RaVi: Interactive visualization of information system dynamics
using a Java-based schematic editor and simulator

Peter Marwedel, Khac Dung Cong, Sergej Schwenk*

I. INTRODUCTION

One of the key limitations of traditional media, e.g.
books, for teaching is their lack of visualizing the dynamic
behavior of systems. Videos tapes and video distribution
techniques have made it possible to show non-interactive
media elements to students. However, one of the key ad-
vantages of multimedia systems over traditional media is
their potential of providing interactiveness. This interac-
tiveness, however, is not easy to obtain, since it requires the
simulation of the system to be visualized. Designing sim-
ulators can be a challenging task that can not be solved
within the time-frame usually allocated for multi-media
projects. On the other hand, available simulators are not
suitable for classroom use. They are frequently designed
for optimum simulation speed and complex design projects.
Ease of use, excellent visualization and portability have
normally not been top goals for simulator design. Also,
powerful simulators are typically proprietary and come
at high costs, preventing their widespread deployment to
class rooms and into the hands of students. In the follow-
ing, we will describe how this problem was solved within
the RaVi project. RaVi stands for “Rechnerarchitektur-
Visualisierung” (German for “computer architecture visu-
alization”). RaVi is part of the larger SIMBA-project! [1].

II. OBJECT-ORIENTED MODELING

Hendrich, with his design of the HADES system [2], has
paved a way out. HADES is a Java-based class library
comprising a schematic editor and a simulator kernel for
simulating hardware structures. It supports the IEEE 1164
logic value system and deterministic simulation of clocked
parallel hardware structures. The class library includes
classes for common hardware elements. The schematic ed-
itor can be used to create instances of these classes. Hence,
each hardware component is an instance of the correspond-
ing Java class representing its type. This is a nice example
of exploiting object orientation in hardware design. Each
instance comes with methods for simulating its behaviour
as well as with methods for displaying itself on the screen
and for showing and modifying its properties. Instances
can be connected using drap and drop.

III. MULTIMEDIA COMPONENTS DESIGNED IN RAVI

RaVi’s objective is to create interest in computer archi-
tecture among students which traditionally are not very
keen to study computer engineering, such as many women.

*The authors are with the Dept. of Computer Science, University
of Dortmund, Germany. E-mail: Peter.Marwedel@Qudo.edu

I'We gratefully acknowledge the funding of the SIMBA-project by
the German ministry of research and development (BMBF).

RaVi’s approach is to provide extensive motivational ma-
terial and to visualize the dynamic behaviour that is found
in computer architectures.

As a first example, we visualized dynamics within a mi-
crocoded version of the MIPS-processor, as described in
the popular book by Hennessy/Patterson [3]. By default,
HADES uses color to visualize signal values. Unfortu-
nately, in each clock step many signals change their val-
ues in the actual architecture. However, many of these are
redundant since they are not loaded into any memory el-
ement during that clock step. More precisely, many line
segments used in the architecture schematics are not used
to carry relevant information. In order to avoid confus-
ing changes of the colors of almost all line segments, an
algorithm had to be developed which identifies those line
segments that carry relevant information. Starting from
memory inputs that are enabled for a certain clock step,
paths to selected memory outputs are found. Line seg-
ments on selected paths are marked for visualization. All
other line segments will be displayed with a light color,
representing an undefined value. This algorithm facilitates
understanding the dynamic behaviour of architectures.

As a second example, we have implemented the MIPS-
pipeline described in the same book. Current work includes
visualizing multi-processor cache coherency protocols, such
as the MESI-protocol. Future work will comprise the visu-
alization of the dynamic instruction scheduling techniques
found in high speed processors, such as score-boarding.

In all of the cases mentioned, it is possible to interactively
modify memory contents and to change interconnections
between components. Using non-predefined components
requires specifying their behaviour in Java.

IV. RESuULTS

In RaVi, we were able to reduce the effort for generating
visualization components for computer architecture class-
room teaching. We found that the techniques employed in
HADES extend beyond the scope of computer architecture,
since the component symbols used for the schematic as well
as their behaviors can be freely defined in Java.

REFERENCES

[1] S. Schubert et al., “SIMBA home page”,
dortmund.de/simba

[2] N. Hendrich, “A Java-based Framework for Simulation and
Teaching”, Proceedings of the 3rd European Workshop on Mi-
croelectronics FEducation, EWME 2000, Kluwer Academic Pub-
lishers, p. 285-288

[3] J. L. Hennessy and D. A. Patterson, “Computer Organization
— The Hardware/Software Interface”, Morgan Kaufmann Pub-
lishers Inc., 1995

http://ddi.cs.uni-



