Energy aware Compilation for DSPs with SIMD Instructions

Markus Lorenz
University of Dortmund

44221 Dortmund, Germany

Markus.Lorenz@uni-
dortmund.de

ABSTRACT

The growing use of digital signal processors (DSPs) in em-
bedded systems necessitates the use of optimizing compil-
ers supporting special hardware features. In this paper we
present compiler optimizations with the aim of minimizing
energy consumption of embedded applications: This com-
prises loop optimizations for exploitation of SIMD instruc-
tions and zero overhead hardware loops in order to increase
performance and decrease the energy consumption. In ad-
dition, we use a phase coupled code generator based on a
genetic algorithm (GCG) which is capable of performing
energy aware instruction selection and scheduling. Energy
aware compilation is done with respect to an instruction
level energy cost model which is integrated into our code
generator and simulator. Experimental results for several
benchmarks show the effectiveness of our approach®.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Code gen-
eration, Compilers, Optimization

General Terms

Algorithms, Performance

Keywords

Vectorization, SIMD instruction, zero overhead hardware
loop, energy minimization, DSP

1. INTRODUCTION

Digital signal processors (DSPs) are frequently used in em-
bedded systems to flexibly account for specification modifi-
cations in late design phases. In order to meet given con-
straints with respect to execution time, code size and energy

!This work has been sponsored by the German Research
Foundation (DFG) and Agilent Technologies, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

Lars Wehmeyer
University of Dortmund
Dept. of Computer Science 12 Dept. of Computer Science 12
44221 Dortmund, Germany

Lars.Wehmeyer@uni-
dortmund.de

Thorsten Drager
Techn. Universitat Dresden
Vodafone Chair For Mobile

Communication Systems
01062 Dresden, Germany

draeger@ifn.et.tu-
dresden.de

consumption, many programs are still written in assembly
code. However, this is a very time consuming process which
potentially leads to incorrect and hardly portable code. For
this reason, there is an increased requirement for optimiz-
ing compilers which are adapted to special architectures and
thus are capable of exploiting the irregular architecture fea-
tures of DSPs.

Apart from the parallel execution of processor instructions
(ILP = instruction level parallelism), DSPs like the TI C6201
[23], Philips TriMedia TM1000 [20] or the M3-DSP [7] sup-
port the execution of SIMD instructions (SIMD = single
instruction multiple data). Exploitation of SIMD instruc-
tions (vectorization) exposes a potential for significant code
improvements with respect to execution time and therefore
also with respect to the energy consumption. However, there
is still a need for suitable optimization techniques in this
area.

It is a well known fact that DSP programs spend most of
their execution time in loops. In order to reduce the exist-
ing loop overhead, DSPs usually provide executing a limited
number of processor instructions in zero overhead hardware
loops (ZOL). After initializing a special hardware register
with the number of iterations to be executed, the instruc-
tions in the loop body can be executed without the conven-
tional loop overhead. There is no need for additional instruc-
tions modifying the loop counter, checking the termination
condition and jumping back to the first loop instruction.
Thus, ZOLs lead to a reduction of execution time, code size
and energy consumption.

The task of code generation can be subdivided into the sub-
tasks code selection (CS), instruction scheduling (IS), reg-
ister allocation (RA) and address code generation (ACG).
Finding an optimal solution for each subtask usually means
solving an NP-hard optimization problem. Due to the strong
interdependencies among these subtasks, it is important for
efficient code generation (particularly for DSPs) to perform
all subtasks simultaneously by means of a complete phase
coupling. With respect to an energy aware code generation,
phase coupling is also important in order to avoid energy

not made or distributed for profit or commercial advantage and that copies Wasting decisions made at an early code generation phase.

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific In this paper we present loop optimizations for exploitation

permission and/or a fee.
LCTES'02—-SCOPES’'03une 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/000655.00.

of SIMD instructions and for zero overhead hardware loops
as well as a phase coupled energy aware code generator based

A

Lance2 Lance2- Lance2 to
[C_Srcj—»frontend IR }’ GeLIR

standard
optimizations

machine independent ——— > <«—— machine dependent —

GelLIR to
GelLIR Asm —>[Asm}
GeLIR to _,
— Sim
e vectorization A
« zero overhead !
hardware loops energy
e code generation =~ <o data

Figure 1: Compilation process and embedded optimizations

on a genetic algorithm (GCG). Due to an integrated instruc-
tion level energy cost model, our code generator is capable
of reducing the energy consumption by suitable instruction
selection and instruction scheduling.

The remainder of this paper is organized as follows: The
next section gives an overview of our compiler framework.
After that, the target architecture and the instruction level
energy cost model is described. In section 4 we present
the loop optimizations for exploitation of SIMD instruc-
tions (vectorization) and zero overhead hardware loops. The
phase coupled energy aware code generator is described in
section 5. Related work is given within these sections. We
demonstrate the effectiveness of our approach in section 6
and conclude the paper with a summary.

2. COMPILER FRAMEWORK

An overview of the compilation process and our compiler
framework is given in figure 1. At first, a front end (here:
Lance2 [15, 13]) reads a given C source program and trans-
forms it into a machine independent intermediate repre-
sentation (IR). After running a set of standard optimiza-
tions, the Lance2-IR is mapped to our generic low-level IR
(GeLIR) [9], which serves as exchange format for all succeed-
ing transformations and optimizations. In order to prop-
agate optimization results to other phases, GeLIR allows
for storing machine dependent program and target architec-
ture information like number and type of available registers,
functional units, parallel execution possibilities and valid re-
source combinations of processor instructions. In order to
represent the currently possible resource alternatives for a
specific GeLIR graph node (or abstract operation (e.g. load
or add) of the source program), it is possible to associate
alternative resource combinations with such a graph node.
In this representation, the process of code generation aims
at restricting the set of resource alternatives by optimiz-
ing according to a specified cost function. This enables the
implementation of modular and generic energy and perfor-
mance aware optimization techniques like the vectorization
of loops in order to exploit SIMD instructions, the exploita-
tion of zero overhead hardware loops and finally the energy
aware code generation using a phase coupled genetic code
generator. Information about the energy consumption of
processor instructions is stored in the GeLIR data struc-
tures and permits an efficient evaluation of different code

sequences. Validation of optimizations can be performed
by compiled simulation [10] of a specific GeLIR representa-
tion on different levels of abstraction. After validation, the
current graph based GeLIR representation is mapped to se-
quential assembly code. Simulation is done by writing the
given GeLIR program and target representation as C code
which is then compiled using a traditional C compiler. Val-
idation can also be done by compiling the original source
program with a standard compiler and comparing the re-
sults of the generated binaries after execution. In order to
assess the code quality, the GeLIR, simulator provides in-
formation about the number of execution cycles, number of
memory accesses and the energy consumption with respect
to the specified energy data.

3. TARGET ARCHITECTURE

3.1 M3-DSP

The M3-DSP (figure 2) is an instance of a scalable DSP
platform for mobile communication applications [7]. The
platform permits a fast design of DSPs adapted to special
applications. In order to meet constraints with respect to
real-time processing, chip area, and energy dissipation, the
platform supports among others, the following features:

Wide Data Memory (Group Memory)
(16 x 16) bit

i i 1
\ Intermediate Register
i

\ Inter Commmunication Network

I I

‘AB‘CD‘

‘ABCD‘% 5 5\ABCD
MAC glvacl: HlIVIYS
ALU ; ALU ; : ALU

‘ACCU‘E‘ACCU‘E E
0 1 slice 15

Figure 2: Coarse architecture of the M3-DSP

There is a scalable number of data paths that enable process-
ing either on a single data path (slice 0) or on all data paths
in parallel according to the SIMD principle. In the case of
the M3-DSP there are 16 data path slices. In order to pro-
vide an effective use of all data path slices in parallel, the
memory is organized as an on-chip group memory: Address-
ing one 16-bit data word means addressing an entire group
of 16 such words. The addressed group is loaded into an
intermediate register from which the values are distributed
to the group registers in the data paths by an application-
specific inter-communication network. The term group reg-
ister denotes the set of those data path input registers in all
slices with the same label (e.g. A or B in figure 2). Here, the
greatest challenges in code generation are to take advantage
of the full memory bandwidth and the SIMD data path in-
structions.

The loop overhead can be reduced by executing up to 256
processor instructions in a hardware loop whose number of
iterations is restricted to a maximum of 32767.
Furthermore, the M3-DSP contains a 4-stage pipeline and is
organized as a very long instruction word (VLIW) architec-
ture which allows for an independent control e.g. for data
manipulation, data transfer, program control, and the ad-
dress generation unit.

3.2 Instruction level energy cost model

During the code generation process it is necessary to eval-
uate different code sequences. However, repeated simula-
tions or measurements would mean an unacceptable over-
head. Thus, a suitable cost model permitting a precise and
quick evaluation of arbitrary instruction sequences is essen-
tial. Usually, an evaluation of a machine program with re-
spect to execution time or code size can be done easily with
the help of the instruction set. Unfortunately, energy data
which is necessary for optimizing the energy consumption
of an application is usually not available and thus has to be
determined by simulation or measurement on the real chip.
For instance, Tiwari [24] reports an instruction level energy
model based on measurement of the energy consumption of
a single instruction (base energy cost) and of the switching
activities of successive instructions (overhead energy cost)
which permits a quick and precise evaluation. Based on
Tiwaris work, we have obtained a modified instruction level
energy cost model for the M3-DSP with the help of measure-
ments on the silicon chip [5]. A validation of our energy cost
model shows a difference of less than 2% compared to mea-
surements on the real hardware when executing the whole
program.

As expected, the energy cost model shows that load and
store instructions have a more significant contribution to
the energy consumption than SISD instructions (SISD =
single instruction single data) of the data path. SIMD in-
structions show the highest energy consumption (4-5 times
more compared to SISD instructions) but perform up to 16
useful computations in parallel. For this reason, executing
SIMD instructions will potentially reduce the total energy
dissipation of an application. In addition, we expect a much
smaller number of data transfers especially for handling the
group memory. For example, storing a specific data word
when processing is done in SISD mode means that there is a
need for loading the correct memory group (containing 16 x
16 bit) into one of the group register files of the data paths,

transporting the data word to a specific register element,
and resaving the modified group into the memory.

This means that beside the reduction of execution time, op-
timization techniques which utilize all available data paths
and reduce the number of memory accesses are worthwhile.
In addition, the cost model shows that there are noticeable
differences with respect to the energy consumption between
different successive processor instructions. This leads to the
assumption that the energy consumption can be reduced by
performing a skillful instruction selection and instruction
scheduling.

4. LOOP OPTIMIZATIONS

In this section we introduce the loop optimizations for the
M3-DSP. They comprise the vectorization of loops in order
to take advantage of the parallel data paths in section 4.1
and the exploitation of zero overhead hardware loops in sec-
tion 4.2. As described before, both optimizations are inte-
grated into the GeLIR framework. Thus, they read a given
GeLIR representation and write back a modified represen-
tation.

4.1 \ectorization

The exploitation of parallel data paths and the handling of
the group memory in order to take advantage of the SIMD
capabilities of a processor is one of the greatest challenges
in code generation for the M3-DSP.

To exploit SIMD instructions, hand written assembly code
libraries may be available or compiler known functions in C
programs can be applied. This has the advantage that the
compiler can generate assembly code for the inserted SIMD
instructions directly. The disadvantages are that the user
potentially has to perform a lot of manual work and the
programs are hardly portable to other target architectures.
In order to avoid these disadvantages there are the following
strategies:

Vectorization by loop analysis

The main idea of this classical strategy is to find loops which
can be vectorized. If vectorization is possible, compiler
known functions can be inserted into the source program
through language extensions by the compiler [22]. In [19]
this strategy is realized on the source code level by using
a pattern matching based code transformation tool which
performs a C to C transformation. However, the inserted
assembly code instructions have a great impact on the code
generation phase which is performed in a subsequent step.
Vectorized statements in loops are annotated as vectorized
in the intermediate representation in [12] for the UltraSPARC
VIS instruction set and in [4] for the T0O vector processor.
In all cases, loop transtformations like loop fission, strip min-
ing, reduction recognition or scalar erpansion [2] are per-
formed in order to increase the number of loops which can
be vectorized. However, complex techniques for analyzing
the source program are required.

Vectorization on basic block level

Due to the complex analysis, [12, 14] propose to perform the
vectorization on basic block level. Here, the parallelism is
increased by unrolling a loop n times. The loop unrolling
factor n can be determined for instance by the number of
parallel data paths of the processor. After that, instruc-
tions which can be executed as SIMD instructions are packed

into groups. The approach described in [16] makes use of
SIMD instructions in conjunction with the instruction se-
lection phase by formulating alternative covers of tree nodes
with processor instructions as an integer linear programming
problem. The disadvantage of this approach is the expected
high runtime for solving complex systems of equations for
large values of n. Thus, in [16] an unrolling factor between
1 and 3 is chosen, whereas in the case of the M3-DSP it
would be necessary to use a factor of 16. Vectorization on
basic block level by loop unrolling has the advantage that
the analysis is less complex compared to the classical vector-
ization method. However, applying this method bears a risk
of increasing code size for loops which cannot be vectorized.

The on-chip memory organization of the M3-DSP as a group
memory provides a high memory bandwidth and can poten-
tially speed-up the performance. But, due to the following
reasons, exploitation of SIMD instructions for the M3-DSP
is more complicated than for other processors:

e The on-chip group memory of the M3-DSP is parti-
tioned into several groups, each of them containing 16
data words. Thus, addressing one single data word
means to access that (partitioned) memory group the
addressed data word belongs to.

e The M3-DSP contains no separate vector and scalar
unit. For this reason, the SISD processing of scalar
data has to be done in the special data path (slice 0)
which is also used for SIMD processing.

Our vectorization strategy is based on the classical approach,
and can be performed without the use of special language
extensions. The communication with the code generator is
done by performing restrictions with respect to the avail-
able machine operation alternatives which can cover a spe-
cific GeLIR graph node. This entails further restrictions e.g.
with respect to the available register alternatives. The ad-
vantage is, that it is possible to make precise defaults by
preserving potential alternatives for example with respect
to register files.

Before starting the vectorization process all data transfers
which potentially can occur between two graph nodes are
inserted into the GellR data structure and an initial cover
of the GeLIR graph nodes with resource alternatives is gen-
erated. After that, those resource alternatives are automat-
ically eliminated whose selection would lead to an invalid
machine program. This concerns on the one hand the elim-
ination of invalid resource combinations of a specific graph
node and on the other hand the warranty of valid data trans-
fer paths between two data dependent graph nodes. After
this is done we employ the following vectorization strategy:

1. Compute an optimized address assignment of arrays
and scalar variables. Different arrays are stored in dif-
ferent memory groups whereby the elements of a spe-
cific array are stored in consecutive memory addresses.
Assigning scalar variables to memory groups is done by
a special partitioning method based on a genetic algo-
rithm that minimizes the number of memory accesses
[18].

2. Perform a loop detection in order to find potential can-
didates for vectorization. This involves the tasks of
finding the set of basic blocks in the loop, determining

the loop bounds as well as the increment of the loop
induction variable.

3. Determine dependencies between available array mem-
ory accesses in the loop by performing a §-array data
flow analysis [6]. After that, it is possible to decide
whether a vectorization will preserve the data flow de-
pendencies.

4. Check dependencies between scalar variables and ar-
ray accesses. If this analysis fails it is possible to per-
form additional loop transformations like loop fission
or scalar expansion to still enable vectorization.

5. Constrain the set of machine operation alternatives for
the GeLIR graph nodes which can be vectorized. Note
that this will usually also cause restrictions to other
resource alternatives.

For illustration of the vectorization optimization, consider
the following C source program, assuming arrays A and B

have a size of 64 elements:

for(i = 0; i < 64; i++)

{
x = A[i];
X = x + 2;
B[l] = X3
}

Figure 3 a) contains the (simplified) GeLIR code for our
example program. The for-loop is split into several parts
(relevant changes are marked bold). Existing operation al-
ternatives are given as comments next to the respective code
fragments®. Note that due to the group memory only an
SIMD operation alternative (SIMD_Load or SIMD_Store) is
given for each memory access. After performing the anal-
ysis mentioned above, it is recognized that this loop can
be vectorized. Thus, for instance the set of operation al-
ternatives for the first add-operation is restricted such that
only an SIMD_Add may be chosen to cover the expression (s.
figure 3 b)). Beside the restrictions of the machine opera-
tion alternatives, modifying the increment of the induction
variable (here: ¢) is also necessary. Now, with each loop it-
eration the induction variable ¢ is incremented by 16 instead
of 1. This leads to valid code because with each memory ac-
cess a group of 16 data elements is accessed and processed
in subsequent instructions. Now, there is only need for 4
loop iterations instead of 64.

4.2 Zero overhead hardware loops

In order to reduce the loop overhead, it is desirable to per-
form as many instructions as possible in zero overhead hard-
ware loops (ZOL). Strategies making use of ZOL can be par-
titioned into two sets, depending on whether this optimiza-
tion is performed before or after the code generation process
(e.g. [25, 21]). Usually, it is much easier to recognize loops
before performing code generation since the program code is
more structured. However, in this compilation phase there
is no knowledge about the final number of processor instruc-
tions to be embedded within the hardware loop.

2For a better representation other resources like registers
are not pictured.

\\if(t3) goto LOOP; /I {JNE}

(i=o0; //{SIMD_LDI,LDI} | (i = 0; /I {LDI} A = 0; /I {LDI}

zloop (4)
LOOP: LOOP: LOOP:
t1 = A[i]; //{SIMD_Load} €1 = a[i]; /{SIMD_Load} t1 = a[i]; //{SIMD_Load}
£2 = £1; /I { SIMD_DT, DT} £2 = t1; /{SIMD_DT} | |t2 = t1; //{SIMD_DT}
% = t2 + 2; /{SIMD_Add,Add} 'x = t2 + 2; /{SIMD_Add} | 'x = t2 + 2; //{SIMD_Add}
Bli] = x; //{SIMD_Store} Bli] = x; //{SIMD_Store}| |B[i] = x; //{SIMD_Store}
i=i+1; /{SIMD_Add,Add} |i =i + 16; //{Add} i= 1+ 16; //{Add}
t3 = i < 64; //{Compare} t3 = i < 64; //{Compare}

if (£3) goto LOOP; //{JINE}

zgoto LOOP;
\g

before vectorization
a)

after vectorization

using ZOL operations
b) c)

Figure 3: Loop optimizations: Vectorization and zero overhead hardware loops

In our case, the exploitation of zero overhead hardware loops
is performed before the code generation phase. After per-
forming loop detection, the number of iterations is deter-
mined with the help of the increment and the loop bounds,
if possible. If the number of iterations is greater than an ar-
chitecture specific limit, the use of a ZOL is not possible in
that way. In the other case two specific predefined GeLIR
operations (s. figure 3 c)) will be inserted into the inter-
mediate representation: First, this concerns the machine
operation zloop for initializing the hardware loop with the
number of loop iterations (here: 4). Second, the machine op-
eration zgoto is inserted which marks the end of the loop.
No further processor instructions are necessary for testing
the termination condition and modifying the loop counter.
Finally, after insertion of these specific loop operations, a
dead code elimination is performed, which eliminates the
redundant loop control code. In figure 3 c) this concerns
the conditional jump. At this point it is still possible that
the maximum number of processor instructions embedded
within the hardware loop exceeds the allowed size limit. In
this case, the GeLIR data structure enables the user to con-
tinue the optimization process from an earlier point of com-
pilation.

5. ENERGY AWARE CODE GENERATION

Due to the poor techniques for handling irregular proces-
sor architectures, the code generated by DSP compilers is
often insufficient with respect to execution time, code size,
and energy consumption. Since traditional techniques of-
ten perform a tree based code selection [26]. In contrast
to that, performing a graph based code selection offers an
immense optimization potential [3, 17]. In addition, tra-
ditional code selection techniques only achieve a restricted
phase coupling: Tree based code selection techniques gener-
ate optimal code for trees but this concerns only sequential
code which has to be compacted in a separate optimization
phase. In addition, the generated code does not contain spill
code® which is inserted by the register allocation step. Thus,
energy aware optimizations made in early code generation

3Spill code is necessary in order to move variables into the
memory locations if the available number of physical regis-

phases are potentially nullified in subsequent optimization
steps. For instance, the insertion of spill code in a separate
phase drastically changes the switching activities of succes-
sive instructions. For this reason, there is much unused op-
timization potential using a traditional tree based code se-
lection technique. However, performing a graph based code
selection and a phase coupled code generation means solving
a more complex problem. This makes the use of special op-
timization methods necessary which are capable of finding
optimal or near optimal solutions in a huge search space in
polynomial time.

Genetic algorithms (GAs) have proven to solve complex op-
timization problems by imitating the natural evolution pro-
cess (see e.g. [1, 11] for an overview). A population of a
GA consists of several individuals, each of them represent-
ing a potential solution of the optimization problem. The
representation of an individual is given by a chromosome
which is subdivided into genes. The genes are used to en-
code the variables of the optimization problem. This means
that finding a suitable combination of alleles (concrete val-
ues) for the genes is the same as finding good solutions of
the optimization problem.

It is a very important characteristic of genetic algorithms
that suitable gene material is passed to the subsequent gen-
erations. This permits to revise unfavorable decisions made
in a previous optimization phase. For this reason, genetic
algorithms are adequate for solving non-linear optimization
problems like phase coupled code generation.

In our case, the code generation process is subdivided into
the following steps:

1. Perform the subtasks of instruction scheduling (includ-
ing compaction), code selection and register allocation
simultaneously with respect to a given cost (or fitness)
function for each basic block of a function using the
genetic algorithm driven code generator (GCG) which
is described in more detail in [17].

2. Generate address code for each memory access sequence

ters is exceeded.

of a basic block by making maximal use of auto-increment

and auto-modify instructions which can be performed
in parallel to other machine operations.

3. Perform a compaction of the inserted address code
with respect to a given cost function using GCG.

In each step, the optimization first reads a given GeLIR data
structure and writes back a modified GeLIR data structure
after finishing the optimization.

The fitness function of a genetic algorithm represents the ob-
jective function of the underlying optimization problem and
thus has an essential impact on the optimization progress
of the genetic algorithm. Hence, GCG enables code genera-
tion according to different objectives by specifying a suitable
fitness function:

e Minimization of execution time can be done by count-
ing the number of execution cycles. A high number of
cycles corresponds to low fitness.

e Energy aware optimization is possible by computing
the energy consumption with respect to our instruction
level energy model for each individual.

Furthermore, energy aware optimizations can be performed
for given real-time constraints (e.g. maximum number of
execution cycles of a basic block) by adding a penalty for
every constraint violation. Thus, solutions not meeting the
constraints will be assigned a lower fitness than others.

6. EXPERIMENTAL RESULTS

In the following, experimental results for the loop optimiza-
tions vectorization and zero overhead hardware loops (ZOL)
as well as results of the energy aware code generator GCG
are presented. All presented data was generated using GCG
and the GeLIR simulator with the energy cost model of the
M3-DSP.

250
2 200
c M unoptimized
& 150 mZoL
2 Ovector
§ 100 1 O vector+ZOL
3 50 1 M vector+ZOL+GCG
o 4
L
&
&

Figure 4: Vectorization: Code size

The benchmarks are taken from the DSPstone benchmark
suite [27], with the existing pointer based memory accesses
converted into array accesses by the pointer conversion al-
gorithm described in [8]. In all cases, we present results for
a specific optimization technique by enabling this optimiza-
tion and comparing it with the unoptimized results. In order

= 140
£ 120 I
3
% 100 A M unoptimized
Q
8 a0 mZoL
Ovector
2 60
(E’ Ovector+ZOL
g 407 W ector+ZOL+GCG
® 20
g 5l
@(}e & \&e 00\(} c}./{o
& K S »
27 V) 3‘0
N ® &
Figure 5: Vectorization: Memory accesses
160
2 140 i
E 120 @ unoptimized
% 100 mZOL
>
© 80 Ovector
e 60 Dvector+ZOL
40 Biector+ZOL+GCG
T 20
0

N o G YV o
& & «© & &
> Qb I\ Sy
o+ 3 O S
el 3 §
o & S

Figure 6: Vectorization: Execution cycles

to show the impact of the energy optimization performed in
GCG all energy optimized results are marked by the suffix
GCG. The runtime of the whole compilation process lies be-
tween 47 seconds for the n_real updates and 210 seconds
for the 1ms benchmarks. For a better representation, the op-
timization results are given in relation to the unoptimized
case (= 100%).

Results for benchmarks which were vectorized by our com-
piler are presented in figures 4 to 7. The benchmarks com-
prise the example program given in section 4, the n_real -
updates and the lms benchmark which can be vectorized
without additional loop transformations. In order to vec-
torize the dot_product® benchmark, we first applied a re-
duction recognition loop transformation.

The results for the example, n_real updates and 1ms bench-
mark demonstrate the huge optimization potential for vec-
torization. Thus, for instance the energy consumption is
reduced by 94% for the example and n_real_updates rou-
tines, and by 49% for the lms routine. Results for the
dot_product benchmarks show the overhead caused by the
reduction recognition loop transformation. However, in the
case of the dot_product_16 benchmark, the subsequent vec-
torization and ZOL leads to an improvement with respect to

“The appendix (2 and 16) given by these benchmarks reflects
the number of array elements to be processed.

2 180
< 160
§ 140
= @ unoptimized
g 120 mZOoL
2 100 A
S 80 O vector
2 60 1 O vector+ZOL
g 401 B vector+ZOL+GCG
c
S 20
e 0+
@ 3 % v o
é&\ 2 N R c}.'/\
& K S N
& SN
o> ® &§

Figure 7: Vectorization: Energy consumption

80 A [unoptimized
mZOoL
40 1 OZOL+GCG

rel. #exec. cycles in %
[o)]
o

Figure 8: ZOL: Execution cycles

the optimization criterions memory accesses, execution time
and energy consumption. The use of GCG (vector+ZOL-
+GCG) leads to a further improvement of 4% on average.

In figure 8 and 9, results for ZOL are given for those bench-
marks which cannot be vectorized by our compiler.

The number of execution cycles by making use of ZOL is
reduced by 16% to 25% for these benchmarks. This trend
is also confirmed with respect to energy consumption (c.f.
figure 9). In addition, our energy aware code generator
(ZOL+GCG) can reduce the already optimized energy con-
sumption by an average of 5% compared to the results by
using only ZOL. The code size is reduced on average by 7%,
whereas the number of memory accesses did not change for
these benchmarks.

7. CONCLUSIONS

The growing use of DSPs in embedded systems necessitates
optimizing compilers supporting special hardware features.
The organization of the M3-DSP on-chip memory as group
memory provides a high memory bandwidth, but makes ex-
ploitation of SIMD capabilities more complicated compared
to other processors. Apart from the traditional optimiza-
tion goals of minimizing execution time and code size, low
energy is also an important criterion today. In this paper we
have presented loop optimizations for exploitation of SIMD

E unoptimized
mZOoL
OZOL+GCG

rel. energy consumption in %

Figure 9: ZOL: Energy consumption

instructions and for zero overhead hardware loops with the
goal of minimizing the execution time and the energy con-
sumption of embedded applications. In addition, we pro-
posed a phase coupled code generator (GCG) based on a
genetic algorithm. Due to an integrated instruction level
energy cost model, GCG is capable of performing an energy
aware instruction selection and scheduling.

Results show that our optimizations can drastically improve
the code quality. Thus, for the vectorized benchmarks the
total energy consumption is reduced by 42% on average and
for the other benchmarks by 19% on average.

However, up to now vectorization can be performed only for
a few benchmarks. For this reason, future work will deal
with extending the number of programs which can be vec-
torized by our compiler.

All techniques are integrated into a common compiler frame-
work which allows adaptations of the presented techniques
for other processor architectures in an easy way.

8. ACKNOWLEDGMENTS

The authors would like to thank Martin Horst for his work
made in the diploma thesis concerning the loop optimiza-
tions.

9. ADDITIONAL AUTHORS

Additional author: Rainer Leupers (Integrated Systems for
Signal Processing, Aachen University of Technology, email:
leupers@iss.rwth-aachen.de)

10. REFERENCES

[1] T. Back. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, 1996.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
Transformations for High-Performance Computing.
ACM Computing Surveys, 26(4), Dec. 1994.

[3] S. Bashford and R. Leupers. Constraint driven Code
Selection for Fixed-Point DSPs. In 36th Design
Automation Conference (DAC), 1999.

[4] D. J. DeVries. A Vectorizing SUIF Compiler. PhD
thesis, University of Toronto, June 1997.

[6] T. Driager and G. Fettweis. Energy Savings with
Appropriate Interconnection Networks in Parallel

[6]

[7]

(8]

[10]

[15]

[16]

[17]

[18]

[19]

[20]

DSP. In 3. Workshop zum DFG-Verbundprojekt
”Grundlagen und Verfahren verlustarmer
Informationsverarbeitung VIVA”, Chemnitz, 2002.
E. Duesterwald, R. Gupta, and M. Soffa. A Practical
Data Flow Framework for Array Reference Analysis
and its Use in Optimizations. In Proceedings of
SIGPLAN Conference on Programming Languages
Design and Implementation, pages 68—77, June 1993.
G. Fettweis, M. Weiss, W. Drescher, U. Walther,

F. Engel, and S. Kobayashi. Breaking new grounds
over 3000 MOPS: A broadband mobile multimedia
modem DSP. In Proc. of ICSPAT’98, pages
1547-1551, Toronto, Canada, 1998.

B. Franke and M. O’Boyle. Towards Automatic
Parallelisation for Multi-Processor DSPs. In Workshop
on Software & Compilers for Embedded Systems
SCOPES, 2001.

Generic Low Level Intermediate Representation
(GeLIR).
1s12-www.cs.uni-dortmund.de/research/gelir/.

A. Hoffmann, T. Kogel, A. Nohl, G. Braun,

O. Schliebusch, O. Wahlen, A. Wieferink, and

H. Meyr. A Novel Methodology for the Design of
Application-Specific Instruction-Set Processors
(ASIPs) Using a Machine Description Language. In
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 1338 — 1354,
2001.

J. H. Holland. Adaption in Natural and Artificial
Systems. MIT Press, 1992.

A. Krall. Compilation Techniques for Multimedia
Extensions. In International Journal of Parallel
Programming, volume 28, 2000.

LANCE2.
http://1s12-www.informatik.uni-dortmund.de/lance/.
S. Larsen and S. Amarasinghe. Exploiting Superword
Level Parallelism with Multimedia Instruction Sets. In
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation,
Vancouver, Canada, 2000.

R. Leupers. Code Optimization Techniques for
Embedded Processors. Kluwer Academic Publishers,
Boston, 2000.

R. Leupers. Code Selection for Media Processors with
SIMD Instructions. In Design Automation and Test in
Europe (DATE), 2000.

M. Lorenz, T. Drager, R. Leupers, P. Marwedel, and
G. P. Fettweis. Low-Energy DSP Code Generation
Using a Genetic Algorithm. In Proceedings of the
IEEE International Conference on Computer Design
2001, Austin, Texas, 2001.

M. Lorenz, D. Kottmann, S. Bashford, R. Leupers,
and P. Marwedel. Optimized Address Assignment for
DSPs with SIMD Memory Accesses. In Asia and
South Pacific Design Automation Conference,
Yokohama, Japan, 2001.

R. Manniesing, I. Karkowski, and H. Corporaal.
Automatic SIMD Parallelization of Embedded
Applications Based on Pattern Recognition. In 6th
International Euro-Par Conference, Munich, pages
349-356, 2000.

Philips Semiconductors. www.trimedia.philips.com,

[21]

2000.

J. Sias, H. Hunter, and W. Hwu. Enhancing loop
buffering of media and telecommunications
applications using low-overhead predications. In
Proceedings of the 34th Annual International
Symposium on Microarchitecture, December 2001.

N. Sreraman and R. Govindarajan. A Vectorizing
Compiler for Multimedia Extensions. In International
Journal of Parallel Programming, 2000.

Texas Instruments. www.ti.com/sc/c6x, 2000.

V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of
Embedded Software: A First Step towards Software
Power Minimization. In Transactions on VLSI
Systems. IEEE, December 1994.

G.-R. Uh, Y. Wang, D. Whalley, S. Jinturkar,

C. Burns, and V. Cao. Effective Exploitation of a Zero
Overhead Loop Buffer. In Proceedings of Workshop on
Languages, Compilers, and Tools for Embedded
Systems, pages 10-19, May 1999.

R. Wilhelm and D. Maurer. Compiler Design. Addison
Wesley, 1995.

V. Zivojnovic, J. M. Velarde, C. Schldger, and

H. Meyr. DSPstone - A DSP-oriented Benchmarking
Methodology. In International Conference on Signal
Processing Applications and Technology (ICSPAT),
1994.

