or
store instruction:

E(v) = acc(v) �Edata

4.3 Selection of memory objects

The best set of memory objects which fits into the
scratchpad and saves the highest amount of energy now has

to be identified. Moving a certain memory object to the
scratchpad will result in a certain gain in terms of saved en-
ergy. Moving has to be done such that the combined size of
the memory objects does not exceed the size of the scratch-
pad. The size of each memory object is independent of the
other objects. Maximizing the total gain can be formulated
as a knapsack problem [12].

Our formulation of the problem uses the following defi-
nitions for moving functionsF , basic blocksBB and vari-
ablesvar with x 2 F [ BB [ var:

E(x) = saved energy consumption forx

S(x) = size ofx

m(x) =

�
1, if x is moved to the scratchpad
0, otherwise

To optimize the energy savingsav, the following cost
function needs to be maximized:

sav =
X
i2I

m(Fi) �E(Fi) +

X
j2J

m(BBj) �E(BBj) +

X
k2K

m(vark) �E(vark)

Index setsI; J; andK correspond to index values for
functions, all basic blocks and all variables, respectively.

The size constraint can be modeled as follows:
X
i2I

m(Fi) � S(Fi) +

X
j2J

m(BBj) � S(BBj) +

X
k2K

m(vark) � S(vark) � scratchpadsize

Up to this point, two consecutive basic blocks moved to
the scratchpad are both counted with a jump to the scratch-
pad and a further jump back. The jumps can be omitted
between these two basic blocks. To model this, memory
objects - so called multi basic blocks - are generated for all
possible combinations of consecutive basic blocks.

To prevent a basic blockx from being selected twice, e.g.
as a single basic blockx and also as part of a multi memory
blocki or a functionj, equations of the following type have
to be added:

m(BBx) +m(Fi) +
X
j2J
j 6=x

m(BBj) � 1

Index setJ corresponds to index values for all multi mem-
ory blocks which include basic blockBBx.
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Based on the above equations, an IP solver [9] can find
the optimal solution for the given cost function for the use
of a scratch pad memory. The chosen memory objects can
then be placed in the scratch pad memory.

5. Experimental Setup

For the evaluation of the two memory configurations, the
ARM7T processor mentioned above with an onchip cache
was compared to a version with a scratchpad configuration.
For the two memories, the energy data was estimated us-
ing the CACTI tool. For the processor and main memory
current the data is not available from the manufacturer and
therefore a series of measurements of a real ARM board was
taken based on the energy model presented by Steinke et al.
[15].

Scratchpad Cache

C program

Program
Machine

Energy
Consumption

Scratchpad

C program

Program
Machine

Energy
Consumption

Cache Simulator

Profiler
Energy

Profiler
Energy

compiler compiler
encc encc

SimulatorSimulator
(Armulator) (Armulator)

Algorithm

Model

Energy Cost

Figure 1. Flow of memory comparison

The diagram in figure 1 shows the work flow starting
with programs compiled using the energy aware C compiler
encc [4]. For the scratchpad configuration, the algorithm
presented in the previous section is executed. The generated
machine code is simulated by the simulator from ARM Ltd.
which is extended for the cache configuration by the ARM
cache simulator. Based on the instruction trace, the energy
profiler calculates the total amount of energy consumed for
the different processor instructions and memory accesses.

6. Results

The work flow was used to compare different bench-
marks such as sorting algorithms, two filter applications and

one media application.

Figure 2. Bubble sort: CPU, Main Memory,
Scratchpad Energy

The results in figure 2 show the effect of the use of
the scratchpad memory for different memory sizes. It
can be seen that the main memory energy decreases and
the scratchpad energy increases. The observed benchmark
bubblesort uses 196 bytes program memory and 436 bytes
data memory without scratchpad memory or cache.

Figure 3. biquad: Cache vs. Scratchpad

For the comparison with a common cache system the
curves for cache vs. scratchpad are presented in figures 3, 4
and 5. There is a clear trend in favor of the scratchpad which
consumes less energy than a cache memory of the same
size. This is not really fair because the area required for
a cache is much bigger than the area for a scratchpad. Area
is the important factor for the production cost. Therefore
it would be more realistic to compare a scratchpad with a
cache of the same area which means with less capacity. This
leads to even higher advantages for the scratchpad. Here
we present only the data for the same memory size. The
comparison for different benchmarks and 2 KByte memory
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Figure 4. matrixmult: Cache vs. Scratchpad

Figure 5. lattice: Cache vs. Scratchpad

shows an energy reduction between 12% and 43% with an
average of 23% (c.f. table 4). The increase for the cache
configuration at 64 bytes in figures 4 and 5 is caused by a
high rate of cache misses.

Even for performance (c.f. table 5), there is an improve-
ment between 7% and 23% with an average of 16%. This
improvement is less than the energy results because the en-
ergy consumption of main memory accesses is much higher
than scratchpad accesses. This effect is additional to the
reduction of the number of cycles and concerns only the en-
ergy values.

The IP solver as part of the scratchpad algorithm deter-
mines the optimal set of memory objects. In our bench-
marks the average runtime of the solver is less than 0.1s.
To overcome inacceptable runtimes, a timelimit can be cho-
sen which ensures finding a solution sufficiently close to the
optimum.

Table 4. cache vs. scratchpad energy [nJ]

benchmark cache scratchpad improv.
biquadN sections 17,361 12,361 18%
bubblesort 1,913,242 1,191,574 38%
heapsort 598,191 491,897 18%
insertionsort 965,170 661,809 31%
lattice 1,467,450 1,252,753 15%
matrixmult 41,981 34,375 18%
me ivlin 4,558,811 2,610,799 43%
quicksort 75,153 66,054 12%
selectionsort 1,090,276 911,720 16%
average 23%

Table 5. cache vs. scratchpad performance [cycles]
benchmark cache scratchpad improv.
biquadN sections 1,656 1,268 23%
bubblesort 241,458 191,953 21%
heapsort 74,343 64,918 13%
insertionsort 119,191 95,783 20%
lattice 165,886 141,402 15%
matrixmult 4,487 3,687 18%
me ivlin 646,024 497,314 23%
quicksort 8,240 7,652 7%
selectionsort 153,514 142,498 7%
average 16%

7. Conclusion

The presented algorithm as part of a compiler selects
program parts and variables and places them into a scratch-
pad memory. The ILP model delivers an optimal solution
and saves about 22% of the electrical energy compared to
a cache. Future work will improve these results by also
considering the stack and by dynamically moving memory
objects in and out of the scratchpad. Furthermore, research
can be done for the extension of this approach to multitask-
ing systems.
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