
A Fast Simulator and Debugger for a Network
Processor

Jens Wagner

University of Dortmund
Computer Science XII

Embedded Systems Group
email: Jens.Wagner@uni-dortmund.de

Rainer Leupers

Aachen University of Technology
Dept. of EE & IT

Integrated Signal Processing Systems
email: leupers@icd.de

1 Introduction

Due to short time-to-market requirements and the need for flexibility, many of today’s embedded
system designs are based on software executed on programmable embedded processors. While custom
hardware (ASICs) offers the highest computational efficiency (in MIPS/Watt), the growing complexity of
embedded systems makes the use of programmable building blocks mandatory. However, the efficiency
gap between ASICs and standard “off-the-shelf” processors may be several orders of magnitude, which
is mostly not acceptable in embedded system design.

Therefore,application-specific instruction set processors(ASIPs) are being used as a compromise
between ASICs and general purpose processors. ASIPs are programmable, but their architecture is
tuned for a certain application domain, e.g., audio or video processing. In this paper, we focus on an
ASIP designed fornetwork processing.

While ASIPs form a good comprise from a hardware efficiency perspective, a major problem in ASIP-
based system design is the need for software development tool support, including compilers, assemblers,
simulators, and debuggers [1]. Standard processors mostly come with a corresponding software devel-
opment tool chain, but for each new ASIP such tools need to be developed from scratch. In addition,
there is a need for high tool performance, since a large amount of input data processing has to be simu-
lated in order to validate a design. In particular, this holds for compute-intensive domains like signal or
network processing.

In this paper, we describe the design of an efficient simulator/debugger tool environment for an indus-
trial network processor. The tools offer two main advantages:

� The simulator is based on thecompiled simulationprinciple. Instead of the classical interpretive
simulation approach, it simulates processor instructions by means of compiled C++ code on a
simulation host. This makes the simulator highly efficient [2].

� The debugger, which builds on the compiled simulator, has been linked to the popular software
debugger DDD from TU Braunschweig [3]. DDD is a comfortable graphical tool, that supports

all common debugger functionality like breakpoints, single-stepping, and status monitoring. By
relying on DDD, we were able to reuse an existing, stable debugger kernel and GUI, while only
the processor-specific simulation routines had to be newly developed.

2 Target architecture

Our target architecture is an Infineon Technologies Network Processor (NP) [4]. The NP instruction
set is optimized for efficientprotocol processing. This is motivated by the growing need for new high
bandwidth communication equipment in networks (e.g. Internet routers and Ethernet adapters) as well
as in telecommunication (e.g. ISDN and xDSL). The corresponding communication protocols mostly
employ bit stream oriented data formats. The bit streams consist ofpacketsof different length, i.e. there
are variable length header packets and (typically longer) payload packets. Typical packet processing
requirements include decoding, compression, encryption, or routing.

Code NP core

Port

RAM

Buffer I/O

Figure 1. Infineon NP architecture

Fig. 1 shows the overall architecture. The NP core shows a RISC-like basic architecture with general-
purpose registers and special extensions for bit-level data access, data and control ports, interrupts, and
fast context switching.

3 Simulation technique

3.1 Tool construction

In order to reduce development costs and to accelerate the tool development process our tools are
systematically constructed on a framework of reusable libraries. These libraries are proven in many
projects and retained unchanged for the retargeting of the tool suite to a new target processor. Parts of
these tools are not only used for assemblers/simulators, but also for retargetable ANSI C compilers [5].
Our tools are built by means of a completely object oriented design, except for parser and scanner which
are constructed from a lex/yacc grammar description. This implies a high percentage of reusable code.

Figure 2 shows the amount of retargetability of the tool chain. A rate of 47 % of platform independent
code is shown as worst case. The rate is much higher if not all of the hardware dependent parts of the
sources have to be written from scratch. Usually, even for different processors much of the hardware
dependent implementation can be reused.

The hardware dependent part of the toolchain is isolated in three libraries, as shown in fig. 2. First
the semantic description of the assembly commands (e.g. the meaning of assembly commands like.org
or label). The second library contains all information about assembly syntax and processor specific

...

...

10500 lines of platform independent code

11500 lines of platform dependent code

g++ g++ g++

Intermediate
Representation

1500 lines 4000 lines6000 lines

lex, yacc

Behavioral command descriptionSyntax, resource descriptionSemantic command description

Retargetable assembler

1000 lines

Retargetable IR

7500 lines 2000 lines

Simulator / Debugger
Profiler Generator

Assembler

Simulation kernel

Retargetable simulator generator

Reuse Reuse Reuse

Figure 2. Retargebility of the simulator source code

resource names (e.g. register names). The third library describes the behavior of all assembly commands
(how an operation manipulates the processor state and which resources it occupies).

3.2 Simulator generation

The simulator is a stand-alone binary program. It contains all information about the target architecture
and the application code. To create a new simulation the following steps are performed by the toolset.
The simulator creation starts from an assembly source file or a executable binary file. The assembly file
would be assembled (and linked) for resource binding, the executable file is disassembled to generate
readable source code information.

The Simulator Generator creates the source code of the simulator from the input data, the assembly
source file and the assembled binary. The simulator source is compiled with the GNU C++ Compiler
and linked with a library containing the behavioral description of the target processor. The simulator
generator follows three different strategies, dependent on user settings:

Stand alone simulator: The created simulator is as fast as possible. The Simulator Generator makes
extensive use of function inlining to enhance the simulation speed. The resulting simulator is still
cycle and bit true, but temporary results of operations may invisible because of optimizations.

Profiler: Additional code is inserted for statistical investigation. The resulting simulator is cycle and
bit true and still speed optimized but significantly slower than the stand alone simulator.

Debugger: The simulator generator inserts additional code for visualization of the CPU state, manipu-
lation of the CPU state and also for support of execution in a debugging environment (e.g. break-
points, stepping, run over function calls). The resulting code may one to two orders of magnitude
slower than the stand alone simulator. The debug strategy can be combined with profiling.

Every time the user of the tool set changes the assembly input files the Simulator Generator creates a
completely new simulator.

ADD R1, R2

{
int main()

}
...

add(R1, R2);

profile("file.asm",1);

 #file file.asm 1

Profile information, if needed
Debug information for DDD/GDB

Calculation of new CPU state

Assembly Source

_file_asm__1:
preamble(); Initialization of the processor state

C++ Source
including debug and profile information

Simulator Generator
At least one label per asm−line

Behavioral cycle and bittrue simulation
goto newCPUstate();

Figure 3. Transformation from assembly source to compilable C++ code

Figure 3 sketches the transformation of an input assembly file. Special features like a program pream-
ble for simulating a hardware reset are function calls to library functions. The complete assembly source
is transformed into the main function of the simulator. Even if the assembly code is structured into func-
tions the Simulator Generator models the structure of the assembly program withgotoandlabels. Every
new assembly command forces a new label in the simulator source code. In a internal hash table the sim-
ulator stores the mapping from target processor addresses to simulator labels. Every manipulation of the
Program Counter in the simulator which is not an increment by one will result in a jump to a label. The
label is calculated by use of the hash table. Therefore the simulator can simulate every manipulation of
the Program Counter even if it is not known at compile time. Debug information is made explicit by the
ANSI C preprocessor#filedirective. With the debug information we force a debugger to hide the source
of the simulator from the user and to show the original assembly code instead. The profile information
is created by inline function calls to library functions. The simulation of the behavior of the assembly
command itself is done by a library call. The simulation code is linked or inlined from the behavioral
library of the tool set. At the end of the simulation of an assembly command the new CPU state is set
by a special function. This may be e.g. pipeline clock tick, manipulation of the Program Counter or the
occurrence of an interrupt. The functionnewCPUstate()returns a pointer to a label of the next simulated
assembly command in the address space of the simulator. This process is iterated for each assembly
command in the assembly source file.

3.3 Simulation process

The classical approach to processor instruction set simulation isinterpretive: Each instruction to be
simulated is decoded from the binary program and is passed to an appropriate simulation routine, which
interprets the instruction and correspondingly updates the simulator status. However, the interpretive

technique is quite slow. In particular, instructions within loops cause a large overhead, since the de-
coding step is unnecessarily repeated over and over again. Typically, the interpretive approach achieves
a simulation speed in the order of a few kilo-instructions per simulation host CPU second, which is
insufficient for compute-intensive programs.

L:

\

Assembly Source Simulator Generator
C++ Source
including debug information

ADD R1, R2

JMP L2

DEC R1
}

add(R1, R2);

"t1.asm"
 #line 1
{
int main()

Compiled Simulatorg++

simkernel.a

add(int &R1, int R2)

{

 R1+=R2;
}

Assembler

00110

11010

00111

Disassembler

Binary File

Figure 4. Compiled simulation method

In contrast, in thecompiledsimulation approach (fig. 4), the simulator is not only processor-specific,
but alsoprogram-specific: A C++ simulation program is generated for each binary application program.
This results in a twofold performance gain: The instruction decoding overhead is eliminated, since
the decoding is performed only once at the time of simulation program generation. In addition, the
full optimization potential of the host C++ compiler can be exploited for fast simulator generation. As a
result, our simulator achieves a speed of more than 500 kilo-instructions per CPU second. The simulation
is cycle-true and bit-true. Generation of the simulation program itself takes only a few CPU seconds.
The main restriction of compiled simulation is that self-modifying code is not supported. However, in
the area of embedded systems, this is usually not a real drawback.

As shown in fig. 4 thesimulation generatortransforms an assembly source into a compilable C++
source code. This is essentially only a syntactic substitution. If a binary should be simulated it is de-
assembled first into an assembly source code. A disassembler can easily be generated from the hardware
description libraries which are already available.

4 Graphical debugger

A very useful by-product of compiled simulation is that application programs can be debugged with
existing tools. This is due to the fact that we use a C++ simulation program which in turn is compiled to
an executable program on the simulation host, e.g. a Linux workstation. Hence, source-level debugging
of the simulation program is possible.

The only problem is that the user normally does not want to see the tool-specific C++ simulation code
in the debugger, but the assembly code of the target machine. However, this can be solved via bypassing
the C++ simulation code and displaying assembly code in the debugger source window instead. The
debugger interface keeps track of the correspondence between assembly line numbers and line numbers
in the C++ simulation code. Therefore, the user does not need to know about the underlying simula-
tion technique, but breakpoint setting, single-stepping, and other common debugger functions can be
performed directly in the assembly code.

Figure 5. DDD-based Network Processor debugger GUI

We exploited these features of compiled simulation by connecting our NP processor simulator to
thedata display debugger(DDD) from TU Braunschweig. DDD is a graphical frontend for the GNU
debugger GDB. It shows a comfortable GUI (fig. 5) and has a special window for graphical display of
data structure contents. A custom configuration file developed for the NP processor ensures that upon
invocation of DDD all relevant status information (e.g. register contents) is automatically displayed.

The use of DDD resulted in significant development time savings. Moreover, in contrast to classi-
cal interpretive simulators, there was no need to develop different tools for interactive debugging and
fast stand-alone simulation. The underlying GDB debugger supports also the execution of target code in-
voked by debugger commands. We created a number of debugger commands using this feature. Figure 5
shows in the lower window a memory dump. For this feature we defined a user command in the DDD
configuration. This user command calls a function in the simulator which dumps a part of the simulator
memory to the standard output. The memory simulation is a framework of C++ classes in a behavioral
library. It would be nearly impossible to investigate the memory content without a comfortable debugger.

5 Conclusions and future work

Modern embedded systems are frequently designed on the basis of programmable ASIPs, which allow
for high flexibility and IP reuse. However, effective tool support for ASIP software is still frequently
missing. In this contribution we outlined that it is possible to use fast compiled instruction set simu-
lation in a comfortable debugging environment. Furthermore we showed that it is possible to clearly
separate hardware dependent and independent code even in a simulator tool, which is traditionally a
very processor-specific area. This allows for a high percentage of code reuse for the simulator tool set
and hence accelerates simulator development and retargeting.

Acknowledgments

The simulator described in this paper has been developed at University of Dortmund and the In-
formatik Centrum Dortmund (ICD) for Infineon Technologies AG (Munich), whose project funding is
gratefully acknowledged. The authors would also like to thank J¨org Eckart and Luis Gomez, who sig-
nificantly contributed to the tool implementation and test.

References

[1] V. Zivojnovic: DSP Processor / Compiler Co-Design: A Quantitative Approach, Shaker Publishing,
Aachen, 1998

[2] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen A. Wieferink, H. Meyr:A
Novel Methology for the Design of Application-Specific Instruction-Set Processors (ASIPs) Using
a Machine Description Language, IEEE Transactions on Computer-Aided Design (TCAD), vol-
ume 20, number 11, 2001

[3] A. Zeller, D. Lütkehaus:DDD - A Free Graphical Front-End for UNIX Debuggers, SIGPLAN
Notices, volume 31, number 1, 1996

[4] X. Nie, L. Gazsi, F. Engel, G. Fettweis:A New Network Processor Architecture for High-Speed
Communications, IEEE Workshop on Signal Processing Systems (SiPS), 1999

[5] J. Wagner, R. Leupers:C Compiler Design for a Network Processor, IEEE Transactions on
Computer-Aided Design (TCAD), volume 20, number 11, 2001

