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ABSTRACT
The number of mobile embedded systems is increasing and
all of them are limited in their uptime by their battery ca-
pacity. Several hardware changes have been introduced dur-
ing the last years, but the steadily growing functionality still
requires further energy reductions, e.g. through software op-
timizations. A signi�cant amount of energy can be saved in
the memory hierarchy where most of the energy is consumed.
In this paper, a new software technique is presented which

supports the use of an onchip scratchpad memory by dy-
namically copying program parts into it. The set of selected
program parts are determined with an optimal algorithm
using integer linear programming.
Experimental results show a reduction of the energy con-

sumption by nearly 30%, a performance increase by 25%
against a common cache system and energy improvements
against a static approach of up to 38%. 1

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-based Systems

General Terms
Algorithms
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1. INTRODUCTION
Since the introduction of mobile systems, the energy sup-

ply has been a permanent problem and limiting factor. The
improvement of the battery capacity is only very slow whereas
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the increase in number of transistors, coupled with increas-
ing complexity of applications (re
ected in software com-
plexity) causes a strong demand for reducing the energy
consumption. But the increasing energy consumption also
leads to other limitations, e.g. size constraints of notebooks
because of the heat dissipation [6] or the lifetime of elec-
tronic circuits which depends on the temperature. Finally,
the capacity of the power supply depends on the maximum
current required by the system. Reductions in the max-
imum currents might lead to smaller power supplies with
less weight and less cost. Overall, there is a strong demand
for reducing the energy consumption of electronic circuits.
To reduce energy consumption, hardware modi�cations

have been introduced at several levels. The feature sizes are
permanently shrinking and the supply voltages are being re-
duced. Furthermore, modern processor designs incorporate
several power down modes to shut down parts of the system
or even the whole system if it is not used for a longer time
frame.
In addition, energy can be saved by optimizing the soft-

ware application itself. The analysis of systems based on
RISC processors which are well known for their reduced cir-
cuitry and energy consumption reports the memory system
as the main cause of energy consumption. Therefore, the
number of accesses to the memory is a key factor that needs
to be minimized. Furthermore, the overall energy consump-
tion can be improved by adding additional onchip memories
to the memory system.
A memory system consists of di�erent memory types at

di�erent locations in the system. In contrast to a regular
main memory which is located o�chip, onchip memories are
of small size and located on the same chip as the processor.
This saves energy because of reduced access times and due
to less active bus drivers. Besides the location, the memory
organization can be varied betweeen RAMs or e.g. Caches.
RAMs of a limited size which are located onchip are com-
monly called scratchpad.
First, we observe the well known caches. They can per-

form automatic copying of blocks into the fast cache memory
using hardware control. If the memory content is valid in
the cache, an access to the next higher level of the memory
hierarchy can be avoided. The main drawback is the high
amount of energy which is spent for the additional tag mem-
ory containing the cache addresses and for the comparators
which do a lot of comparisons to determine hits and misses.
To overcome this drawback, we introduce in this paper an

algorithm for an onchip scratchpad memory which is �lled
with program parts and accessed by software control. At



certain predetermined points in the program, parts of the
program are copied into the scratchpad and are subsequently
executed from the just loaded scratchpad. Energy hungry
comparisons of the cache address with the current valid ad-
dress can be saved. No cache misses are possible since the
software control always \knows" the content of the scratch-
pad. On the other hand, copying program parts is more
energy consuming than with a cache solution.
The rest of the paper is structured as follows: After the

presentation of related work, the algorithm for the scratch-
pad control is described in detail in Section 3. This is fol-
lowed by a presentation of the experimental setup. The
results of these experiments which were performed on an
ARM7T RISC processor [1] are shown in Section 4. The
paper ends with a conclusion and future work.

2. RELATED WORK
The energy optimization of application programs gener-

ated by compilers was studied by Tiwari et al. [16] who
developed an instruction level power model by physical mea-
surements. This model consists of energy costs of a single
instruction (\basic costs\) plus the overhead for switching
to the next instruction (\interinstruction costs"). The sum
corresponds to the total amount of energy consumed by the
observed application. The main drawback is the missing
consideration of memories. The instruction energy model
by Simunic [12] takes memories into account, but because
all energy values are only taken from the vendor's datasheet,
there is no distinction between di�erent processor instruc-
tions. The combination of these two approaches and a fur-
ther extension for treating the bit patterns on busses was
presented by Steinke et al. [14]. This model was also choosen
for this research work.
For a fair comparison of the two onchip memory alterna-

tives cache and scratchpad, the energy consumption has to
be examined for the same technology. For this purpose, the
cache energy model of Wilton et al. [17] was used together
with a subset of the cache not including the tag memories
and the comparators. This subset was described by Ba-
nakar et al. [2] and used to determine energy values for the
scratchpad memory.
Based on instruction level power models, di�erent energy

optimizations have been integrated into compiler environ-
ments. The in
uence of compiler optimizations was studied
in the above mentioned research work by Tiwari et al. [16]
and Simunic et al. [12]. In addition, Kandemir et al. [9]
observed the behavior of energy consumption with di�erent
cache sizes.
Further work of software improvements was combined with

the development of speci�c hardware. The more eÆcient
treatment of object code was developed by Ishihara et al. [7]
and the design of application speci�c memories by Benini et
al. [4]. Especially these memory related works have a high
potential for improving power and performance optimiza-
tions.
Besides these application speci�c hardware approaches,

even the usage of standard memory types during the system
design phase is a potential choice. Common is the addition
of a cache which will be treated here for comparison purposes
as a reference. The replacement of caches by a scratchpad
for the most often accessed variables was studied by Panda
et al. [11]. The same approach was taken by Sj�odin et al.
[13], but with a more simplistic algorithm for choosing the

variables. The dynamic copying of array parts was studied
in [8].
In addition to the mapping of variables, Steinke et al. [15]

presented an approach for the selection of program parts and
variables on a static base. The program parts are never ex-
changed during the application run. In contrast, this paper
only treats program parts, but performs a dynamic copy
during program execution. This is especially advantageous
for applications with more than one hotspot which do not
�t in the scratchpad together.

3. ALGORITHM
The execution of instructions from the scratchpad is faster

and more energy eÆcient than from the cache. The draw-
back of the scratchpad is that copying the instructions into
it with the help of load and store statements is slower and
therefore more energy consuming than a hardware controlled
cache �ll. To �ll the scratchpad, copy functions are inserted
into the application at compile time to copy a set of basic
blocks which can later be executed from the scratchpad.
For each copied basic block, the best point in the control


ow has to be chosen. It is advantageous to choose a point
which is executed less frequently than the block that is to
be copied and therefore causes less copy costs, but on the
other hand a copy function close to the copied basic block
is advantageous because the memory is not occupied that
long.
The algorithm is structured as follows:

1. analysis of the application program to identify pro-
gram parts

2. determination of possible program parts and locations
for the copy functions in the control 
ow of the appli-
cation

3. a choice of the best set of program parts to be copied
together with associated copy functions

We will also prove the optimality of this algorithm.

3.1 Analysis of the Application
For the software control of the scratchpad, a detailed

analysis has to be undertaken. Therefore, the structure of
the program is analyzed. We consider functions and basic
blocks, the latter being sequences of instructions with a sin-
gle entry point and not including any branches, except at
the very end.
For functions and basic blocks which are called program

objects, the characteristics size and number of executions
have to be determined with highest possible precision. The
number of executions can be identi�ed by a static analysis
or by pro�ling during a simulation run. In this algorithm
we chose the pro�ling approach because it is more precise.
In combination with the control 
ow among these pro-

gram parts all necessary inputs are now available for dy-
namic mapping of program parts.

3.2 Search Space Reduction
There is a potentially large search space for the optimal

combination of program parts and the corresponding copy
functions. Each program part can potentially be copied by
each copy function positioned beforehand. For this reason it
is desirable to prune the search space without excluding the



optimal solution. In the following we introduce two asser-
tions, the �rst for limiting the number of possible program
parts to be copied and the second for reducing the number
and position of copy function candidates:

Assertion 1: only those program parts are worthwhile to be
copied which are executed more often than their correspond-
ing copy function.
The copy function has to execute a load statement from

the o�chip and a store statement to the onchip memory for
copying a single instruction. Even when using the ARM
16 bit instruction set's "load/store multiple", this consumes
more energy than a single o�chip instruction fetch. To copy
an instruction into the scratchpad and execute it from there
is thus not advantageous if the copy function is executed the
same or a larger number of times than the instruction in the
treated program part. It is obvious that only program parts
which are executed in loops are worthwhile to be copied.

Assertion 2: positions of copy function candidates can be
limited to loop entries
As shown in assertion 1, each copied program part has

to be executed more frequently than its corresponding copy
function in order to reduce the energy consumption. This
occurs only in loops where the loop body is performed more
often than the instructions directly before the loop. Due to
this, the search space for the optimal solution can be limited
to copy functions which are positioned directly before loops.

// -- copy point 1 --

for (i = 0; i < 100; i++) {

.. // basic block 1

// -- copy point 2 --

for (j = 0; j < 20; j++) {

..// hotspot 1

}

// -- copy point 3 --

for (k = 0; k < 30; k++) {

..// hotspot 2a

if (..) {

..// hotspot 2b

}

}

}

Figure 1: program example

As an example, let us consider the program in �gure 1.
There are three loops, two of which are inside the �rst loop.
If we observe the control 
ow of this program in �gure 22,
we can identify four basic blocks. The �rst block basic block
1 represents the �rst instructions inside this loop up to and
including the initialization of the second loop. The inner
part of the second loop is represented by the basic block
hotspot 1. The third loop is shown as basic block hotspot 2a
followed by the basic block hotspot 2b generated by the \if"
statement. The jump back from the end of the outer loop
to its beginning goes back to basic block 1.
We can limit the possible insertion points of copy func-

tions to the beginning of loops as shown before. Thus, there
are three possible copy points (CP) in the control 
ow. They

2For simpli�cation, we do not insert an additional basic
block for the initialization of the third loop.
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are CP1, CP2, and CP3 where we can potentially insert a
copy function. It has to be decided where e.g. hotspot 1
should be copied. This can be done either at CP1 or at
CP2. The advantage of CP1 is that it is executed less times
compared to CP2 which saves energy copy costs. On the
other hand, the scratchpad memory which is allocated for
hotspot 1 can be reused by other program parts, e.g. hotspot
2a or hotspot 2b, if it is copied at CP2.
Depending on the loop count and the size of the basic

blocks, a possible assignment of program objects to copy
functions is shown in �gure 3. Copy function CP1 copies
hotspot 2a of the innerloop 2 into the scratchpad. After-
wards, basic block 1 is executed from the o�chip memory.
The following copy function CP2 assigns hotspot 1 to the
scratchpad. This memory space is assigned alternately to
hotspot 1 and hotspot 2b which is copied by CP3.

3.3 Selection of Program parts
After determining the possible copy function points for

each basic block (1 for each loop level), we calculate the
energy costs and select the optimal set of program objects.
First of all, we determine the energy costs for copying the

program object PO at copy function CPx into the scratch-
pad. These costs can be computed by multiplying the num-



ber of executions of the copy function n(CPx), the energy
consumption for copying a single instruction Esingle cp and
the number of instructions k:

Ecp(PO) = n(CPx) � Esingle cp � k

This copy costs have to be subtracted from the bene�t
of executing a function or basic block from the scratchpad
instead of the main memory.
The energy saving for the execution of a single instruction

is de�ned as Eif which is the di�erence of executing an
instruction fetch from the o�chip against from the onchip
memory:

Eif = Eoffchip;if �Eonchip;if

In addition to basic blocks, a whole function Fi can be
treated as a program object too. This object with k in-
structions with each instruction executed nk times moved
into the scratchpad saves the following amount of energy,
taking the copy cost Ecp(Fi) of the function into account:

E(Fi) =
X
k

nk � Eif �Ecp(Fi)

In contrast to functions where the jump to the function
and the return from it can be executed over a far distance
of the address space, the basic blocks have a closer link with
their neighboring blocks. Therefore we have to insert ad-
ditional jumps with an energy cost of Ejmp from the main
memory to the scratchpad and back. This has to be con-
sidered during size and energy calculation of these objects.
The energy saving E(Bj) for a basic block Bj with k instruc-
tions which is executed n times with l additional jumps is
computed as follows:

E(Bj) = k � n � Eif � l �Ejmp �Ecp(Bj)

For each combination of a basic block with a correspond-
ing copy function, a program object PO has to be created.
For identifying the best set of program objects and the

corresponding copy functions, we use an integer linear pro-
gramming approach [10]. The equations are constructed us-
ing the following de�nitions:

S(PO) = size of PO

m(x) =

�
1, if x is moved to the scratchpad
0, otherwise

To optimize the energy saving sav, the following cost func-
tion needs to be maximized:

sav =
X
i2I

m(Fi) � E(Fi) +
X
j2J

m(Bj) � E(Bj)

Index sets I and J correspond to index values for functions
and basic blocks which are active at the same time in the
scratchpad:
The size constraint for a �xed scratchpadsize can be mod-

eled as follows:X
i2I

m(Fi) � S(Fi) +

X
j2J

m(Bj) � S(Bj) � scratchpadsize

To prevent a basic block x from being selected twice, e.g.
as a single basic block x and also as part of a function i,

constraints of the following type have to be added with Bx

being included within Fi:

m(Bx) +m(Fi) � 1

Based on this model, an IP solver can �nd the optimal
solution for all memory objects and for all copy points in one
single run for the use of a scratchpad memory. All additional
costs for copying objects during program execution into the
scratchpad or jumping to the scratchpad are incorporated
in the ILP model.

4. EXPERIMENTAL SETUP

4.1 Models
To compare the scratchpad and the cache systems we need

to de�ne a model of the system consisting of processor and
memories. We chose the ARM7 processor [1] which is a
widespread ultra low power RISC processor. A detailed de-
scription of the energy model is given in [14].

Table 1: energy per access (32 bit)
memory size cache scratchpad ratio

64 bytes 2.87 nJ 0.49 nJ 5.9
128 bytes 3.15 nJ 0.53 nJ 5.9
256 bytes 3.32 nJ 0.61 nJ 5.4
512 bytes 3.48 nJ 0.69 nJ 5.0
1024 bytes 3.75 nJ 0.82 nJ 4.6
2048 bytes 4.04 nJ 1.07 nJ 3.8

For a fair comparison of values for the two onchip memo-
ries the same technology and production process has to be
used. Since it is diÆcult to obtain cache and scratchpad
memories ful�lling these requirements, the cache values are
based on the CACTI model [17]. For the scratchpad a sub-
set of the cache was used [2, 3]. The gained values are shown
in Table 1 for a 4 way set associative cache which is a com-
monly used architecture for ARM7 systems. The advantage
of the scratchpad is mainly caused by the missing tag com-
parators and tag memory. Even compared with the simplest
cache architecture, a direct mapped cache, the energy ratio
compared to the scratchpad is still high [2].
The values for the �xed onchip memory size of the ob-

served system are taken from Table 1 for the use in the ILP
system.

4.2 Workflow
The diagram in �gure 4 shows the work
ow starting with

programs compiled using the energy aware C compiler encc
[5]. For the scratchpad con�guration, the algorithm pre-
sented in the previous section is executed. The generated
machine code is simulated using the simulator from ARM
Ltd. which is extended for the cache con�guration by the
ARM cache simulator. This cache simulator also computes
the exact number of cache misses.
Based on the instruction trace, the energy pro�ler calcu-

lates the total amount of energy consumed for the di�erent
processor instructions and memory accesses.

5. RESULTS
For the experiments, di�erent benchmarks were selected.

First, the sorting algorithms bubble sort, heap sort and quick
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Figure 4: experimental work
ow

sort are studied. Secondly, an application from the DSP-
stone benchmark suite, biquad N sections, and a �lter ap-
plication, lattice, were chosen and �nally, a matrix multipli-
cation program, matrix mult. To show the behavior for a
larger application with more than one hotspot, a combina-
tion of di�erent sorting algorithms multi sort was used.
The results are presented in Table 2 for realistic ratios

of approximately up to 1:10 between the onchip size and
the total program size. We can state a clear advantage for
the scratchpad system against the cache system. For the
smallest onchip sizes the di�erence is higher because the
cache miss rate is also higher.
Only the biquad N sections shows a better value for a

cache with a size of 256 Bytes. This occurs due to the small
number of executions of the inner loops of the benchmark.
The dynamic copying of blocks by executing load and store
instructions consumes much more energy than �lling a cache
line. Therefore, the advantage of the scratchpad is less com-
pared to the cache in such cases.
The improvements are up to 55% with an average of 29.9%.

The values for the scratchpad can be further improved by
also copying data. This will be part of the future work.
Another series of experiments has been performed for per-

formance evaluation (Table 3). Even here, a clear advantage
for the scratchpad system can be stated. The performance
improves up to 40% with an average of 25.2%.
Additionally, in �gure 5 the results for the larger bench-

mark multisort are shown for varying onchip sizes. Further-
more, we present the comparison against the static approach
[15]. It can be seen that the limitation of the static approach
for di�erent hotspots is solved by the dynamic exchange of
program objects with an improvement of up to 38%. De-
pending on the benchmark, it is expected that the advan-
tage of the dynamic approach will be lower in the average
case.
The running time of the ILP solver for the results pre-

sented above is less than 50 ms. The complexity of the

Table 2: energy of scratchpad against cache
Benchmark onchip cache scratch- saving

Bytes (�J) pad (�J) (%)
bubble sort 64 4130 2064 50
bubble sort 128 2242 1727 23
heap sort 64 1677 1053 37
heap sort 128 1223 786 36
heap sort 256 673 649 3.5
quick sort 64 307 183 40
quick sort 128 259 168 35
quick sort 256 161 135 16
biquad 64 24.7 24.1 2.4
biquad 128 22.3 23.0 -3.1
lattice 64 3129 2210 29
lattice 128 2188 983 55
lattice 256 1662 942 43
matrixmult 64 93.6 43.8 53
matrixmult 128 59.2 42.1 29
average 29.9

Table 3: performance of scratchpad against cache
Benchmark onchip cache scratch- saving

Bytes (cycles) pad (cycles) (%)
bubble sort 64 367,049 247,048 33
bubble sort 128 248,493 216,141 13
heap sort 64 135,134 86,227 36
heap sort 128 106,287 72,794 32
heap sort 256 72,315 68,897 4.7
quick sort 64 23,610 14,707 38
quick sort 128 20,517 14,958 27
quick sort 256 14,385 12,910 10
biquad 64 2,085 1,885 9.6
biquad 128 1,926 1,947 -1.1
lattice 64 264,282 164,432 38
lattice 128 203,516 120,594 40
lattice 256 169,602 118,885 30
matrixmult 64 7,507 4,180 44
matrixmult 128 5,337 4,057 24
average 25.2

problem and the number of program objects depends on the
number of nested loops and the number of included basic
blocks. For larger programs with the same loop depth and
size of the individual loops, the runtime increases in a linear
way.

6. CONCLUSION
In this paper an algorithm was presented for copying in-

structions into a scratchpad memory during program exe-
cution. The possible exchange of instructions improves the
energy consumption against a cache system by an average
of 29.9%. Furthermore, the performance is improved by an
average of 25.2%. Compared to static approaches the energy
is reduced by up to 38% for a sample benchmark.
We intend to evaluate our work with more complex bench-

marks. Furthermore, the handling of data objects will be
integrated into the algorithm.



Figure 5: multisort program
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