
Data Partitioning for Maximal Scratchpad Usage

Manish Verma Stefan Steinke Peter Marwedel

Computer Science XII Computer Science XII Computer Science XII
University of Dortmund University of Dortmund University of Dortmund

44221 Dortmund, Germany 44221 Dortmund, Germany 44221 Dortmund, Germany
Tel:+49-231-755-6325 Tel:+49-231-755-6133 Tel:+49-231-755-6111
Fax:+49-231-755-6116 Fax:+49-231-755-6116 Fax:+49-231-755-6116

verma@ls12.cs.uni-dortmund.de steinke@ls12.cs.uni-dortmund.de marwedel@ls12.cs.uni-dortmund.de

Abstract— The energy consumption for Mobile Embedded
Systems is a limiting factor because of today’s battery capacities.
The memory subsystem consumes a large chunk of the energy,
necessitating its efficient utilization. Energy efficient scratchpads
are thus becoming common, though unlike caches they require to
be explicitly utilized. In this paper, an algorithm integrated into
a compiler is presented which analyzes the application, partitions
an array variable whenever its beneficial, appropriately modifies
the application and selects the best set of variables and program
parts to be placed onto the scratchpad. Results show an energy
improvement between 5.7% and 17.6% for a variety of applica-
tions against a previously known algorithm.

I. I NTRODUCTION

The past decade has seen a considerable amount of growth
in Embedded Systems. Computers are no longer confined to
offices and home desks, they are finding use in every conceiv-
able area. A large number of Embedded Systems are being
modeled as mobile devices, for which dimension, weight and
energy consumption are distinguishing features.

Improvements concerning thebattery capacityhave been
made, but the rate is negligible compared to the rate at which
energy consumption has increased. For example, the battery
life of Ni-Cd batteries has increased by a factor of 2 in the last
30 years [19]. However, the power dissipation in the interior
of a full featured notebook has increased by 90% over the last
3 years [6]. Moreover, the size of the laptops cannot be fur-
ther reduced because of the surface area required for energy
dissipation [6]. Hence, system architects have the utmost task
of reducing energy consumption. There are a large number
of options for reducing the energy/power consumption, a few
examples of which are the following:

First and foremost, would be to decrease the feature size,
as it directly effects the energy consumption. However, the
lower the feature size, the higher is the cost and the complex-
ity of the system. Another option is to decrease the switching
activity of the transistor, as it is responsible for 70%-90% of
the total transistor energy consumption [17]. The energy con-
sumption depends on the number of switching operations and

the load capacity of the attached nets. Nowadays, advanced
micro-controllers come with power saving or idle modes and
also with lower frequency modes. Thus the micro-controller
can be made to sleep when idle or work at sufficiently lower
frequency if meeting all constraints.

A different energy optimizing approach would be a prudent
selection of system components by creating a memory hierar-
chy, using onchip and offchip memories. The onchip memory
consumes less energy because of its small size and the proxim-
ity to the core, access times are low and less bus drivers need
to be activated. Memory organization consisting of caches or
scratchpads1 or both can be used for an optimal energy reduc-
tion.

Caches provide copying ofrelevant/irrelevantdata to/from
the offchip memory respectively. If the memory content is
valid then the current access to the offchip memory is saved.
The software code can be used without any modification for
different cache memory organizations. However, caches are
notorious for their unpredictable behavior. An application for a
certain cache configuration may consume equal or more energy
because ofthrashing[5], than the one withoutcache. In real-
time embedded systems, a number of time constraints have to
be fullfilled and a certain response time has to be guaranteed.
Worst Case Execution Time (WCET) behavior of cache-based
systems is very difficult to predict exactly. A simple and im-
precise upper bound on WCET can be calculated assuming a
cache miss for every memory access. Tightupper bounds [9]
can be computed, but not for all applications. Consequently,
the presence of cache does not greatly reduce the WCET. On
the other hand, scratchpad memories consume much less en-
ergy per access, as they are devoid of tag arrays and compara-
tors [3]. Scratchpads do not cause a miss, hence can be used to
improve the WCET. However, they depend upon software for
their utilization.

In this work, we propose a compiler extension which uses
the scratchpad to the maximal value, partitioning program and
data into smaller segments whenever beneficial. The best set

1Small onchip RAM’s statically mapped into the processor’s address space
are called Scratchpads.



of program and data values are identified using Integer Linear
Programming [10] and the selected objects are placed onto the
scratchpad.

In the next section we describe related research work fol-
lowed by a detailed description of the algorithm. In section
IV we describe the experimental setup, followed by the results
of the experiments performed on the ARM7T RISC processor.
The paper ends with a conclusion and future work.

II. RELATED WORK

Optimizing the energy consumed by the application pro-
gram has been a research topic since the last decade. Tiwari et
al. [18, 19] were among the first to propose an energy model.
This instruction level model consists of a constant energy cost
for each instruction (“base cost”) plus an overhead cost (“inter-
instruction cost”) for switching to the next instruction. The
sum over all instructions denotes the total amount of energy
consumed by the observed application. This model is useful
for compilers which could generate the most energy efficient
code. However, the model fails to take system components into
consideration. For low power processors, energy consumption
due to memory accesses can not be neglected. Otherwise, the
generated code would be optimal for processor energy but not
for the whole system including memory.

The instruction level model by Simunic et al. [14] incorpo-
rates the effect of memories, but since all values are taken from
the vendor’s datasheet, there is no distinction between different
instructions. The combination of these two approaches and a
further extension for treating the bit patterns on buses was pre-
sented by Steinke et al. [16]. This model, having a precision of
1.7%, is chosen for the current research work.

Panda et al. [11, 12] presented an efficient use of the memory
hierarchy by placing the most commonly used variables onto
the scratchpad. A further approach by Sj¨odin et al. [15] places
variables onto scratchpad by static analysis and shows that this
is sufficiently precise and no dynamic analysis is needed. The
dynamic copying of array parts was studied by Kandemir et al.
[7]. However, the algorithm is applicable under the simplifying
constraints [21] [7] (i.e. perfectly nested loops, exactly known
loop bounds and array subscripts being affine function of the
all loop indices along with additional constraints). Also, it ap-
plies only when the aggregate overhead cost of moving data
to and from onchip memory is less than the cost of accessing
the data accessing data from offchip memory. Consequently,
the applicability of the algorithm is restricted to data-intensive
DSP applications.

Steinke et al. [8] moved both data and program parts onto
the scratchpad, based on the static analysis of execution of
instructions and accesses of variables. The approach shows
an improvement of 12%-43% in energy consumption against
caches. However, it only considers whole variables at a par-
ticular time. Thus, a large non-scalar variable (e.g. array vari-
able) could either be put on to the onchip as a whole or not.
This could potentially lead to a sub-optimal utilization of the
scratchpad.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Onchip Memory Offchip Memory

Array A[size]

Basis Element Splitting Point

Partitioned Variable

Array Aleft[split]

Partitioned Variable

Array Aright[size-split]

split

Fig. 1. Partitioning of Array

Based on the cache model CACTI developed by Wilton et
al. [20], Banakar et al. [3] presented a detailed model for the
energy/area consumption of scratchpad memories and is also
used in our research work.

Observing, the above approaches on usage of the scratchpad
memory, we find that there is a void in the research that has
taken place. Thus, we propose an approach which is an exten-
sion to Steinke’s [8] approach. In this approach, we partition an
array variable for the maximal usage of the scratchpad mem-
ory. The next section presents the algorithm in detail, followed
by a description of the workflow and the results.

III. A LGORITHM

Steinke considers Program Memory Objects PMO (basic
blocks and functions) and Data Memory Objects DMO (vari-
ables) as possible candidates for moving onto the scratchpad.
He associate a profit (energy saving) with each memory object
(PMO and DMO) and formulates a knapsack problem [13].
Our approach works in the following stepwise manner.

1. Chooses a candidate arrayA among all the possible arrays
for partitioning.

2. Decides whether to partition the arrayA or not. Decides
whether partitioning will result in reduced energy con-
sumption of the application.

3. If the arrayA is partitioned then decides the splitting point
split of the array which leads to maximum reduction in
the energy consumption.

4. Given the partitioning decision and the splitting point,
modifies the original application according to the splitting
point.

The arrayA chosen in step 1 is the highest valence (i.e.
energy consumption per element) array which could not be
moved onto the scratchpad by the Steinke’s algorithm. Step 2
and step 3 are executed simultaneously while solving the for-
mulated ILP. We describe the application transformation in the
following subsection followed by the partitioning decision and
the formal description of the problem.

A. Application Transformation

Application Transformation is an independent phase, which
takes an application code, a chosen arrayA and a splitting



point split as inputs and outputs a transformed application.
Specifically, it partitions the arrayA (refer Fig. 1) according
to the splitting point to generate the two smaller arrays. Then
it replaces the arrayA with the smaller arrays and modifies
the application such that all the accesses to the array variable
are replaced with an Access macro. The Access macro on the
basis of the index variable and the splitting pointsplit dy-
namically determines which of the two partitioned arrays are
being referenced.

The underlying principle can be explained using a highlevel
example. A simple reference to the array A

int A[size];
data = A[i];

is replaced by the following set of lines.

int Aleft[split], Aright[size-split];
ACCESS(data,i);

whereACCESSmacro is defined as

#define ACCESS(data, index)
if (index < split)

data = Aleft [index ];
else

data = Aright[index-split] ;

B. Partitioning Decision

For the partitioning decision, we need to compare the en-
ergy consumption of the original application and the modified
application. However, the application will be modified only
when we prove that it leads to a more energy efficient solu-
tion. From subsection A we observe that only those program
memory objects get modified which contain a reference to the
array, while all the others remain invariant. Corresponding to
every program memory object which contains atleast one ref-
erence to the arrayA we add an additional program memory
object. This alternative program memory object will either be
named Referenced Basic BlockRBBor Referenced Function
RF if it corresponds to either a basic block or a function re-
spectively. Now we compare only the referenced functions and
referenced basic blocks with their corresponding functions and
basic blocks. Consequently, the number of additional variables
in the problem is proportional to PMOs of the original applica-
tion. We finally include a binary decision variableDD into the
ILP representing the decision of array partitioning.

C. Splitting Point

First of all, as shown in Fig. 1 we combine a constant num-
berbsizeof adjacent array elements of the arrayA to form a Ba-
sis Elementb. Now, the array instead of havingsizeelements
hasdsize=bsizee elements. This reduces the complexity of the
problem as well as the accuracy of the solution against the so-
lution where each array element is a basis element(i.e. bsize=
1). Corresponding to alldsize=bsizee�1 splitting points (refer
Fig. 2) we generate 2� (dsize=bsizee�1) partitioned variables

Array Aleft[split] Array Aright[size-split]

Partitioned Variable #3 Partitioned Variable #4

Array Aleft[split] Array Aright[size-split]

Partitioned Variable #1 Partitioned Variable #2

Splitting Point #2

Splitting Point #1

Fig. 2. splitting points and partitioned variables

pv as data memory objects. A partitioned variablepv consists
of consecutive basis elementsb such that only one comparison
is required in the Access macro for accessing the partitioned
variable. Two possible splitting points and their corresponding
partitioned variables are shown in Fig. 2.

D. Integer Linear Problem

To decide between the original application and the modified
application one approach is to compare their energy consump-
tion and choose the one with lower energy consumption. The
other approach is to consider their energy difference against
a high energy value, name this asenergy savingand choose
the one with higher energy saving. We choose the latter ap-
proach as it aids the problem formulation. The high energy
value corresponds to the system with only offchip memory.
The partitioning decision is also dependent upon the choice
of the splitting point as it determines the energy savings due
to the partitioned arrays. The splitting point is in turn depends
upon the size of the onchip scratchpad.

The problem can be viewed as a decision problem, to choose
between referenced basic blocks, referenced functions and a
partitioned array on one side and original basic blocks, func-
tions and the unpartitioned array on the other side, under the
objective to maximize energy savings. This has to be done such
that the combined size of the chosen memory objects does not
exceed the scratchpad size. Thus the problem can be viewed as
a variant of the knapsack problem [13], which can be solved by
Integer Linear Programming. The following sections formally
describe the ILP formulation.

D1. Program Memory Objects

The energy saving by moving a Function or a Referenced
Functioni onto the scratchpad is the sum of the product of
the number of executionsmk of each instructionk within the
function i, with the energy saving of a single instruction fetch
Einstr f etch

E(Fi) = ∑
k

mk �Einstr f etch

whereEinstr f etch is the difference between the energy con-
sumption in fetching an instruction from the offchip memory
and the scratchpad memory.

Einstr f etch= Einstr f etch main�Einstr f etch sp



The energy saving due to a Basic Block or a Referenced
Basic Block j is the number of executions of the Basic Block
nj multiplied with the product of the number of instructions
in the Basic Blockm with the difference of energy consump-
tion of an Instruction FetchEinstr f etch. We need to subtract
the energy ofu jumps from the main memory to the scratch-
padEjump main2sp andw jumps from the scratchpad to the main
memoryEjump sp2main. Since the energies of these jumps are
different, they have to be handled separately.

E(BBj ) = m�nj �Einstr f etch�

u�Ejump main2sp�

w�Ejump sp2main

D2. Data Memory Objects

The energy saving by moving a variablev onto the scratch-
pad is the product of the number ofaccessesacc(v) to the vari-
able with the energy costEdata

E(v) = acc(v)�Edata

whereEdata is the difference in energy consumption of the
memory access in a load or store instruction when the variable
v is in the offchip or the scratchpad memory.

Edata= Edata main�Edata sp

The accessesacc(pv) to a partitioned variablepv is the sum
of the accessesacc(bi) to the basis elementsbi belonging to
the partitioned variable.

acc(pv) = ∑
bi2pv

acc(bi)

The energy saving by a partitioned variablepvn is the
product of the number ofaccesses to the partitioned variable
acc(pvn), with the energy differenceEdata.

E(pvn) = acc(pvn)�Edata

D3. Objective Function

Our formulation of the problem uses the following defini-
tions for moving functionsF , referenced functionsRF, basic
blocksBB, referenced basic blocksRBB, variablesv, and par-
titioned variablespvwith x2 F [RF[BB[RBB[v[ pv

E(x) = saved energy consumption forx

S(x) = size ofx

m(x) =

�
1, if x is moved to the scratchpad
0, otherwise

We also need to decide whether it is beneficial to partition
the array variable or not. For this purpose we include the deci-
sion variableDD.

DD =

�
1, if the array variableA is partitioned
0, otherwise

To optimize for energy the following objective function of
the knapsack problem needs to be maximized:

sav = ∑
i2I

m(Fi)�E(Fi)+∑
l2L

m(RFl )�E(RFl )+

∑
j2J

m(BBj )�E(BBj )+

∑
m2M

m(RBBm)�E(RBBm)+

∑
k2K

m(vk)�E(vk)+ ∑
n2N

m(pvn)�E(pvn)�

DD�Eoverhead

Index setsI ;J;K;L;M and N correspond to index values for
functions, basic blocks, variables, referenced functions, refer-
enced basic blocks and partitioned variables respectively.

The overhead energyEoverheadof partitioning the array vari-
ableA is subtracted from the energy savings. The overhead
energyEoverheadis the product of the total number ofaccesses
acc(A) to A, with the sum of the extra energy of executing
Eexec(ACCESS) the Access macro.

Eoverhead= acc(A)�Eexec(ACCESS)

D4. Constraints

The size constraint can be modeled as follows:

∑
i2I

m(Fi)�S(Fi)+ ∑
j2J

m(BBj )�S(BBj)+

∑
k2K

m(vk)�S(vk)+∑
l2L

m(RFl )�S(RFl )+

∑
m2M

m(RBBm)�S(RBBm)+ ∑
n2N

m(pvn)�S(pvn)

� scratchpadsize

We extend the constraints to be able to handle the following
situations:

To ensure that the referenced variables (RBB and RF) and
partitioned variables pv are not chosen when A is not parti-
tioned (i.e. DD = 0):

∑
l2L

m(RFl ) + ∑
m2M

m(RBBm)+

∑
n2N

m(pvn) � C�DD� 0

To ensure that the original variables (BB and F) and the
array variable A are not chosen when it is partitioned (i.e. DD
= 1):

∑
i2I

m(Fi) + ∑
j2J

m(BBj )+

m(A) � C� (1�DD)� 0

whereC is any sufficiently large constant such that the above
equations always remain less than or equal to zero.



C Program
Paritioning 
AlgorithmAlgorithm

Steinke’s

Scratchpad
Algorithm

Partitioning

Partitioned ?

No Is

Transformation
Application

Transformed

Algorithm
Scratchpad

Program

Yes

Consumption
Energy

Profiler
Energy

Program
Machine

(ARMulator)

Simulator

Scratchpad
Algorithm

Algorithm

Profiler

Program
Machine

(ARMulator)

Simulator

Compiler
ENCC

Model

Energy   Cost

Compiler
ENCC

Energy

Consumption
Energy

Fig. 3. Experimental Workflow

To enforce that only one variant of the partitioned array is
selected to be moved to scratchpad:

∑
n2N

m(pvn) � 1

To regulate that either a Basic Block (Function) or its cor-
responding Referenced Basic Block (Referenced Function) is
selected:

8l 2 L : m(RFl )+m(Fl ) � 1

8m2M : m(RBBm)+m(BBm) � 1

Based on the above inequations, an ILP solver [10] can find
the optimal solution for the given cost function. From the value
of the decision variableDD and the size of the partitioned vari-
able moved onto scratchpad, the result regarding partitioning
of the array and the splitting point can be determined respec-
tively. Consequently, if the array is partitioned, the application
is modified appropriately and the chosen memory objects can
then be placed onto the scratchpad memory using Steinke’s Al-
gorithm.

IV. W ORK FLOW

The experiments were carried out following the workflow
described in Fig. 3. In the first step the benchmark programs

TABLE I
Processor Cycles for Scratchpad System

Access Type number of cycles
scratchpad 1 cycle

main memory 16 bit 1 cycle + 1 wait state
main memory 32 bit 1 cycle + 3 wait states

are compiled using the energy aware compiler ENCC [4]. For
partitioning the array variable and use of the scratchpad, the
algorithm in the previous section is executed. If the algorithm
proposes to partition the array, the application is modified as
described in subsection A. The modified application is again
compiled and the machine code generated is simulated using
the ARMulator (the simulator from ARM Ltd [1]). Based on
the instruction trace, the energy profiler calculates the total
amount of energy consumed for the different processor instruc-
tions and memory accesses taking into account all the inserted
instructions for accessing the partitioned variables.

According to the experimental setup the processor requires
only 1 clock cycle and no wait states to access the scratchpad
memory. On the other hand accessing main memory, requires
1 clock cycle and 1 or 3 wait states depending upon the data
width (c.f. table I).

Energy consumption of the scratchpad memory is calculated
using the CACTI model. However, the energy consumption of
the main memory is measured from the evaluation board [2].
The energy values in the table II show a difference of 1 or
2 orders of magnitude for accessing scratchpad memory and
main memory.

V. RESULTS

For the experiments, benchmarks from different domains
were selected. First, theFFT andFIR applications were stud-
ied, having a completely specified array variable access pat-
tern. Second, the sorting algorithmsbubble sort, insertion sort
andselection sortwhich have a semi-specified array variable
access pattern were chosen. Finally, a compression algorithm
ArithCoderusing Arithmetic Coding [22], having a completely
undefined array variableaccess pattern was studied.

The results in Fig. 4 depict the comparison of the partition-
ing algorithm against Steinke’s algorithm forSelection Sort.
Partitioning is not done when the onchip scratchpad size is not

TABLE II
Energy Consumption of Memories

Memory Type Memory Size Energy (nJ)
scratchpad 128 Bytes 0.53
scratchpad 256 Bytes 0.61
scratchpad 512 Bytes 0.69
scratchpad 1024 Bytes 0.82
scratchpad 2048 Bytes 1.07
scratchpad 4096 Bytes 1.21
scratchpad 8192 Bytes 2.07

main memory 16 bit 512 KBytes 24.0
main memory 32 bit 512 KBytes 49.3



5500

6000

6500

7000

7500

8000

8500

9000

200 400 600 800 1000 1200 1400

E
n
e
r
g
y
 
C
o
n
s
u
m
p
t
i
o
n
 
(
u
J
)
 

Onchip Scratchpad (Bytes)

Steinke’s Algo
Partitioning Algo

Fig. 4. Energy Comparison (Selection Sort)

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

200 400 600 800 1000 1200 1400

C
P
U
 
C
y
c
l
e
s
 
(
x
1
0
0
0
)
 

Onchip Scratchpad (Bytes)

Steinke’s Algo
Partitioning Algo

Fig. 5. Performance Comparison (Selection Sort)

large enough to optimize energy or when the scratchpad size is
large enough to keep the whole array variable onchip. At these
points (at 600 Bytes and 1300 Bytes in Fig. 5), our results are
exactly the same as Steinke’s Algorithm.

Since we are replacing a single statement to access the array
with multiple statements, we are actually decreasing the per-
formance of the application in terms of the CPU cycles. The
results in Fig. 5 confirm the fact. Consequently, we prove
that “The application is optimized for energy and not for per-
formance”which is not a common phenomenon in the energy
optimizations. The maximum energy saving that is achieved
in the above example (Selection Sort) is 11.37% and with a
performance degradation is 15.25% for the onchip scratchpad
size of 1200 Bytes. Fig. 6 presents the distribution of the total
energy as consumed by processor, onchip scratchpad memory
and offchip memory. We observe a considerable drop in the
offchip memory as well as total energy when we introduce an
onchip scratchpad memory into the system, which then con-
tinuously decrease with increasing scratchpad size. We also
observe an increase in the processor energy just at the point
(700 Bytes), when we decide to partition the array.

The number of memory objects is linear to the number of
the basic blocks and variables in the application. In our bench-

Fig. 6. Energy Distribution (Selection Sort)

TABLE III
Energy Steinke’s Algorithm vs. Partitioning Algorithm [uJ]

benchmark Steinke Algo. Part. Algo. % imp.
FFT 16,604.979 15,331.800 7.66%
FIR 5,669.055 4,671.960 17.59%
BubbleSort 15,719.219 13,877.833 11.71%
SelectionSort 8,590.022 7,612.881 11.37%
InsertionSort 6,301.395 5,710.620 9.37%
ArithCoder 16,945.211 15,972.100 5.74%
average 10.57%

marks, the size of basis elementb was 80 Bytes and the av-
erage runtime for solving ILP inequations was observed to be
less than 4s. The application transformation algorithm being a
pattern matching algorithm was linear to the size of the appli-
cation program and had minimal runtime for the benchmarks.
Finally, the maximum energy savings which could be achieved
against Steinke’s algorithm are shown in table III and perfor-
mance penalties in table IV.

TABLE IV
Performance Steinke’s Algorithm vs. Partitioning Algorithm [cycles]

benchmark Steinke Algo. Part. Algo. % imp.
FFT 1,344,537 1,283,481 +4.54%
FIR 690,852 764,948 -10.72%
BubbleSort 1,986,192 2,912,574 -46.64%
SelectionSort 1,361,253 1,568,885 -15.25%
InsertionSort 892,073 1,113,301 -24.79%
ArithCoder 2,192,162 2,208,645 -0.75%
average -15.60%



VI. CONCLUSION & FUTURE WORK

It is evident from the results that the partitioning algorithm
shows a reasonable improvement of 5.7% to 17.6% for appli-
cations from all domains including those with irregular array
access pattern. The results from the partitioning algorithm are
always better than or equal to Steinke’s Algorithm. With this
algorithm a further improvement is gained against commonly
used Cache systems. Moreover the algorithm can be integrated
into any compiler used for the scratchpad systems.

We would like to enhance this approach in the future by re-
ducing the overhead due to the Access macro, by combining it
with other optimizationse.g. loop splitting.

REFERENCES

[1] ARM. Advanced RISC Machines Ltd.www.arm.com.
[2] AT91M40400ATMEL Corporation.www.atmel.com.
[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-

wedel. Scratchpad Memory: A design alternative for cache on-
chip memory in embedded systems. InProc. of the 10th In-
ternational Symposium on Hardware/Software Codesign, Estes
Park,CO, May. 2002.

[4] encc. University of Dortmund, Computer Science Dep., ls12-
www.cs.uni-dortmund.de/research/encc.

[5] J. L. Hennessy and D. A. Patterson. Computer Architecture A
Quantative Approach, Morgan Kaufmann Publisher Inc., CA.
1990

[6] Intel. Mobile Power Guidelines 2000. Technical Report 1.0,
Intel Corporation, Dec. 1998.

[7] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan,
I. Kadayif, and A. Parikh. Dynamic management of scratchpad
memory Space. InProc. of 38th DAC 01, pages 690–695, Las
Vegas, NV, Jun. 2001.

[8] S. Steinke, L. Wehmeyer, B. S. Lee and P. Marwedel, Assigning
program and data objects to scratchpad for energy reduction. In
Proc. of the DATE Conference 2002Paris, France, Mar. 2002.

[9] C. Ferdinand, F. Martin, R. Wilhelm, Applying compiler tech-
niques to cache behaviour prediction. InProc. of Workshop
on Languages, Compilers and Tools for Real-Time SystemsLas
Vegas, Nevada, page 37-46, Jun. 1997

[10] G. L. Nehmhauser and L. A. Wolsey.Integer And Combinato-
rial Optimization. John Wiley and Sons, New York, NY, 1988.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization
of scratch-pad memory in embedded processor applications. In
Proc. of European Design and Test Conference, Paris, France,
Mar. 1997.

[12] P. R. Panda, N. D. Dutt, and A. Nicolau.Memory Issues In Em-
bedded Systems-on-chip. Kluwer Academic Publishers, Nor-
well, MA, 1999.

[13] R. Sedgewick.Algorithms. Addison Wesley, Massachusetts,
1988.

[14] T. Simunic, L. Benini, and G. De Micheli. Cycle-accurate simu-
lation of energy consumption in embedded systems. InProc. of
the 36th DAC 99, pages 867–872, New Orleans, LA, Jun. 1999.

[15] J. Sjödin, B. Fröderberg, and T. Lindgren. Allocation of global
data objects in on-Chip RAM. InProc. Workshop on Com-
piler and Architectural Support for Embedded Computer Sys-
tems, Washington DC, Dec. 1998.

[16] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An ac-
curate and fine grain instruction-level energy model supporting
software optimizations. InPATMOS 01, Yverdon-Les-Bains,
Switzerland, Sep. 2001.

[17] Synopsys.Power products reference manual V3.5. synopsys,
1996.

[18] V. Tiwari. Logic and system design for low power consumption.
PhD Thesis, Princeton University, Princeton, NJ, 1996.

[19] V. Tiwari, S. Malik, and A. Wolfe. Instruction level power anal-
ysis and optimization of software.Journal of VLSI Signal Pro-
cessing Systems, 13(3):223–238 Aug. 1996.

[20] S. J. E. Wilton and N. P. Jouppi. CACTI: An enhanced cache
access and cycle time model.IEEE Journal of Solid-State Cir-
cuits, 31(5):677–688, May 1996.

[21] M. E. Wolf and M. S. Lam A loop transformation theory and
an algorithm to maximise parallelism InProc. of the 3rd Work-
shop on Programming Languages and Compilers for Parallel
Computing Aug. 1990

[22] A. Moffat, R. Neal and I. H. Witten Arithmetic coding re-
vised ACM Transactions on Information Systems, 16(3):256-
294, 1998.


