Data Partitioning for Maximal Scratchpad Usage

Manish Verma Stefan Steinke Peter Marwedel
Computer Science XII Computer Science XII Computer Science XII
University of Dortmund University of Dortmund University of Dortmund
44221 Dortmund, Germany 44221 Dortmund, Germany 44221 Dortmund, Germany
Tel:+49-231-755-6325 Tel:+49-231-755-6133 Tel:+49-231-755-6111
Fax:+49-231-755-6116 Fax:+49-231-755-6116 Fax:+49-231-755-6116
verma@l|sl12.cs.uni-dortmund.de steinke@Is12.cs.uni-dortmund.de marwedel@Is12.cs.uni-dortmund.de

Abstract— The energy consumption for Mobile Embedded the load capacity of the attached nets. Nowadays, advanced
Systems is a limiting factor because of today’s battery capacities. micro-controllers come with power saving or idle modes and
The memory subsystem consumes a large chunk of the energy, also with lower frequency modes. Thus the micro-controller
necessitating its efficient utilization. Energy efficient scratchpads can be made to sleep when idle or work at sufficiently lower
are thus becoming common, though unlike caches they require to frequency if meeting all constraints.
be explicitly utilized. In this paper, an algorithm integrated into A different energy optimizing approach would be a prudent
a compiler is presented which analyzes the application, partitions selection of system components by creating a memory hierar-
an array variable whenever its beneficial, appropriately modifies chy, using onchip and offchip memories. The onchip memory
the application and selects the best set of variables and program consumes less energy because of its small size and the proxim-
parts to be placed onto the scratchpad. Results show an energy ity to the core, access times are low and less bus drivers need
improvement between 5.7% and 17.6% for a variety of applica- to be activated. Memory organization consisting of caches or

tions against a previously known algorithm. scratchpad$ or both can be used for an optimal energy reduc-
tion.
l. INTRODUCTION Caches provide copying oélevant/irrelevantdata to/from

the offchip memory respectively. If the memory content is

The past decade has seen a considerabéatof growth y3id then the current access to the offchip memory is saved.
in Embedded Systems. Computers are no longer confinedtfe software code can be used without any modification for
offices and home desks, they are finding use in every concejyifferent cache memory organizations. However, caches are
able area. A large number of Embedded Systems are beipgtorious for their unpredictable behavior. An application for a
modeled as mobile devices, for which dimension, weight angkrtain cache configuration may consume equal or more energy
energy consumption are distinguishing features. because ofhrashing[5], than the one withoutache. In real-

Improvements concerning theattery capacityhave been time embedded systems, a number of time constraints have to
made, but the rate is negligible compared to the rate at whigf fy|ifilled and a certain response time has to be guaranteed.
energy consumption has increased. For example, the batt§Qsrst Case Execution Time (WCET) behavior of cache-based
life of Ni-Cd batteries has increased by a factor of 2 in the lagfystems is very difficult to predict exactly. A simple and im-
30 years [19]. However, the power dissipation in the interioprecise upper bound on WCET can be calculated assuming a
of a full featured notebook has increased by 90% over the lgsiche miss for every memory access. Tighper bounds [9]
3 years [6]. Moreover, the size of the laptops cannot be fugan be computed, but not for all applications. Consequently,
ther reduced because of the surface area required for enefgy presence of cache does not greatly reduce the WCET. On
dissipation [6]. Hence, system architects have the utmost tagie other hand, scratchpad memories consume much less en-
of reducing energy consumption. There are a large numbgfgy per access, as they are devoid of tag arrays and compara-
of options for reducing the energy/power consumption, a fewrs [3]. Scratchpads do not cause a miss, hence can be used to
examples of which are the following: improve the WCET. However, they depend upon software for

First and foremost, would be to decrease the feature Siz@eir utilization.
as it directly effects the energy consumption. However, the |, this work, we propose a compiler extension which uses

lower the feature size, the higher is the cost and the compley;e gcratchpad to the maximal value, partitioning program and

ity of the system. Another option is to decrease the switching,, jnto smaller segments whenever beneficial. The best set
activity of the transistor, as it is responsible for 70%-90% of

the tOt_al transistor energy consumption [17]_- The €Nergy CoN- tsmall onchip RAM's statically mapped into the processor’s address space
sumption depends on the number of switching operations aae called Scratchpads.

of program and data values are identified using Integer Linear Basis Element Splitig Point

splif

Programming [10] and the selected objects are placed onto the 7 R,
scratch pad f//j ArrayiA[sue]:

In the next section we describe related research work fol- / / § \\
lowed by a detailed description of the algorithm. In sectio |
IV we describe the experimental setup, followed by the result

[2)

of the experiments performed on the ARM7T RISC processot. | Amay Alefiispll] | L | Amay Arightlsizetspii]
The paper ends with a conclusion and future work. Partiioned Variable L Paritioned Variable
Onchip Memory Offchip Memory
Il. RELATED WORK Fig. 1. Partitioning of Array

Optimizing the energy congumed by the application_pro_— Based on the cache model CACTI developed bijtoN et
gram has been a research topic since the last decade. Tiwar, I‘?I[ZO], Banakar et al. [3] presented a detailed model for the

al. _[1_8' 19] were among the first Fo propose an energy mod nergy/area consumption of scratchpad memories and is also
This instruction level model consists of a constant energy cogkaq in our research work

for each instruction (“base cost”) plus an overhead cost (“inter- Observing, the above approaches on usage of the scratchpad

instruction cost”) for switching to the next instruction. Thememory, we find that there is a void in the research that has
sum over all instructions denotes the total amount of energy, ., place. Thus, we ppose an approach which is an exten-
consumed by the observed application. This model is usefil,, 1 steinke’s [8] approach. In this approach, we partition an

for compilers which could ggnerate the most energy eﬁid?%trray variable for the maximal usage of the scratchpad mem-
code_. Hovv_ever, the model fails to take system components m&?y The next section presents the algorithm in detail, followed
consideration. For low power processors, energy consumpti

P description of the workflow and the results.
due to memory accesses can not be neglected. Otherwise, the

generated code would be optimal for processor energy but not [1l. ALGORITHM

for the whole system including memory. . . . :
The instruction level model by Simunic et al. [14] incorpo- Steinke considers Program Memory Objects PMO (basic

rates the effect of memories, but since all values are taken fro locks and functions) and Data Memory Objects DMO (vari-

the vendor’s datasheet, there is no distinction between diﬁerﬁielzss)siiigfeszlblri f? f(r;?g?tess;?/irnm)o ;’JEE g(:ctﬁ m:;grratggpeacc:'
instructions. The combination of these two approaches an b gy 9 y 0D

further extension for treating the bit patterns on buses was prgMo and DMO) and formulates a knapsack problem [13].
0

sented by Steinke et al. [16]. This model, having a precision ur approach works in the following stepwise manner.

1.7%, is chosen for the current research work. 1. Chooses a candidate arrapmong all the possible arrays
Pandaetal. [11, 12] presented an efficient use of the memory for partitioning.

hierarchy by placing the most commonly used variables onto

the scratchpad. A further approach by et al. [15] places

variables onto scratchpad by static analysis and shows that this

is sufficiently precise and no dynamic analysis is needed. The

dynamic copying of array parts was studied by Kandemir etal.3 |fthe arrayA is partitioned then decides the splitting point

[7]. However, the algorithmis applicable under the simplifying split of the array which leads to maximum reduction in
constraints [21] [7] {.e. perfectly nested loops, exactly known the energy consumption.

loop bounds and array subscripts being affine function of the

all loop indices along with additional constraints). Also, it ap- 4- Given the partitioning decision and the splitting point,
plies only when the aggregate overhead cost of moving data modifies the original application according to thésing

to and from onchip memory is less than the cost of accessing PoINt.

the data accessing data from offchip memory. Consequently, arrayA chosen in step 1 is the highest valence. (

the applicability of the algorithm is restricted to data—intensiv<=ehergy consumption per element) array which could not be
DSP gppllcauons. moved onto the scratchpad by the Steinke’s algorithm. Step 2

Steinke et al. [8] moved both data and program parts onlg,§ step 3 are executed simultaneously while solving the for-
the scratchpad, based on the static analysis of execution gf;ateq 1P, We describe the application transformation in the

instructions and accesses of variables. The approach shQygqing subsection followed by the partitioning decision and
an improvement of 12%-43% in energy consumption againgla tormal description of the problem

caches. However, it only considers whole variables at a par-

ticular time. Thus, a large non-scalar variable (e.g. array vari- L)

able) could either be put on to the onchip as a whole or no’ﬁ' Application Transformation

This could potentially lead to a sub-optimal utilization of the Application Transformation is an independent phase, which
scratchpad. takes an application code, a chosen arfagnd a splitting

2. Decides whether to partition the arr&yor not. Decides
whether partitioning will result in reduced energy con-
sumption of the application.

pointsplit as inputs and outputs a transformed application. i
Splitting Point #1

Specifically, it partitions the arrag (refer Fig. 1) according

to the splitting point to generate the two smaller arrays. Thel]] L .
it replaces the arraps with the smaller arrays and modifies Array Alefsplit Array Aright[size-splif
the application such that all the accesses to the array variable Paritioned Variable #1 ! Partitoned Variable #2
are replaced with an Access macro. The Access macro on the :

basis of the index variable and the splitting pcsptit dy- Splitting Point #2

namlcally determines which of the two partitioned arrays are Array Aleﬂlsp”t] Arrd y Arightsize stpm]

being referenced. ! !]

The underlying principle can be explained using a highlevel Partitioned Variable #3 | Partitioned Variable #4

example. A simple reference to the array A
Fig. 2. splitting points and partitioned variables

int Alsize];

data = Al pvas data memory objects. A partitioned variapleconsists
is replaced by the following set of lines. of consecutive basis elemeiitsuch that only one comparison
is required in the Access macro for accessing thétpgared
variable. Two possible splitting points and their corresponding

int Aleft[split], Aright[size-split]; partitioned variables are shown in Fig. 2.
ACCESS(data,i);

whereACCESSnacro is defined as D. Integer Linear Problem
#define ACCESYdata, index) To decide between the original application and the modified
if (index < split) application one approach is to compare their energy consump-
data =Aleft [index J; tion and choose the one with lower energy consumption. The
else other approach is to consider their energy difference against
data = Aright[index-split] ; a high energy value, name this asergy savingnd choose

the one with higher energy saving. We choose the latter ap-
proach as it aids the problem formulation. The high energy
value corresponds to the system with only offchip memory.
For the partitioning decision, we need to compare the errhe partitioning decision is also dependent upon the choice
ergy consumption of the original application and the modifiedf the splitting point as it determines the energy savings due
application. However, the application will be modified onlyto the partitioned arrays. The splitting point is in turn depends
when we prove that it leads to a more energy efficient solupon the size of the onchip scratchpad.
tion. From subsection A we observe that only those program The problem can be viewed as a decision problem, to choose
memory objects get modified which contain a reference to thgetween referenced basic blocks, referenced functions and a
array, while all the others remain invariant. Corresponding tpartitioned array on one side and original basic blocks, func-
every program memory object which contains atleast one refons and the unpartitioned array on the other side, under the
erence to the arrag we add an additional program memorygbjective to maximize energy savings. This has to be done such
object. This alternative program memory object will either behat the combined size of the chosen memory objects does not
named Referenced Basic BloBBBor Referenced Function exceed the scratchpad size. Thus the problem can be viewed as
RF if it corresponds to either a basic block or a function rea variant of the knapsack problem [13], which can be solved by
spectively. Now we compare only the referenced functions angteger Linear Programming. The following sections formally
referenced basic blocks with their corresponding functions anféscribe the ILP formulation.
basic blocks. Consequently, the number of additional variables
in the problem is proportional to PMOs of the original applica21- Program Memory Objects
tion. We finally include a binary decision varialid® into the The energy saving by moving a Function or a Referenced
ILP representing the decision of array partitioning. Functioni onto the scratchpad is the sum of the product of
C. Splitting Point the number of executionsy of each instructiork within the

_ functioni, with the energy saving of a single instruction fetch
First of all, as shown in Fig. 1 we combine a constant NUME, ;. e(ch

berbsizeof adjacent array elements of the arago form a Ba- E(R)= Z My * Einstr_fetch
sis Element. Now, the array instead of havirgizeelements
has[size/bsizg elements. This reduces the complexity of the whereEinst_fetcnis the difference between the energy con-

problem as well as the accuracy of the solution against the S&imption in fetching an instruction from the offchip memory
lution where each array element is a basis element{size= 5 the scratchpad memory.

1). Corresponding to aflsize/bsiz§ — 1 splitting points (refer
Fig. 2) we generate 2([size/bsizd — 1) partitioned variables Einstr_fetch= Einstr_fetchmain— Einstr_fetchsp

B. Partitioning Decision

The energy saving due to a Basic Block or a Referenced To optimize for energy the following objective function of
Basic Blockj is the number of executions of the Basic Blockthe knapsack problem needs to be maximized:
n; multiplied with the product of the number of instructions
in the Basic Blockm with the difference of energy consump- ~ sav = Z m(F) «E(R) + Zm(RH) *E(RR) +
tion of an Instruction Fetcliistr_fetch VWe need to subtract e le

the energy ofi jumps from the main memory to the scratch- Zm(BBj) * E(BB;j) +
padEjump_mairesp @ndw jumps from the scratchpad to the main I€
memoryEjumpspemain. Since the energies of these jumps are ZM m(RBBy) * E(RBBy) +
different, they have to be handled separately. me
m(vi) * E(vk) + Z‘ m(pvn) * E(pvn) —
E(BBj) = mxnNj* Einstr_fetch— k%(ne
U* Ejumpmairesp— DD * Egverhead

W Ejump_s@main

Index setd,J,K,L,M andN correspond to index values for

D2. Data Memory Objects functions, basic blocks, variables, referenced functions, refer-
The energy saving by moving a variaiento the scratch- enced basic blocks and partitioned variables respectively.
pad is the product of the numberadcesseacqVv) to the vari- The overhead enerdBbverheadof partitioning the array vari-
able with the energy co$iyaia able A is subtracted from the energy savings. The overhead
energyEoverheadiS the product of the total number atcesses
E(v) = acqV) * Eqata acqA) to A, with the sum of the extra energy of executing

. . . . ACCES$the Access macro.
whereEq4t4 is the difference in energy consumption of theEexe‘{ »

memory access in a load or store instruction when the variable Eoverhead= aCAA) * Eexed ACCES$
vis in the offchip or the scratchpad memory.

Edata = Edatamain— Edata_sp D4. Constraints

The accessescd pv) to a partitioned variablevis the sum ~ 1N€ Size constraint can be modeled as follows:

of the accesseacqh;) to the basis elements belonging to _ _
the partitioned variable. %m(F.) *S(R)+ %m(BB’) *S(BB;) +
acqpy) = 5 acqbi) > M) * S(w) + > M(RR) « S(RR) +
bi€Epv keK leL
m(RB RB m(pv Vi
The energy saving by a partitioned variabpey, is the ,,EEM (RBE) « S B“)Jrn; (Ph) * S(ph)
product of the number adiccesses to the gaioned variable < scratchpadsize

acq pw), with the energy differencByga.
We extend the constraints to be able to handle the following

E(an) = acq an) * Edata Situations:
To ensure that the referenced variables (RBB and RF) and
D3. Objective Function partitioned variables pv are not chosen when A is not parti-

Our formulation of the problem uses the following deﬁni-tionGd (ie. DD =0):

tions for moving functions-, referenced functionBF, basic
. . ' m(R m(RB
blocksBB, referenced basic blocl®BB variablesy, and par- I%_ (RR) + mg\,, (RBE) +
titioned variablepvwith x € F U RFUBBURBBU VU pv Z\‘ m(pv) — CxDD<0
E(x) = saved energy consumption for ne
S(x) = size ofx To ensure that the original variables (BB and F) and the
array variable A are not chosen when it is partitioned (i.e. DD
1, if xis moved to the scratchpad =1):
m(x) = :
0, otherwise
We also need to decide whether it is beneficial to partition %m(F.) t %m(BBj) T
the array variable or not. For this purpose we include the deci-
Y purp mA) — Cx(1—DD)<0

sion variableDD.

DD — 1, ifthe array variablé\ is partitioned whereC is any sufficiently large constant such that the above
1 0, otherwise equations always remain less than or equal to zero.

TABLE |
Processor Cycles for Scratchpad System

Steinke's Paritigning
Algorithm ‘ Algorithm Access Type number of cycles
e L] ENCC scratchpad 1 cycle
C"”f”‘* | C""i"”e' main memory 16 bit| 1 cycle + 1 wait state
p— Soratchped main memory 32 bit)| 1 cycle + 3 wait stateg
Algorithm Algorithm
¢ _ are compiled using the energy aware compiler ENCC [4]. For
pifatic partitioning the array variable and use of the scratchpad, the
algorithm in the previous section is executed. If the algorithm
proposes to partition the array, the application is modified as
Pertitioned ? described in subsection A. The modified application is again
compiled and the machine code generated is simulated using
+ the ARMulator (the simulator from ARM Ltd [1]). Based on
Eregy Cos bplicaion the instruction trace, the energy profiler calculates the total
amount of energy consumed for the different processor instruc-
tions and memory accesses taking intooast all the inserted
. instructions for accessing the fitioned variables.
Scratchpad According to the experimental setup the processor requires
Algorithm only 1 clock cycle and no wait states to access the scratchpad
, memory. On the other hand accessing main memory, requires
g 1 clock cycle and 1 or 3 wait states depending upon the data
1 [width (c.f. table).
(Ai'h“ﬂ“::f;) | (Aiaﬂlzgr) Energy consumption of the scratchpad memory is calculated
I ! T using the CACTI model. However, the energy consumption of
Ereoy Ll Energy the main memory is measured from the evaluation board [2].
Frofter Profter The energy values in the table Il show a difference of 1 or

2 orders of magnitude for accessing scratchpad memory and

Energy .
main memaory.

Consumption

Energy
Consumption

Fig. 3. Experimental Workflow
V. RESULTS

To enforce that only one variant of the partitioned array is
selected to be moved to scratchpad:

EZ\I m(pw) <1

For the experiments, benchmarks from different domains
were selected. First, tHe=T andFIR applications were stud-
ied, having a completely specified array variable access pat-
tern. Second, the sorting algorithimsbble sortinsertion sort
andselection sortvhich have a semi-specified array variable
geess pattern were chosen. Finally, a compression algorithm
rithCoderusing Arithmetic Coding [22], having a completely

To regulate that either a Basic Block (Function) or its cor-
responding Referenced Basic Block (Referenced Function)

I : . . .
selected undefined array variabkccess pattern was studied.
vlel: m(RR) +m(F) <1 The results in Fig. 4 depict the comparison of the partition-
YmeM: m(RBBy)+m(BBy) <1 ing algorithm against Steinke's algorithm f&election Sort

Partitioning is not done when the onchip scratchpad size is not
Based on the above inequations, an ILP solver [10] can find

the optimal solution for the given cost function. From the value

of the decision variablBD and the size of the partitioned vari-

TABLE Il
Energy Consumption of Memories

able moved onto scratchpad, the result regarding partitioni

LY A

of the array and the splitting point can be determined respee- Mse(:?;rcyhgi%e Mle;réog;ti Ze Ene(;%)g(nJ)
tively. Consequently, if the array is partitioned, the application scratchpad 256 Bytes 061
is modified appropriately and the chosen memory objects can scratchpad 512 Bytes 0.69
then be placed onto the scratchpad memory using Steinke’s Al- scratchpad 1024 Bytes 0.82
gorithm. scratchpad 2048 Bytes 1.07
IV. WORK FLow scratchpad 4096 Bytes 1.21
: . , scratchpad 8192 Bytes 2.07
The experiments were carried out following the workflow main memory 16 bif| 512 KBytes 24.0
described in Fig. 3. In the first step the benchmark programs, i memory 32 bi| 512 KBytes 493

9000

8500 [X X\gﬁ\.\ ¢\
?, 8000 \%)ﬁ\
Z 7500 3_
3 \ §
2 7000 5
; | E
8 6500]
: | h
5 =
6000 - 1
Steinke’'s Algo —%— \L L
5500 Partitipni ng Al go +‘ ‘ ‘
200 400 600 800 1000 1200 1400
Onchi p Scratchpad (Bytes)
Fig. 4. Energy Comparison (Selection Sort) .
Qirec b Sorabohpad Siae (Byies]
1700 ‘
1650 T\.\K Fig. 6. Energy Distribution (Selection Sort)
1600
g 1550 / \.NK*\ TABLE Ill
g 1500 / \ Energy Steinke’s Algorithm vs. Partitioning Algorithm [uJ]
g 1450 / \ benchmark || Steinke Algo.| Part. Algo.| % imp.
s M0 o \ FFT 16,604.979] 15,331.800] 7.66%
g 1350 - e “\\ FIR 5,669.055| 4,671.960| 17.59%
1300 BubbleSort 15,719.219| 13,877.833| 11.71%
1250 [Steinke’'s Al go \\§< SelectionSort 8,590.022| 7,612.881| 11.37%
1000 LEATItIONINg Algo K ‘ ‘ InsertionSort 6,301.395| 5,710.620| 9.37%
200 400 600 800 1000 1200 1400 ArithCoder 16,945.211| 15,972.100 5.74%
Onchi p Scratchpad (Bytes) average 10.57%

Fig. 5. Performance Comparison (Selection Sort)

large enough to optimize energy or when the scratchpad size is

large enough to keep the whole array variable onchip. At the§827ks, the size of basis elememivas 80 Bytes and the av-

points (at 600 Bytes and 1300 Bytes in Fig. 5), our results af§29€ runtime for solving ILP inequations was observed to be

exactly the same as Steinke’s Algorithm. less than 4s. The application transformation algorithm being a
Since we are replacing a single statement to access the arP@jtern matching algorithm was linear to the size of the appli-

with multiple statements, we are actually decreasing the pefdtion program and had minimal runtime for the benchmarks.
formance of the application in terms of the CPU cycles. ThEinally, the maximum energy savings which could be achieved

results in Fig. 5 confirm the fact. Consequently, we proVélgains;t Steinl.<e’s. algorithm are shown in table 11l and perfor-
that“The application is optimized for energy and not for per-Mance penalties in table IV.

formance”which is not a common phenomenon in the energy

optimizations. The maximum energy saving that is achieved

in the above example (Selection Sort) is 11.37% and with a

performance degradation is 15.25% for the onchip scratchpad TABLE IV

size of 1200 Bytes. Fig. 6 presents the distribution of the total Performance Steinke’s Algorithm vs. Partitioning Algorithey¢les]
energy as consumed by processor, onchip scratchpad memaory

and offchip memory. We observe a considerable drop in the2€nchmark || Steinke Algo.| Part. Algo.| 9% imp.
offchip memory as well as total energy when we introduce dnFFT 1,344,537) 1,283,481 +4.54%
onchip scratchpad memory into the system, which then copFIR 690,852 764,948 -10.72%
tinuously decrease with increasing scratchpad size. We als§uPbleSort 1,986,192) 2,912,574/ -46.64%
observe an increase in the processor energy just at the pgi€/ectionSort 1,361,253) 1,568,885 -15.25%
(700 Bytes), when we decide to partition the array. InsertionSort 892,073 1,113,301 -24.79%

The number of memory objects is linear to the number gArithCoder 2,192,162| 2,208,645 -0.75%
the basic blocks and variables in the application. In our bench&V€rage -15.60%

VI. CONCLUSION & FUTURE WORK [16] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An ac-
curate and fine grain instruction-level energy model supporting
It is evident from the results that the partitioning algorithm software optimizations. IPATMOS 01 Yverdon-Les-Bains,
shows a reasonable improvement of 5.7% to 17.6% for appli- Switzerland, Sep. 2001.
cations from all domains including those with irregular array{17] Synopsys.Power products reference manual V3.8ynopsys,
access pattern. The results from thetiianing algorithm are 19%6. _ .
always better than or equal to Steinke’s Algorithm. With thig18] V- Tiwari. Logic and system design for low power consumption
. .) i . PhD Thesis, Princeton University, Princeton, NJ, 1996.
algorithm a further improvement is gained against commonIY

) . 13] V. Tiwari, S. Malik, and A. Wolfe. Instruction level power anal-
used Cache systems. Moreover the algorithm can be integrate ysis and optimization of softwardournal of VLSI Signal Pro-

into any compiler used for the scratchpad systems. cessing Systems3(3):223-238 Aug. 1996.

We would like to enhance this approach in the future by ref20] S. J. E. Wilton and N. P.alippi. CACTI: An enhanced cache
ducing the overhead due to the Access macro, by combining it accessand cycle time modéEEE Journal of Solid-State Cir-
with other optimizationg.g. loop splitting cuits, 31(5):677-688, May 1996.

[21] M. E. Wolf and M. S. Lam A loop transformation theory and
an algorithm to maximise parallelism Rroc. of the 3rd Work-

REFERENCES shop on Programming Languages and Compilers for Parallel
Computing Aug. 1990
[1] ARM. Advanced RISC Machines Ltghww.arm.com. [22] A. Moffat, R. Neal and I. H. Witten Arithmetic coding re-
[2] AT91M40400ATMEL Corporationwww.atmel.com. vised ACM Transactions on Information Systems, 16(3):256-

[3] R.Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar- 294, 1998.
wedel. Scratchpad Memory: A design alternative for cache on-
chip memory in embedded systems. Rroc. of the 10th In-
ternational Symposium on Hardware/Software Codedigtes
Park,CO, May. 2002.

[4] encc. University of Dortmund, Computer Science Dep., Is12-
www.cs.uni-dortmund.de/research/encc.

[5] J. L. Hennessy and D. A. Patterson. Computer Architecture A
Quantative Approach, Morgan Kaufmann Publisher Inc., CA.
1990

[6] Intel. Mobile Power Guidelines 2000. Technical Report 1.0,
Intel Corporation, Dec. 1998.

[7] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan,
I. Kadayif, and A. Parikh. Dynamic management of scratchpad
memory Space. IRProc. of 38th DAC Olpages 690—695, Las
Vegas, NV, Jun. 2001.

[8] S. Steinke, L. Wehmeyer, B. S. Lee and P. Marwedel, Assigning
program and data objects to scratchpad for energy reduction. In
Proc. of the DATE Conference 2002ris, France, Mar. 2002.

[9] C. Ferdinand, F. Martin, R. Wilhelm, Applying compiler tech-
niques to cache behaviour prediction. Pmoc. of Workshop
on Languages, Compilers and Tools for Real-Time Systess
Vegas, Nevada, page 37-46, Jun. 1997

[10] G. L. Nehmhauserand L. A. Wolseinteger And Combinato-
rial Optimization John Wiley and Sons, New York, NY, 1988.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization
of scratch-pad memory in embedded processor applications. In
Proc. of European Design and Test Confereraris, France,
Mar. 1997.

[12] P.R. Panda, N. D. Dutt, and A. NicolaMemory Issues In Em-
bedded Systems-on-chigluwer Academic Publishers, Nor-
well, MA, 1999.

[13] R. Sedgewick.Algorithms Addison Wesley, Massachusetts,
1988.

[14] T.Simunic, L. Benini, and G. De Micheli. Cycle-accurate simu-
lation of energy consumption in embedded system®rért. of
the 36th DAC 99pages 867—872, New Orleans, LA, Jun. 1999.

[15] J. Spdin, B. Foderberg, and T. Lindgren. Allocation of global
data objects in on-Chip RAM. IfProc. Workshop on Com-
piler and Architectural Support for Embedded Computer Sys-
tems Washington DC, Dec. 1998.

