
Embedded Software: How To Make It Efficient?

Peter Marwedel
Universität Dortmund, Informatik 12

44221 Dortmund, Germany
Peter.Marwedel@udo.edu

Abstract

This paper stresses the importance of designing efficient
embedded software and it provides a global view of some of
the techniques that have been developed to meet this goal.
These techniques include high-level transformations, com-
piler optimizations reducing the energy consumption of em-
bedded programs and optimizations exploiting architectural
features of embedded processors. Such optimizations lead
to significant reductions of the execution time, the required
energy and the memory size of embedded applications. De-
spite this, they can hardly be found in any available com-
piler.

1. Introduction

Embedded systems are information processing systems,
which are embedded into enclosing, larger products. Exam-
ples of embedded systems include information processing
systems in cars, trains, airplanes, factories, communication
equipment and consumer electronics. Embedded systems
can be characterized by a number of common characteris-
tics:

� The user is frequently not aware of this information
processing, since embedded systems are not using
well-known keyboards, mice and screens as their user
interface. This characteristic has led to the term “the
disappearing computer”.

� Embedded systems have to be dependable. Depend-
ability includes the notions of reliability (the system
should not break), maintainability (repairs should be
easy), safety (it should not harm anyone) and security
(it should keep private information private).

� Embedded systems are dedicated systems. This
means: they are designed for a particular application
or a small set of applications. Expandability is less an
issue.

� Most embedded systems consist of a combination of
special purpose hardware (which is necessary for the
particular application) and processors and software.
The latter is used to meet the flexibility requirements
found for almost all of today’s applications.

� Many embedded systems are real-time systems, i.e.
they have to meet real-time constraints.

� Portable systems are an important sub-class of embed-
ded systems.

� Embedded systems have to be efficient. Efficiency
concerns a number of different aspects:

– Portable systems have to be energy efficient, due
to the slow progress in battery technology.

– Energy efficiency is an issue in general, due
to the increasing performance requirements and
cooling problems.

– Embedded systems software should be compact
(should have a small “memory footprint”). Em-
bedded systems almost never come with large
discs and space and size constraints also do not
allow large memories.

– Embedded software should be run-time efficient.
If processor cycles are waisted, for example due
to inefficient compilation, then faster processors
are required in order to meet performance con-
straints. These are more expensive and require
more electrical power.

Unfortunately, current design technology does, in
many cases, result in efficient designs. Many compil-
ers generate inefficient code [18], leading to a situa-
tion in which assembly language programming is be-
ing used [14]. The situation is slowly changing for
standard DSP processors, but new problems are pop-
ping up with new VLIW processors. Software gener-
ation from higher-level specifications (for example in
State-Charts or UML) is in an immature state.

These problems are not expected to disappear because
of improvements in fabrication technology. Limited
availability of energy and high performance require-
ment will impose tight constraints on the design tech-
nology. One result of these constraints is that com-
pilers will be required which exploit the architectural
features of such processors.

In the following, we will describe optimizations which
aim at solving the problem of inefficient software. The
results that will be presented provide a global view of the
work performed in the embedded systems group at the Uni-
versity of Dortmund. In section 2 we will motivate the fo-
cus on C as the specification language. In section 3.1, we
will provide an overview over techniques which can be ap-
plied before any compiler is used. In section 3.2. We will
describe new techniques aiming at reducing the power con-
sumption of embedded systems l. In section 3.3, we will
provide a brief view on optimizations for digital signal pro-
cessing. Section 3.4 is dedicated towards techniques for ex-
ploiting architectural features of modern embedded proces-
sors. Network processors will be briefly touched in section
3.5. Section 4 will contain conclusions.

2. Why focus on C?

There have been numerous discussions about the appro-
priateness of certain specification techniques and there have
been many proposals for advanced specifications techniques
and there have also been many proposals for advanced spec-
ification languages. An important observation is the follow-
ing: Most existing design methodologies, if not based on
assembly languages, use C as a specification language or
use C as intermediate step. Fig. 1 is a graphical representa-
tion of the current situation.

Hard−
ware

VHDL

Assembly
programs

C−programs

Assembly
programs

StateCharts/SDL Real time JAVA

or equivalent
(Real time) UML

or equivalent
(Real time) UML

Figure 1. C in the context of specifications

Specifications in State-Chart-based languages as well as
SDL specifications are first translated into C, before binary
machine programs are generated. UML-based approaches
typically need to be complemented with executable lan-
guages such as C++ or SDL and are also using C as an

intermediate step. All these approaches cannot result in effi-
cient code, unless the problem of efficiently translating C to
machine languages is solved. Methodologies based on Java
sometimes avoid C as an intermediate language. However,
they do also benefit from efficient compilation technologies.
For that reason, we will focus on efficient translation tech-
niques from C in this paper. Of course, this does not mean
that we do not need new tools and techniques for other lan-
guages.

3. Optimization techniques

3.1 High-level optimization techniques

Many software programs have not been written with
maximum efficiency in mid. This applies especially to stan-
dards. For example, standards like the MPEG-2 standard
use double precision floating point numbers, although this
precision is actually not needed. The main reason is that the
standards are intended just to serve as a reference specifica-
tion. In other cases, arrays are much larger than required.
This situation has led to the proposal of the so-calledsoft-
ware washing machine[12]. The idea is that tools are re-
quired which remove all the “dirt” from the software. Our
paper can be seen as a contribution in this direction.

First of all, we will present some high-level techniques.
Currently, most of these are not available in any compiler
and they will probably not be available in the majority of
future compilers.

3.1.1 Array folding

Frequently, only small portions of a arrays are needed at any
point in time. Hence, large arrays can be mapped to much
smaller arrays (see fig. 2).

Figure 2. Array folding

Techniques for this have been studied in detail in the
context of the data transfer and storage exploration (DTSE)
project at IMEC [1].

3.1.2 Loop splitting

Splitting loops into two can have a number of advantages.
For example, some processors provide zero-overhead loop

(ZOL) instructions for loops of a limited size. Some loops
may have to be split into two to take advantage of ZOLs.
Loop splitting normally does not change the code of the
loop body.

However, an extended form of loop splitting does allow
modifying the loop body. Frequently, loop bodies contain
if-statements and the tests performed by these statements
can be simplified by separating out a few of the common
cases. Margin handling with large arrays is an example of
this. Many image algorithms use information in the imme-
diate neighborhood of a pixel in order to improve the qual-
ity of the image. Special code is required at image borders,
where such neighbourghs do not exist. It is then a good idea
to split the loops in one which handles image borders and
one which handles the remaining pixels.

Automatic detection of cases, in which loops should be
split and the code adjusted accordingly, has been imple-
mented by Falk [4]. His method is based upon a complex
analysis of iterator spaces. Some results are shown in fig. 3.

�
�
�
�Motion estimation

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

0

20

40

60

80

100

Su
n

Pe
nt

iu
m

Po
w

er
PC

 G
3

D
EC

 A
lp

ha
 E

V4
IT

 C
6x

AR
M

 th
um

b
AR

M
 (a

rm
)

QSDPCM Cavity detection[%]
Runtime

Figure 3. Reduction of the run-time of 3
benchmarks by a automatic loop splitting and
by simplification of loop bodies

3.1.3 Other forms of high level transformations

Other forms of high-level transformations have been ana-
lyzed in the ADOPT project at IMEC [3]. Also, Benini et
al. describe the effect of some high-level transformations
[2]. There are many additional contributions in this domain
in the compiler community.

3.2 Energy-aware compilation

Many embedded systems are mobile systems which have
to run on batteries. While computational demands on mo-

bile systems are increasing, battery technology is expected
to improve only slowly. Hence, the availability of energy
is a serious bottleneck for new applications. Energy and
power are closely related, since the latter is the time-integral
of the former. Hence, techniques for saving energy are also
frequently called low-power design techniques, even though
a minimum energy design does not need to be the one which
consumes a minimum amount of power. In this paper, em-
phasis is on saving energy.

Saving energy can be done at various levels, including
the fabrication process technology, the device technology,
circuit design, the operating system and the application al-
gorithms. Adequate translation from algorithms to machine
code can also help. High-level optimization techniques such
as the ones presented in section 3.1 do also reduce the en-
ergy consumption. In this section, we will look at compiler
optimizations which can reduce the energy consumption.
Power models are very essential ingredients of all power op-
timizations. Using these, the following compiler optimiza-
tions have been used for reducing the energy consumption:

� Energy-aware scheduling: the order of machine in-
structions can be changed as long as the meaning of
the program does not change. This optimization can
be performed on the output generated by a compiler
and therefore does not require any change to the com-
piler.

� Energy-aware instruction selection: typically, there are
different instruction sequences for implementing the
same source code. In a standard compiler, the num-
ber of instructions or the number of cycles is used as a
criterion (cost function) for selecting a good sequence.
This criterion can be replaced by the energy consumed
by that sequence. Steinke and others found that low-
power instruction selection reduces the energy con-
sumption by some percent.

� Replacing the cost function is also possible for other
standard compiler optimizations, such as register
pipelining, loop invariant code motion etc. Possible
improvements are also in the order of a few percent.

� Exploitation of the memory hierarchy:

Smaller memories provide faster access and consume
less energy per access. Figs. 4 and 5 show the access
time and the energy required per access as a function
of the size of the memory [15]. The same behavior can
be observed for larger memories.

Therefore, using a memory hierarchy does not only
improve the average memory access time, but it also
reduces the energy consumption. Commonly used
caches, however, are not the ideal components. Set
associative and associative caches require accesses to

16 32 64 128

1.1

1.3

1.5

1.7

Cycle time[ns]

file size
Register

0.18µ

Figure 4. Delay as a function of the memory
size

12
14

16 32 64 128

2

4
6
8

10

Power[W]

Register
file size

0.18µ

Figure 5. Power consumption as a function of
the memory size

tags. These accesses consume energy. This energy
increases with the set size and is largest for a fully
associative cache. In contrast, scratch pad memories
(SPMs) are mapped into the address space of the sys-
tem. They can be accessed by just using the appropri-
ate addresses. As a result, accesses to SPMs require
just a fraction of the energy required for caches (see
fig. 6).

Compilers can be designed such that the most fre-
quently accessed variables and code segments are
mapped to the SPM. This mapping can be a one-to-
one mapping. An integer programming model leading
to such a mapping was presented by Steinke et al. [16].
Results are shown in fig. 7.

Obviously, larger scratch pad memories lead to a re-
duced energy consumption in the main memory. Also,
the energy required in the processor is also reduced,
since less wait cycles are required. Supply voltages
have been assumed to be constant.

As can be seen from fig. 7, substantial savings are pos-
sible. In all the cases observed by Steinke, the energy
savings enabled by memory hierarchies are the largest.

Code can also be dynamically copied into the SPM,
resulting in a many-to-one mapping. An integer pro-

1

3

5

7

1024256 4096 16384

scratch pad

4GB address space
1MB address space

set associative
Caches, 2 way

Energy per 64bit access[nJ]

Size

0.5µ SRAM

Figure 6. Energy consumption for cache and
scratch-pad memories

1

2

3

4

5

6

Energy [mJ]

0 64 128 256 512 1024 2048

Size

S
cr

at
ch

 p
ad

M
ai

n
C

P
U

Figure 7. Energy reduction by compiler-based
mapping to scratch-pad for bubble sort

gramming model reflecting this more general opti-
mization problem was also proposed by Steinke [5].
Using this more general model, the energy gain can be
increased.

3.3 Compilation techniques for digital signal pro-
cessing

Many embedded systems include digital signal process-
ing (DSP). DSP applications can be very efficiently imple-
mented using special DSP processors. Such processors con-
tain a number of specialized functions. These include [13]:

� special DSP instructions, such as multiply/add instruc-
tions,

� special addressing modes such as modulo addressing,

� saturating arithmetic,

� separate address generation units.

New optimization techniques take advantage of these
features [9].

3.4 Compilation techniques for multimedia pro-
cessors and VLIW

Registers and arithmetic units of many modern architec-
tures are 64 bits wide. Therefore, two 32 bit data types, four
16 bit data types or eight 8 bit data types can be packed into
a single register (see fig. 8).

word 3 word 2 word 1 word 0

64 bits

Figure 8. Using 64 bit registers for packed
data structures

Arithmetic units can be designed such that they suppress
carry bits at data type boundaries. Multimedia instruction
sets exploit this fact by supporting operations on packed
data types. This way, speed-ups of up to about eight over
non-packed data types are possible. Data types are typically
stored in packed form in memory. Unpacking and packing
and packing is avoided if arithmetic operations on packed
data types are used. Furthermore, multimedia instructions
provide a more efficient form of overflow handling than
standard instructions. Hence, the overall speed-up achieved
with multimedia instructions can be significantly larger than
the factor of eight enabled by operations on packed data
types.

Frequently, however, packed data types are not supported
by compilers and their use is therefore restricted to assem-
bly language routines. In order to fully support packed data
types, compilers must be able to automatically convert op-
erations in loops to operations on packed data types. It is
necessary not to ignore this potential for generating effi-
cient software. Compiler algorithms exploiting operations
on packed data types are extensions of vectorizing algo-
rithms, originally developed for supercomputers.

VLIW (very long instruction word) architectures contain
a major number of functional units which can operate in par-
allel. Parallelism is explicit at the instruction set level and
the compiler is responsible for explicitly describing the par-
allelism. Moving the responsibility for identifying the par-
allelism to the compiler avoids the hardware overhead that
is necessary for identifying parallelism in hardware. Hence,
VLIW processors can perform more useful computations
per mm2 of silicon than super-scalar processors. Compared
to such processors, VLIW processors can also frequently
run with decreased clock frequencies and still meet the time

constraints, due to the parallelism exploited. Decreased
clock frequencies, in turn, allow reducing the power sup-
ply voltage and thereby saving power.

Parallel execution in VLIW architectures requires the
availability of a large number of arguments in the same
clock cycle. Multi-port memories containing a sufficient
amount of ports are extremely expensive and also tend to
being slow. Hence, modern VLIW architectures use parti-
tioned register files. For example, the C6xx processor fam-
ily from Texas Instruments includes two register files. Func-
tional units are attached to each of the register files. The
compiler is in charge of mapping operations to one of the
functional units. Algorithms performing this mapping have
been proposed [10, 6].

As an example, we are considering the M3-DSP proces-
sor [11]. The M3-DSP processor is a VLIW processors con-
taining (up to) 16 parallel data paths. These data paths are
connected to a group memory, providing the necessary ar-
guments in parallel (see fig. 9).

D
at

a−
pa

th
 0

D
at

a−
pa

th
 1

D
at

a−
pa

th
 2

D
at

a−
pa

th
 1

4

D
at

a−
pa

th
 1

5

Interconnection network

.........

256 bit−wide memory

...........

Figure 9. M3-DSP (simplified)

Automatic parallelization of loops for the M3-DSP re-
quires the use of vectorization techniques [7, 8]. With such
vectorization techniques, significant speedups (compared to
the case of sequential operations) has been achieved (see
fig. 10). For applicationdot product 2, the size of the vec-
tors was too small to lead to a speedup and no vectorization
should be performed. The number of cycles can be reduced
by 94 % for benchmarkexample if vectorization is com-
bined with zero-overhead-loop detection.

3.5 Compilation techniques for network proces-
sors

Network processors are a new type of processors. They
are optimized for high-speed Internet applications. Their in-
struction sets comprise numerous instructions for accessing
and processing bit fields in streams of information. Typ-

20

40

60

80

100

120

applicationlms

dot_product_2

dot_product_16

n_real_updates

example

rel. number
of cycles [%]

or
ig

in
al

 c
od

e

ve
ct

or
iz

ed
 c

od
e

Figure 10. Reduction of the cycle count by
vectorization

ically, they are programmed in assembly languages, since
their throughput is of utmost importance. Nevertheless, net-
work protocols are becoming more and more complex and
designing compilers for such processors makes sense. The
necessary bit-level details have been analyzed by Wagner
[17]. Wagner obtained a 28 % performance gain by exploit-
ing special bit-level instructions of a network processor.

4 Conclusion

In this paper, we have shown that software for embedded
systems must be efficient (due to, for example, the limited
availability of energy). For this reason, embedded proces-
sors contain a number of features which make them more
efficient than standard processors used, for example, in PCs.
This, in turn, means that advanced machine code genera-
tion techniques are needed, which exploit these architec-
tural features of embedded processors.

We have shown that advanced translation techniques ex-
ist, which perform the necessary optimizations. Some high-
level techniques are quite complex; they will possibly never
be integrated into compilers. A new area is that of energy-
aware compilation. The memory hierarchy enables the
largest potential for energy-aware compilation. In order to
exploit this hierarchy, it is no longer sufficient to provide
compilers with a description of the instruction set. They
also need information about the memory hierarchy.

Finally, we have briefly discussed compilation for VLIW
and multimedia instructions sets. The use of such architec-
tures is motivated by their inherent hardware efficiency. Ex-
ploiting such architectures does, however, require complex
compilation strategies. These strategies enable significant
performance and energy benefits.

We expect that more optimization features will be re-
quired in the future, due to the features of recently intro-
duced processors, such as scalable voltages, speculation,
memory hierarchies etc.

Acknowledgment

This paper includes results from various members of the
embedded system group at the University of Dortmund.
Their contributions are gratefully acknowledged. Compre-
hensive information about these contributions is available
from our web site: //ls12.cs.uni-dortmund.de.

References

[1] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachter-
gaele, and A. Vandecappelle.Custom memory management
methodology. Kluwer Academic Publishers, 1998.

[2] E.-Y. Chung, L. Benini, and G. D. Micheli. Source code
transformation based on software cost analysis. InISSS,
pages 153–158, 2001.

[3] I. Desics group. Adopt.http://www.imec.be/desics.
[4] H. Falk. Control flow optimization by loop nest splitting at

the source code level. Technical report, University of Dort-
mund, Dept. of CS XII, 2002.

[5] N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan,
and P. Marwedel. Reducing energy consumption by dy-
namic copying of instructions onto onchip memory.ISSS,
2002.

[6] M. Jacome, G. de Veciana, and V. Lapinksi. Exploring
performance tradeoffs for clustered VLIW ASIPs.Inter-
national Conference on Computer-Aided Design (ICCAD),
2000.

[7] A. Krall. Compilation techniques for multimedia extensions.
International Journal of Parallel Programming, 28, 2000.

[8] S. Larsen and S. Amarasinghe. Exploiting superword paral-
lelism with multimedia instructions sets.Programming Lan-
guage Design and Implementation, 2000.

[9] R. Leupers. Code Optimization Techniques for Embedded
Processors - Methods, Algorithms, and Tools Kluwer Aca-
demic Publishers. Kluwer Academic Publishers, 2000.

[10] R. Leupers. Instruction scheduling for clustered VLIW
DSPs.PACT, Philadelphia, 2000.

[11] M. Lorenz, L. Wehmeyer, T. Draeger, and R. Leupers. En-
ergy aware compilation for DSPs with SIMD instructions.
LCTES/SCOPES ’02, 2002.

[12] H. D. Man. Keynote session at DATE’02.http://www.date-
conference.com/conference/keynotes/index.htm, 2002.

[13] P. Marwedel. Introduction.in: P. Marwedel, G. Goossens
(ed.): Code Generation for Embedded Processors, Kluwer,
1995.

[14] P. Paulin, C. Liem, T. May, and S. Sutarwala. DSP design
tool requirements for embedded systems: A telecommuni-
cations industrial perspective.Journal of VLSI Signal Pro-
cessing, pages 23–47, 1995.

[15] S. Rixner, W. J. Dally, B. J. Khailany, P. J. Mattson, and U. J.
Kapasi. Register organization for media processing.HPCA,
2000.

[16] S. Steinke, L.Wehmeyer, B.-L. Lee, and P. Marwedel. As-
signing program and data objects to scratchpad for energy
reduction.DATE, 2002.

[17] J. Wagner and R. Leupers. Advanced code generation for
network processors with bit packet addressing.Workshop
on Network Processors (NP1), 2002.

[18] V. Zivojnovic, J. Martinez, C. Schl¨ager, and H. Meyr. DSP-
stone: A DSP-oriented benchmarking methodology.Proc.
of the Intern. Conf. on Signal Processing and Technology,
1994.

