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Abstract

One important problem in code generation for embed-
ded processors is the design of efficient compilers for ASIPs
with application specific architectures. Network processors
are highly optimized on special applications. A distinctive
feature of network processors are additional instructions for
fast protocol analysis and processing. Many protocols in
telecommunication frequently make use of bit-stream ori-
ented data formats. The corresponding bit-streams consist
of packets of different length. The number of ASIPs which
support subword level instructions to accelerate protocol
processing is growing. In this paper we will show a novel
code generation technique to identify subword-level opera-
tions. Furthernore we will show a fast algorithm to find an
optimal instruction selection on subword-level instruction
for a tree-based data-flow. In our results we will outline that
the difference to hand optimized code is rather low on prac-
tical benchmarks. The compiler is in an early working stage
and first experimental results indicate that C-level program-
ming of the ASIP leads to good code quality without the
need for time-consuming assembly programming.

1 Introduction

For modern general purpose processors most of the soft-
ware development work is done in high-level languages
(HLLs). High-level languages are platform independent,
therefore software is portable between different architec-
tures at low cost. The GNU C compiler for example sup-
ports nearly 100 different architectures and operating sys-
tems [1, 2]. Many software projects can be ported between
different platforms simply by re-compiling them. The avail-
ability of compilers is a main feature of a general purpose
system. Therefore compilers are often assisted by proces-
sor features, e. g. the instruction set of the Intel Pentium

processor family supports function frame construction and
destruction by the instruction set [3]. In other words the ma-
chine language supports the semantic of the high level lan-
guage. Because development of compilers and processors
goes hand in hand, the availability of compilers for such
systems is very high. If an application is developed in a high
level language once, it can easily be ported to another plat-
form. If the software contains hardware dependent code,
in most cases, only minor changes will be needed. An ex-
ample for portable software is the Linux operating system.
Many applications are portable between different architec-
tures supported by Linux simply by re-compiling the source
of the application.

Contrary to general purpose processors there are appli-
cation specific processors (ASIPs). These processors are
optimized for a special application class which gives ad-
vantages in speed, power consumption and/or price. Digital
signal processors (DSPs) are optimized to process discrete
mathematical algorithms in real-time. A DSP is equipped
with special data paths, instruction sets and peripheral units.
For example the Micronas DSP MAS 3509F is optimized to
a single application, MPEG 2 audio layer decoding [4].

However compilers for such ASIPs have been success-
fully developed for many years. Specific optimizations fo-
cus on irregular data paths [5, 6, 7, 8, 9], address code op-
timization for DSPs [10, 11, 12, 13], and exploitation of
multimedia instruction sets [14, 15, 16]. Experiments have
shown that such highly machine-specific techniques are a
promising approach to generate high-quality machine code,
whose quality often comes close to hand-written assembly
code. Naturally, at the cost of increased compilation time in
most cases.

However, there are other important classes of ASIPs
other than DSPs where so far tool support is relatively
low. ASIPs for bit-serial protocol processing, which are
calledNetwork Processors(NPs) are used to process high
speed communication protocols. Network processors are
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designed to be used in devices such as routers and switches
for IP traffic as well as in telecommunication (e. g. ISDN
and xDSL). A major system design problem in this area is
that the required high bandwidth leaves only a very short
time frame (as low as a few nanoseconds) for processing
each bit packet arriving at a network node [17]. Even con-
temporary high-end programmable processors can hardly
keep pace with the required real-time performance, not to
mention the issue of computational efficiency, with respect
to power consumption. In [17] it is outlined that for packet
handling in high speed networks only a small time frame
exists. Even at the highest CPU cycle rates only a few in-
structions can be executed per packet. For instance a 1 GHz
processor applied to a 10 GBit core router can only execute
10 to 50 machine instructions per packet.

Because the instruction set of an ASIP is completely con-
structed for a single application domain, its high-level lan-
guage support is usually low. The instruction-set of an ASIP
very often contains assembly commands of such a high
complexity that a number of HLL-instructions are needed to
describe them. An example for such machine instructions is
the support ofbit-packets. Serial communication protocols
mostly employ bitstream-oriented data formats. The bit-
streams consist ofpacketsof different length, i.e. there are
variable length header packets and (typically longer) pay-
load packets. Typical packet processing requirements in-
clude decoding, compression, encryption, or routing.

For a compiler, there are two different ways to handle
this difficulty: The complexity of the HLL can be enhanced.
For this purpose, application domain specific instructions
are added. For example in [18] this technique is used to
handle bit-packed addressing from C. The disadvantage of
this solution is, that the code reusability is very restricted.
Another way is to apply algorithms to the compiler to match
the behavior of the ASIP instruction set to a HLL program.
The advantage of the second way is that the HLL is un-
changed and therefore a main part of the software may stay
unchanged if it needs to be ported to another system. More-
over, the developer of the HLL software needs less knowl-
edge about the internal behavior of the target processor. The
information about the customized hardware of the ASIP is
transfered from the HLL into the compiler. Of course such
a compiler is often hand tailored to a special processor and
is in itself not easy retargetable. In this paper, we focus on
a compiler technique to support bit-packet addressing. We
will illustrate this technique on samples taken from GSM-
kernel of the TU-Berlin [19].

We implemented the algorithm for the instruction set of
the Infineon NP network processor [20]. Figure 1 shows
a block diagram of the NP. The NP processor supports in-
structions which allow subword access, e. g. move, load and
storage ofbit packets, for high efficient protocol processing
code. The NP instruction set permits the performance of

Code NP core

Port

RAM

Buffer I/O

Figure 1. Infineon NP architecture

these operations on bit packets not aligned at the processor
word boundaries. A packet may be stored in any bit index
subrange of a register.

In order to enable packet-level addressing of unaligned
data, the NP instruction set permits the specification of off-
sets and operand lengths. The general instruction format is
as follows:

CMD addr1.offset, addr2.offset, width

Code selectors based on integer size data-flow analysis
make only rare use of this class of instructions. The aim
of this paper is that we show a fast algorithm to detect bit-
packet operations. In a post-pass phase we will insert bit-
packet instructions into the source code which make numer-
ous instructions obsolete. A following dead-code elimina-
tion phase will remove them.

We implemented an experimental version of this opti-
mization and integrated it into an existing fully functional
compiler for a Infineon NP network processor. We bench-
marked our compiler with small program fragments. We
also compared the resulting code with hand-optimized code.

The remainder of the paper will be structured as follows:
In Section 2 we will give an overview of the used algo-
rithms. In Section 3 we describe our implementation and
its location in the existing compiler. In section 4 we present
our results and in section 5 we outline our conclusions and
describe ideas for further work.

2 Algorithm Outline

2.1 Bit-level data-flow analysis and bit-value in-
ference

A given HLL program can be represented as a Data-
Flow Graph (DFG). A DFG contains all load, store, move
and data-manipulating operations, but no control-flow re-
lated aspects. A DFG is defined as a directed acyclic graph
G = (V;E), where each node represents an input, output
or an opration. Each edge represents a definition-use (DEF-
USE) dependency.

A standard representation for the dependencies between
statement are DEF-USE chains. DEF-USE chains can be
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directly derived from the DFG [21]. Each machine opera-
tion of an instruction set should be defined as an instruction
name and it’s parameters. A parameter of an instruction has
one of the following possibilities: a constant number, the
definition of a register content (DEF), the usage of a regis-
ter content (USE), or both – the instruction uses and defines
the same register parameter (USEDEF).

Related to the DFG each used operand of a machine in-
struction may have one or multiple definitions and each def-
inition of an operand may have one or multiple uses. In
very unusual cases a USE without a DEF can happen, if
side-effects are used: for instance a push of any register is
used to increment the stack-pointer. Many instruction sets
contain implicit operands, e. g. flag manipulation with an
addition. If an instruction contains only definitions which
are never used, then the instruction is dead and can be re-
moved from the program. DEF-USE chains are working on
whole registers, i. e. DEF-USE dependencies are calculated
on the full register bit-width. In many cases the results are
suboptimal. Figure 2 shows an example where the fact that
variablea does not affect the calculation ofc would not be
detected by the ’DEF-USE chain’-approach.

a = (� p1 & 0 x0F ) ;
b = (� p2 & 0 xF0 )j 0 x0F ;
c = a j b ;

Figure 2. Bitoriented data-flow

An exact bit-level data-flow analysis would give a much
better result. In recent years this fact has been analyzed
in different works. Yasuura, Tomiyama and Inoue did an
analysis of the required register-bank bit-width for a given
application [22]. If we expect that on a special ASIP only a
single application is executed and we can calculate the com-
plete bit-true data-flow of the application further, it is possi-
ble to reduce the size of the used data-types. Therefore the
power consumption of the CPU data-paths and operational
units can be reduced. However this approach interacts with
the user to determine the type information. In this paper we
will focus on algorithms without user interference.

Tool-based analysis is done in other work on bit-level
data-flow analysis. Brooks and Martonosi [24] who re-
placed the types of variables, from integer to short to im-
prove speed and to reduce the power consumption of a Pen-
tium MMX processor. Also impressive results are shown
from Budiu and Goldstein [25]. They pointed out that 20 %
of all most significant bits of MediaBench and SpecINT95
are calculated unnecessarily. In both approaches a bit-value
lattice is used. The order of the lattice is the information
content of a bit. The elements are:U for no information,
0 and1 if a bit is a constant andX for don’t care, if the

value of a bit does not change the result of the operation.
These elements form a lattice (Figure 3). Bit-value lattices
are extended to strings by concatenation.

U

0 1

X

Figure 3. Lattice by Budiu and Goldstein

We will extend the bit-value inference approach by
adding another two elements to the lattice:hUni, the con-
tent is unknown but we know the locationand h �Uni, the
content is unknown but we know it is the negation of a given
location. Figure 4 shows our latticeL. The lattice forms the
following semi order:

hUi � hUni � h �Uni � h0i � h1i � hXi

X is the top element (>) andU the bottom element of
the lattice. This lattice gives us more information than the
version from [25]. We will not give formal proof here, but
a practical explanation later. Additionally, we need the lo-
cation information later for the code selection phase in our
compiler.

U U

U

0 1

X

n n

Figure 4. Extended lattice

The bit-inference is coupled to the edges. For data-flow
analysis we need to calculate how an operation changes the
information content of a bit (or a string of bits). There-
fore we define two transfer functions for each machine op-
eration. One transfer function in the direction of the edges
(#) which give more information about the result of an op-
eration (the defined parameters of a machine instruction)
and one transfer function opposite to the direction of the
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edges ("), which enhances the operators or used parame-
ters. Figure 5 gives an example of a transfer function. To
get as much information from the DFG as possible we need
to walk along the edges until we reach a fix-point, where
we cannott add information to the graph. For a loop-free
DFG this is reached after each edge is changed by a single
walk-down and walk-up. However, even for nested loops
the information about the bit-content can only be improved
four times, because our lattice grid has a height of four
(jLj = 4)). Therefore in the worst casejLj � 2 changes
will be needed until we cannot add any more information to
a bit. We call this the fix-point. AfterjLj � 2 � jEj iterations
any lattice-bit reaches the top element (>). To meet this low
complexity we accept only changes where at least a single
bit in the DFG enhances its information content. Otherwise
it would be possible to construct a DFG where the analysis
does not terminate. Figure 7 shows a simple Example for a
DFG and figure 6 shows the corresponding C program.

# hXi h1i h0i hUni h �Uni hUi
hXi hXi
h1i h1i h1i h1i h1i h1i
h0i h1i h0i hUni h �Uni hUi
hUni h1i hUni hUni h1i hUi
h �Uni h1i h �Uni h1i h �Uni hUi
hUi h1i hUi hUi hUi hUi

Figure 5. Transfer-function (#) of an OR-Operation
in the domain ofL

a = ( b & 0 x0F ) ;

Figure 6. Simple DFG example

X X X X 1 1 1 1
1 1 1 10 0 00

0 0 00

3 2 1 0a a a a0 000

&3 2 1 0a a a a
a 5 4 3 2 1 0a a a a a a6a7

3 2 1 0a a a a0 000
#

"

#

"

#

"

a 0x0F

Figure 7. DFG representation of fig. 6

In the worst case, for a stringS of bits with a length of
jSj a change can happen to a single bit only once at each
iteration. A change is only valid to a graph if at least a
single edge enhances its information content. In worst case
a walk over all edges enhances each time a single bit in
a single edge. That means the algorithm walks along the
edgesjLj � jSj � 2 � jEj2 times till a fix-point solution is

found, which gives a complexity ofO(n2) wheren is the
number of the edges. We will use the information we get
from a bit-true data-flow analysis later to enhance the code
quality of a given instruction sequence.

2.2 Code selection

Code selection uses the data-flow analysis information of
a Basic Block (BB) [23], where a BB is a sequence of state-
ments with one entry and one exit point. Figure 8 shows a
BB of C-statements and figure 9 the appropriate DFG.

a = � p + 4 ;
b = a � 3 ;
c = a � 7 ;

Figure 8. C example for a basic block

p

Load

4

+

3

**

7

Figure 9. Example DFG

Each machine operation of a given instruction set can be
considered a small pattern. Code selection can be conceived
as a complete coverage of a DFG with instruction pattern.
This code selection technique is calledpattern matching.
Optimal pattern matching on graphs is NP-hard [26]. The
common solution for this problem is to break up the graph
into a forest of trees and to perform the pattern matching on
each tree separately. Figure 10 shows the resulting trees for
the above example. Ideal tree pattern matching can be done
in linear time to the number of nodes and a constant factor
given by the grammar definition, but may cause additional
machine instructions compared to ideal graph based code-
selection. However, for existing homogenous machines, the
code quality is similar.
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Figure 10. Decomposed forest of data-flow trees

In this paper we use theiburg tree parser generator [27,
28]. The iburg-toolset produces from an extended Backus-
Naur grammar specification a tree-parser C source code as
output. Figure 11 shows a short form example of an iburg
grammar.

The tree-pattern matching algorithm is based on two
phases: A bottom-up phase, where for each node all pos-
sible match patterns are calculated. For each node iburg
is calculating the covering at minimum cost. The second
phase is top-down, where the machine code is emitted. Ev-
ery node of the tree is visited twice by the algorithm. There-
fore the complexity is linear to the number of nodes and
a constant factor given by the grammar. In this paper we
will use tree-pattern matching to post-optimize the assem-
bly output of our compiler.

2.3 Ertl’s tree-pattern matching grammar-
composition for free arithmetical simplifica-
tion

Ertl shows in [29] that optimizations can be for free if
a given tree-pattern matching grammar is extended by ad-
ditional non-terminals and the according rules. The artifice
behind this is that an operation is not emitted in place, but
remembered by an additional non-terminal. Because other
operations on the way up the tree may make the operation
obsolete or can do the same computation with less costs.
The example in figure 12 shows an Ertl composition. Rules
4 to 7 are the necessary rules to match Negation, the And
and the Or expressions ( ˜ , &,j ). Rules 8 to 13 are an Ertel
composition. Where rules 8 and 13 remember the bitwise
negation of a register for later application in the additional
non-terminalnegreg. Rules 8 and 9 proceed the negation
by transforming anegreginto a reg and vice-versa. At this
point they are not effected by our grammar extension be-

cause rules 8 and 11 are exactly equivalent to rule 5 and
also rules 9 and 10 are equivalent to 5. But rules 12 and
13 developDe Morgan’s Theorem(Equation 1) as an op-
timization to the grammar. Equation 2 is an example for
an application of rule 12. And equation 3 applies rule 13.
Another application of rule 13 is equation 4.

Figure 13 outlines a data-flow tree which is covered by
usage of rule 13. On the left hand side a standard gram-
mar needs the cost of twice the rule 5 and once the rule 6,
which gives overall cost of 3. On the right hand side rules
8, 9, 11 and 12 are used which gives costs of 2, because
rules 8 and 9 are for free. Figure 14 displays the resulting
asm-code with and without usage of the Ertl composition
in Figure 12 which saves one of three machine operations.
Ertl [29] also shows examples for advanced constant fold-
ing, flag optimization and optimization of unary operators.
In some cases Ertl gives some impressive results of 50%
code-size reduction for small trees.

a _ b = �a ^ �b

a ^ b = �a _ �b (1)

�a _ �b = �a _ �b=��a ^ ��b=a ^ b (2)

�a ^ �b = �a ^ �b=��a _ ��b=a _ b (3)

�a ^ b = ��a _ �b = a _ �b (4)

a

b

&

~

~

a

b

&

~

~

reg=NEG(reg1)

reg=NEG(reg1)

reg=AND(reg1,reg2)

negreg=NEG(reg1)

negreg=reg1

reg=NEG(negreg1)

negreg=AND(negreg1,negreg2)

Figure 13. Tree pattern matching using standard
grammar (left) and standard grammar extended by
Ertl’s composition (right)

2.4 Dynamic cost functions

To force a selection between a number of rules which
match to the same pattern in run-time. iburg allowsdynamic
cost functions. Till now we assumed the cost of a pattern to
be constant. But iburg allows the costs of a pattern to be
calculated. Hence the costs of a pattern can be dependent
on it’s parameters.

5



#No non�t e r m i n a l : P r o d u c t i o n # Cost # Assembly
1 reg : Load ( reg1 ) # 1# LD R�d e s t , �R�s o u r c e
2 reg : Add ( reg1 , c o n s t ) # 1# Add R�d e s t ,R�s o u r c e , c o n s t
3 reg : Mul ( reg1 , c o n s t ) # 1# Mul R�d e s t ,R�s o u r c e , c o n s t

Figure 11. Example of a short-form tree-parsing grammar

#No non�t e r m i n a l : P r o d u c t i o n # Cost # Assembly
4 reg : REG # 0 #
5 reg : NEG( reg1 ) # 1 # NEG( reg , reg1 )
6 reg : AND( reg1 , reg2 ) # 1 # AND( reg , reg1 , reg2 )
7 reg : OR( reg1 , reg2 ) # 1 # OR( reg , reg1 , reg2 )

# E r t l compos i t i on
8 negreg : NEG( reg1 ) # 0 #
9 reg : NEG( n o t r e g 1 ) # 0 #

10 negreg : reg1 # 1 # NEG( negreg , reg1 )
11 reg : n o t r e g 1 # 1 # NEG( reg , negreg1 )
12 negreg : AND( n o t r e g 1 , n o t r e g 2 ) # 1 # OR( negreg , negreg1 , negreg2 )
13 negreg : OR( n o t r e g 1 , n o t r e g 2 ) # 1 # AND( negreg , negreg1 , negreg2 )

Figure 12. Example of a short-form tree-parsing grammar

#No non�t e r m i n a l : P r o d u c t i o n # Cost # Assembly
14 reg : OR( reg1 , reg2 ) #( reg1 ==0j j reg2 ==0)?0:1; #
15 reg : OR( reg1 , reg2 ) # 1 # OR( reg1 , reg2 )

Figure 15. Example of a dynamic cost function
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NEG(R1 , a ) NEG( R1 , b )
AND(R2 , R1 , b ) OR( R2 , a , R1 )
NEG(R3 , R2 )

Figure 14. Resulting assembly code of the DFT (fig-
ure 13) using standard grammar (left) and grammar
extended by Ertl’s composition (right)

Figure 15 shows a constant folding example. If one pa-
rameter of the Or-operation is equal to zero the pattern 14
with no code emission is selected, but if both parameters are
unequal to zero the pattern 15 is chosen. Of course, this is
only a simple example for dynamic cost-functions. In sec-
tion 2.5 we will use much more advanced functions.

2.5 Bit-packet detection and integer size instruc-
tion substitution

In this section we outline how extended bit-level data-
flow analysis, Ertl’s composition on tree-pattern matching
and dynamic cost-functions work together in an algorithm
to find a replacement for a given sequence of statements by
a special bit-packet operation.

We assume that all parameters and the result (all edges)
of a pattern are labeled with a lattice-string of a previ-
ous data-flow analysis. We introduce the following non-
terminals to distinguish between three different types of pa-
rameters:

bf: A Bit-Field, the parameter contains a number of con-
secutive bits of a source (a register). All other
bits of the parameter are constant ordon’t care
(hXi; h0i; h1i).

conBF: The parameter can be assumed as a concatenation
of two bit-fields or the insertion of a bit-field into an
integer. The result is a register which contains a bit-
field and the remaining part of the integer.

reg: A Register can be assumed as an complete integer with
any value including the other two cases.

To detect these non-terminals we define two functions
which will be used in dynamic cost-functions:isBF(reg)
which returnstrue if the register is a bit-field andis-
ConBF(reg)which returnstrue if the register is a concate-
nation of two bit-fields as it is defined above.

Figure 16 illustrates a part of a tree-pattern matching
grammar which detects a bit-field insertion into an inte-
ger. Rules 16, 17 and 18 match the isolation of the bit-field
and remembers the bit-field in thebf non-terminal. Rule 19
gives an example for the insertion of a bit-field into an in-
teger. To enhance code quality ”no code” is emitted in this

t 1 = ( a & 1)<<3;
t 2 = t 1 j ( ( uns igned ) b>> 5) ;
t 3 = t 2 << 3;
t 4 = ( ( uns igned ) b>> 2) & 7 ;
r = t 3 j t 4 ;

Figure 17. C-example for bit-packet insertion

AND ( t 1 , a , 1 )
SHL ( t 1 , t 1 , 3 ) ; t 1 = ( a & 1)<<3

SHR ( t 2 , b , 5 )
AND ( t 2 , t 2 , 0 x7 ) ; ( ( uns igned ) b>> 5)

OR ( t 2 , t 1 , t 2 ) ; t 2 = t 1j ( ( uns igned ) b>>5)
SHL ( t 3 , t 2 , 3 ) ; t 3 = t 2<< 3

SHR ( t 2 , b , 2 )
AND ( t 2 , t 2 , 0 x7 ) ; ( ( uns igned ) b>> 2) & 7

OR ( r , t 3 , t 4 ) ; r = t 3 j t 4

Figure 18. Assembly-code example for bit-packet in-
sertion

rule. If the result is needed somewhere, as a register, rule 20
would be activated where a bit-field move instruction is in-
serted into the assembly code.

Figure 17 shows a typical bit-packet insertion in ANSI-
C. The resulting assembly-code is outlined in figure 18. If
we use a bit-true data-flow analysis we detect that the result
r is built from 3 bit-packets: the constant 0 at position 7,
the bit-packeta0 at position 6 and the bit-packetb7 : : : b2
at position5 : : : 0. Therfore only 3 operations (instant of 9)
are needed:r needs to be set to the constant, the insertion
of a0 and the insertion ofb7 : : : b2.

Figure 19 outlines the data-flow analysis.

3 Implementation

To test our optimization we extent the already existing
Infineon NP C compilerdescribed in [18] with our opti-
mization. Like almost all compilers our compiler is sub-
divided into a frontend and a backend. As a frontend, we
use the LANCE compiler system developed at the Univer-
sity of Dortmund. This front-end is widely device indepen-
dent and is used in many compiler projects [30]. Our back-
end, build on a widely retargetable tool-suite, is described in
[31]. Because our backend is based on an intermediate rep-
resentation, where tools like code-selection, optimizations
and register-allocation are used as plug-ins, we are easily
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#No non�t e r m i n a l : P r o d u c t i o n # Cost # Assembly
16 bp : reg # 0 #
17 bp : AND( bp , c o n s t ) # ( isBF ( bp ) ) ? 0 :1; #
18 bp : SHL( bp , c o n s t ) # 0 #
19 conBP : OR( bp , bp ) # ( isConBF ( conBP ) ) ? 0 :1; #
20 reg : conBP # 1 # movBP ( reg , s r c 1 , o f f 1 , s r c 2 , o f f 2 , w id th )

Figure 16. Part of a tree-pattern matching grammar to detect bit-packet operations
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Figure 19. DFT representation and two coverings

able to integrate a new optimization. Our optimization uses
the intermediate representation and the processor descrip-
tion provided by the tool-set as interface. Therefore we be-
lieve that it is retargetable with low expenses to any archi-
tecture which supports bit-packet operations. We placed the
optimization into the loop of pre-pass optimizations before
the register allocation because it lowers the register-pressure
(Figure 20). The advantage of this location is that the code
for the address-generation is visible, because it is located
after the code-generation phase. Further more there is no
need for a real replace of obsolete code. The bit-packed
operations are inserted into the assembly code and after-
wards an already implemented dead-code elimination re-
moves the obsolete code. Our optimization also profits from
the previous running backend-optimizations which simplify
the data-flow of a given assembly program.

The implementation of our optimization is only exper-
imental. We noticed that especially the grammar for tree-
pattern matching needs to be extended to detect a high per-
centage of bit-packet transfers in larger benchmarks.

4 Results

For benchmarking of our optimization we used an exist-
ing compiler where we plugged-in an additional optimiza-

Frontend Code Selector Standard Optimizations

Insertion of Bit−Packet Instructions

Register Allocation Standard Optimizations

Assembly Output

Figure 20. Location of our optimization in the Infi-
neon NP C compiler

tion. Therefore we saved time for implementation. On the
other hand we had the problem that the interface to the
intermediate representation is not optimized to our needs.
For example the insertion of bit-packets is the only tool
in the compiler where a bit-oriented data-flow analysis is
used. This may cause new problems in the compiler back-
end. For instance, the insertion of bit-oriented instructions
may knock-out existing, integer based optimizations. In our
test-cases the insertion of bit-packet operations enhances
the code quality notedly, but we notice that the effort is low-
ered by the impeding of existing tools.

To create results we compared three cases: Compila-
tion with the existing compiler, Compilation with additional
use of Bit-Packet Operation Insertion and Hand-optimizing
of compiler generated code. We decide to generate no
code completely by hand. Even hand-optimizing small
code fragments is extremely expensive. Therefore, at this
early stage, we only present five small code examples. The
benchmarks are created from fragments of the GSM-kernel
source code [19]:

ins1 Encoding: insertion of bit-packets smaller than an in-
teger into an existing stream.

ins2 Encoding: insertion of bit-packets overlapping an in-
teger

extr1 Decoding: Extraction of bit-packets from a stream
into an integer

extr2 Decoding: Extraction from overlapping integers
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mem Bit-packet memory to memory data-transfers

The following table shows the benefit of Bit-Packet Op-
eration Insertion and Hand-optimized code as different to
the compiler with-out Bit-Packet Operation Insertion in per-
centage of cycles.

Name Bit-Packet Insertion Hand-optimized Code
ins1 -12% -15%
ins2 -8% -19%

extr1 -15% -27%
extr2 -8% -22%
mem -14% -45%

Figure 21. Benefit in percentage of cycles

5 Conclusion and further work

In previous work we showed that Bit-Packet operations
can be supported by a compiler usingCompiler Known
Functionsor Compiler Intrinsics. In this paper we showed
that an automatic approach without user interaction. Adopt-
ing and extending known techniques we found a fast solu-
tion to detect Bit-Packet operations in a program data-flow.

First experimental results give an impression of the pos-
sibility to enhance the code quality of a compiler if the com-
plete instruction set is supported. In opposite to [18] the al-
gorithm outlined in this paper is usable for retargetable code
with no machine specific compiler intrinsics. However our
results also show that the code quality of the compiler can
still be improved and that hand-optimized code saves 50 %
more execution time than our optimization.

In further work we will enhance our tree-pattern match-
ing grammar to detect a higher rate of bit-packed opera-
tions. We will also support the full instruction set of the
processor which will enhance the code quality. Further-
more we will analyze the impact of the inserted bit-packed
operations to other existing optimizations like pipe-hole op-
timization in order to close the gap to hand-optimized code.
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