
Efficient Scratchpad Allocation Algorithms for

Energy Constrained Embedded Systems

Manish Verma, Lars Wehmeyer, Peter Marwedel

Department of Computer Science XII,
University of Dortmund, 44221 Dortmund, Germany,

{Manish.Verma, Lars.Wehmeyer, Peter.Marwedel}@uni-dortmund.de

Abstract. In the context of portable embedded systems, reducing en-
ergy is one of the prime objectives. Memories are responsible for a sig-
nificant percentage of a system’s aggregate energy consumption. Conse-
quently, novel memories as well as novel memory hierarchies are being
designed to reduce the energy consumption. Caches and scratchpads are
two contrasting variants of memory architectures. The former relies com-
pletely on hardware logic while the latter requires software for its uti-
lization. Most high-end embedded microprocessors today include onchip
instruction and data caches along with a scratchpad.
Previous software approaches for utilizing scratchpad did not consider
caches and hence fail for the prevalent high-end system architectures. In
this work, we use the scratchpad for storing instructions. We solve the
allocation problem using a greedy heuristic and also solve it optimally
using an ILP formulation. We report an average reduction of 20.7% in
instruction memory energy consumption compared to a previously pub-
lished technique. Larger reductions are also reported when the problem
is solved optimally.
The scratchpad in the presented architecture is similar to a preloaded
loop cache. Comparing the energy consumption of our approach against
that of preloaded loop caches, we report average energy savings of 28.9%
using the heuristic.

Key words: [Memory architectures, Memory allocation, Energy aware com-
pilation, Integer Linear Programming, Memory energy modeling]

1 Introduction

Over the past decade, the popularity of mobile embedded devices such as mobile
phones, digital cameras etc. has been one of the major driving forces in tech-
nology. The computing power of early desktop computers is now available in a
handheld device. Unfortunately, battery technology could not keep pace with the
advances made in silicon technology. As a result, contemporary mobile embed-
ded systems suffer from limited battery capacity. Reduced energy consumption
translates to reduced dimensions, weight and cost of the device. In such a com-
petitive market, these reductions might be sufficient to provide an edge over
competing products.

Several researchers [4, 16] have identified the memory subsystem as the en-
ergy bottleneck of the entire system. In fact, fetches from the instruction memory
typically account for much of a system’s power consumption [10]. Memory hier-
archies are being introduced to reduce the memory system’s energy dissipation.
Caches and scratchpad memories represent two contrasting memory architec-
tures. Caches improve performance by exploiting the available locality in the
program. As a consequence, energy consumption is also reduced. However, they
are not an optimal choice for energy constrained embedded systems. Caches,
apart from the actual memory, consist of two additional components [22]. The
first component is the tag memory required for storing information regarding
valid addresses. The second component is the hardware comparison logic to de-
termine cache hits and cache misses. These additional components consume a
significant amount of energy per access to the cache irrespective of whether the
access translates to a hit or a miss. Also, caches are notorious for their unpre-
dictable behavior [14].

On the other end of the spectrum are the scratchpad memories, consisting
of just data memory and address decoding circuitry. Due to the absence of
tag memory and comparators, scratchpad memories require considerably less
energy per access than a cache. In addition, they require less onchip area and
allow tighter bounds on WCET prediction of the system. However unlike caches,
scratchpads require complex program analysis and explicit support from the
compiler. In order to strike a balance between these contrasting approaches,
most of the high-end embedded microprocessors (e.g. ARM10E [1], ColdFire
MCF5 [15]) include both onchip caches and a scratchpad.

We assume a memory hierarchy as shown in figure 1.(a) and utilize the
scratchpad for storing instructions. The decision to store only instructions is mo-
tivated by the fact that the instruction memory is accessed on every instruction
fetch and the size of programs for mobile embedded devices is smaller compared
to their data size requirements. This implies that small scratchpad memories
can achieve greater energy savings when they are filled with instructions rather
than with data. In this paper, we model the cache behavior as a conflict graph
and allocate objects onto the scratchpad considering their effect on the I-cache.
As shown later, the problem of finding the best set of objects to be allocated on
the scratchpad can be formulated as a non-linear optimization problem. Under
simplifying conditions, it can be reduced to either a Weighted Vertex Cover [9]
problem or a Knapsack [9] problem, both of which are known to be NP-complete
problems. A greedy heuristic is used to solve the scratchpad allocation problem.
An optimal solution is also obtained by formulating the scratchpad allocation
problem as an ILP problem. We compare our approach against a published tech-
nique [19]. Due to the presence of an I-cache in our architecture, the previous
technique fails to produce optimal results and may even lead to the problem of
cache thrashing [11].

We also compare our approach to that of preloaded loop caches [10], as the
utilization of the scratchpad in the current setup (see figure 1) is similar to a loop
cache. Preloaded loop caches are architecturally more complex than scratchpads,

Data
Cache

Instruction
Cache

Loop

Processor

Cache

Data
Cache

Instruction
Cache

Scratchpad

Processor Loop Cache
Controller

(a) (b)

Fig. 1. System Architecture: (a) Scratchpad (b) Loop Cache

but are less flexible as they can be preloaded with only a limited number of loops.
We demonstrate that using our allocation algorithm, scratchpad memories can
outperform their complex counterparts.

In the next section, we describe related work and detail the shortcomings of
the previous approaches. Section 3 describes the information regarding memory
objects, cache behavior and the energy model. Section 4 presents the scratchpad
allocation problem in detail, followed by the description of the proposed heuristic
and the ILP formulation. The experimental setup is explained in section 5. In
section 6 we present the results for an ARM based system and end the paper
with a conclusion and future work.

2 Related Work

Analytical energy models for memories [12] have been found to be fairly accurate.
We use cacti [22] to determine the energy per access for caches and preloaded
loop caches. The energy per access for scratchpad memories was determined
using the model presented in [3].

Application code placement techniques [17, 21] were developed to improve the
CPI (cycles per instruction) by reducing the number of I-cache misses. Those
basic blocks that are frequently executed in a contiguous way are combined
to form so-called traces [17]. Authors in [17] placed traces within functions,
while [21] placed them across function boundaries to reduce the I-cache misses.

Several researchers [2, 16] have utilized scratchpad memories for assigning
global/local variables, whereas only Steinke et al. [19] considered both program
and data parts (memory objects) to be allocated onto the scratchpad. They
assumed a memory hierarchy composed of only scratchpad and main memory.
Profit values were assigned to program and data parts according to their execu-
tion and access counts, respectively. They then formulated a knapsack problem
to determine the best set of memory objects to be allocated to the scratchpad
memory.

Though this approach is sufficiently accurate for the used memory hierarchy,
it is not suitable for the current setup. The assumption that execution (access)
counts are sufficient to represent energy consumption by a memory object fails in
the presence of a cache, where execution (access) counts have to be decomposed

into cache hits and misses. The energy consumption of a cache miss is signifi-
cantly larger than that of a cache hit. Consequently, two memory objects can
have the same execution (access) counts, yet have substantially different cache
hit/miss ratio and hence energy consumption. This discussion stresses the need
for a more detailed energy model taking these effects into account. In addition,
maintaining the conflict relationships between memory objects is not considered
during code placement using the previous approach. The memory objects are
moved instead of copying them from main memory to the scratchpad. As a re-
sult, the layout of the entire program is changed, which may cause completely
different cache access patterns and thus lead to erratic results.

Authors in [13] proposed an instruction buffer to act as an alternative location
for fetching instructions in order to improve the energy consumption of a system.
Loops identified by the short backward branch at the end of the first iteration
are copied to the instruction buffer during the second iteration. From the third
iteration onwards, instructions are fetched from the instruction buffer instead
of the L1 I-cache, given that no change-of-flow (e.g. branch) statements are
contained within the loop. Ross et al. [10] proposed a Preloaded Loop Cache
which can be statically loaded with pre-identified memory objects. Start and
end addresses of the memory objects are stored in the controller, which on every
instruction fetch determines whether to access the loop cache or the L1 I-cache.
Consequently, the loop cache can be preloaded with complex loops as well as
functions. However, to keep the energy consumption of the controller low, only
a small number of memory objects (typically 2-6) can be preloaded.

The problem of being able to store only a fixed number of memory objects in
the loop cache will lead to problems for large programs with several hot spots. As
in [19], memory objects are greedily selected only on the basis of their execution
time density (execution time per unit size). In the wake of the discussion we
enumerate the contributions of this paper.

– It for the first time studies the combined effect of a scratchpad and an I-cache
on the memory system’s energy consumption.

– It stresses the need for a sophisticated allocation algorithm by demonstrating
the inefficiency of previous algorithms when applied to the present architec-
ture.

– It presents a novel scratchpad allocation algorithm which can be easily ap-
plied to a host of complex memory hierarchies.

– It demonstrates that scratchpad memories together with an allocation algo-
rithm can replace preloaded loop caches.

Please note that in the rest of this paper, energy consumption refers to the en-
ergy consumption of the instruction memory subsystem. In the following section,
we describe preliminary information required for understanding our approach.

3 Preliminaries

We start by describing the assumed architecture for the current research work,
followed by the description of the memory objects. The interaction of memory

objects within the cache is represented using a conflict graph, which forms the
basis of the proposed energy model and the algorithm.

3.1 Architecture

For the presented research work we assume a Harvard architecture (see fig-
ure 1(a)) with the scratchpad at the same horizontal level as the L1 I-cache.
The scratchpad is mapped to a region in the processor’s address space and acts
as an alternative non-cacheable location for fetching instructions. As shown in
figure 1(b), the preloaded loop cache setup is similar to using a scratchpad.

3.2 Memory Objects

In the first step of our approach, memory objects within the program code are
identified. The memory objects are then distributed between offchip main mem-
ory and non-cacheable scratchpad memory to minimize energy consumption.
The well known compiler optimization trace generation is used to identify the
memory objects. A trace is a frequently executed straight-line path, consisting
of basic blocks connected by fall-through edges [21]. Dynamic profiling is re-
quired to determine traces in the program. Our traces are kept smaller than
the scratchpad size, as larger traces can not be placed onto the scratchpad as a
whole. The traces are appended with NOP instructions to align them to cache
line boundaries. This ensures a one-to-one relationship between cache misses
and corresponding traces. The rational behind using traces is threefold. Firstly,
traces improve the performance of both the cache and the processor by enhanc-
ing the spatial locality in the program code. Secondly, due to the fact that traces
always end with an unconditional jump [21], they form an atomic unit of instruc-
tions which can be placed anywhere in memory without modifying other traces.
Finally, traces are accountable for every cache miss caused by them. In the rest
of the paper, unless specified, traces will be referred to as memory objects (MO).
In the following subsection, we represent the cache behavior at the granularity
of memory objects by a conflict graph.

3.3 Cache Behavior (Conflict Graph)

The cache maps an instruction to a cache line according to the following function:

Map(address) = address mod
CacheSize

Associativity ∗ WordsPerLine

Similarly, a memory object is mapped to cache line(s) depending upon its start
address and size. Two memory objects potentially cause a conflict in the cache
if they are mapped to at least one common cache line. This relationship can be
represented by a conflict graph G (see figure 2), which is defined as follows:

5

10

5

5

5

10 10

{110}
mo4

{110}
mo5

{30}
mo3

{100}
mo2

{100}
mo1

Fig. 2. Conflict Graph

Definition: The Conflict Graph G = (X, E) is a directed weighted graph
with node set X = {x1, . . . , xn}. Each vertex xi in G corresponds to a memory
object (MO) in the application code. The edge set E contains an edge eij from
node xi to xj if a cache-line belonging to xj is replaced by a cache-line belonging
to xi using the cache replacement policy. In other words, eij ∈ E if there occurs
a cache miss of xi due to xj . The weight mij of the edge eij is the number of
cache lines that need to be fetched if there is a miss of xi that occurs due to xj .
The weight fi of a vertex xi is the total number of instruction fetches within xi.

In order to build up the conflict graph for a program, we first need to iden-
tify the memory objects to be considered by our algorithm. We use profiling to
determine traces. In order to mark the vertices with the total number of instruc-
tion fetches and to determine the number of conflict misses among the memory
objects, dynamic profiling is also required. The determined values are then at-
tributed to vertices and conflict edges, respectively. In order to minimize the
influence of the chosen input data set on the results, average values generated
by using several distinct input vectors can be used.

The conflict graph as shown in figure 2 is a directed graph because the conflict
relationship is antisymmetric. The conflict graph G and the energy values are
utilized to compute the energy consumption of a memory object according to
the energy model proposed in the following subsection.

3.4 Energy Model

As mentioned before, all energy values refer to the energy consumption of the
instruction memory subsystem. The energy E(xi) consumed by an MO xi is
expressed as:

E(xi) =

{

ESP (xi) if xi is present on scratchpad
ECache(xi) otherwise

(1)

where ECache can be computed as follows:

ECache(xi) = Hit(xi) ∗ ECache hit + Miss(xi) ∗ ECache miss (2)

where functions Hit(xi) and Miss(xi) return the number of hits and misses,
respectively, while fetching the instructions of MO xi. ECache hit is the energy
of a hit and ECache miss is the energy of a miss in one line of the I-cache.

Miss(xi) =
∑

xj∈Ni

Miss(xi, xj) with (3)

Ni = {xj : eij ∈ E}

where Miss(xi, xj) denotes the number of conflict cache misses of MO xi caused
due to conflicts with MO xj . The sum of the number of hits and misses is equal
to the number of instruction fetches fi in an MO xi:

fi = Hit(xi) + Miss(xi) (4)

For a given input data set, the number of instruction fetches fi within an MO
xi is a constant and is independent of the memory hierarchy. Substituting the
terms Miss(xi) from equation (3) and Hit(xi) from equation (4) in equation (2)
and rearranging derives the following equation:

ECache(xi) = fi ∗ ECache hit+ (5)
∑

xj∈Ni
Miss(xi, xj) ∗ (ECache miss − ECache hit)

The first term in equation (5) is a constant while the second term, which is
variable, depends on the overall program code layout and the memory hierarchy.
We would like to point out that the approach [10] only considered the constant
term in its energy model. Consequently, the authors could not optimize the
overall memory energy consumption.

Since there are no misses when an MO xi is present in the scratchpad, we
can deduce the following energy equation:

ESP (xi) = fi ∗ ESP (6)

where ESP is the energy per access of the scratchpad.

4 Problem Description

Once we have created the conflict graph G annotated with vertex and edge
weights, the energy consumption of memory objects can be computed. Now, the
problem is to select a subset of memory objects which minimizes the number of
conflict edges and the overall energy consumption of the system. The subset is
bounded in size by the scratchpad size.

In order to formally describe the algorithm we need to define a number of
variables. The binary variable l(xi) denotes the location of memory object xi in
the memory hierarchy:

l(xi) =

{

0, if xi is present on scratchpad
1, otherwise

(7)

Since a memory object allocated to the scratchpad does not conflict with other
memory objects, we can represent Miss(xi, xj) (see above) as follows:

Miss(xi, xj) =

{

0, if xj is present on scratchpad
mij , otherwise

(8)

where mij is the weight of the edge eij connecting vertex xi to xj . Function
Miss(xi, xj) can be reformulated using the location variable l(xj) and repre-
sented as:

Miss(xi, xj) = l(xj) ∗ mij (9)

Similarly, the location variable l(xi) can be used to reformulate the energy equa-
tion (1) denoting the energy consumed by the memory object.

E(xi) = [1 − l(xi)] ∗ ESP (xi) + l(xi) ∗ ECache(xi) (10)

We substitute the energy equations for ECache and ESP from equations (5) and
(6), respectively, into the above equation. By rearranging the terms we transform
equation (10) into the following form.

E(xi) = fi ∗ESP + fi ∗ [ECache hit − ESP] ∗ l(xi)+ (11)

[ECache miss − ECache hit] ∗ [
∑

j∈Ni
l(xj) ∗ l(xi) ∗ mij]

We find the last term is a quadratic degree term, since the number of misses
of a memory object xi not only depends upon its location but also upon the
location of the conflicting memory objects xj .

The objective function ETotal denoting the total energy consumed by the
system needs to be minimized.

ETotal =
∑

xi∈X

E(xi) (12)

Minimization of the objective function is to be performed while conforming to
the scratchpad size constraint.

∑

xi∈X

[1 − l(xi)] ∗ S(xi) ≤ ScratchpadSize (13)

The size S(xi) of memory object xi is computed without considering the ap-
pended NOP instructions. These NOP instructions are stripped away from the
memory objects prior to allocating them to the scratchpad. The non-linear op-
timization problem can be solved to obtain a scratchpad allocation optimized
with respect to energy.

Our problem formulation can be easily extended to handle complex mem-
ory hierarchies. For example, if we had more than one scratchpad at the same
horizontal level in the memory hierarchy, then we only need to repeat inequa-
tion (13) for every scratchpad. An additional constraint ensuring that a memory
object is assigned to at most one scratchpad is also required.

Greedy-Heuristic(G(X,E), ScratchpadSize)
1 Rem SPSize = ScratchpadSize
2 L = NIL
3 while (∃x ∈ X : S(x) ≤ Rem SPSize)
4 do select xi ∈ X : S(xi) ≤ Rem SPSize ∧

E(xi) > E(xk) ∀xk ∈ X : S(xk) ≤ Rem SPSize
5 X = X − {xi}
6 E = E − {eij |∀j : j ∈ Ni} − {eji|∀j : i ∈ Nj}
7 Rem SPSize = Rem SPSize - S(xi)
8 L = L ∪ {xi}
9 return L

Fig. 3. Greedy Heuristic for Scratchpad Allocation Problem

The above optimization problem is related to two NP-complete problems viz.
Weighted Vertex Cover [9] and Knapsack problem [9]: Under the simplifying
assumption that the cache present in the system is large enough to hold all the
memory objects without causing a single conflict miss, the energy consumption
of a memory object becomes independent of other memory objects. Under this
assumption, the problem is reduced to a Knapsack problem with each node
having constant weights. On the other hand, if we assume that the energy of an
access to the scratchpad ESP is equal to the energy of a cache hit ECache hit,
equation (11) transforms to the following form and the problem is reduced to
the Weighted Vertex Cover problem:

E(xi) = fi ∗ ESP + [ECache miss − ECache hit] ∗ [
∑

j∈Ni

l(xj) ∗ l(xi) ∗ mij] (14)

Fortunately, approximation algorithms can be employed to obtain near-opti-
mum solutions in polynomial time. In the following section, we will present a
greedy heuristic which solves the scratchpad allocation problem near-optimally
in most cases. We will also solve the problem optimally using an Integer Linear

Programming (ILP) based approach.

4.1 Greedy Heuristic

The proposed greedy heuristic tries to put maximum weighted nodes on the
scratchpad. It takes as input the conflict graph and the scratchpad size and
returns the list of memory object to be allocated onto the scratchpad. The
heuristic is formally presented in figure 3.

The heuristic iteratively computes the energy consumption of each memory
object which can be placed on the scratchpad memory, considering not only
execution counts but also the number of conflict cache misses caused by other
memory objects. The maximum energy vertex to be allocated to the scratchpad
is then greedily selected. This vertex is removed from the conflict graph G and
appended to the list L and the unallocated scratchpad size (Rem SPSize) is
reduced appropriately.

A memory object present in the scratchpad does not conflict with the memory
objects present in the cache. The energy of the conflicting memory objects is
thus reduced by removing the vertex and the adjacent edges from the conflict
graph. The energy consumption of a memory object xi is computed according
to the energy model proposed in subsection 3.4. The heuristic iterates as long
as there exists a memory object which can be placed on the scratchpad without
violating the scratchpad size constraint. On termination, a list of memory objects
to be allocated onto the scratchpad is returned. The time complexity of the
heuristic is O(ScratchpadSize ∗ (|X | + |E|)) if we precompute and store the
energy consumption of each memory object xi at the end of each “while loop”
iteration.

4.2 Integer Linear Programming

In order to formulate an Integer Linear Programming problem, we need to lin-
earize the scratchpad allocation problem. This can be achieved by replacing the
non-linear term l(xi) ∗ l(xj) of equation (11) by an additional variable L(xi, xj):

E(xi) = fi ∗ ESP + (15)

fi ∗ [ECache hit − ESP] ∗ l(xi) +

[ECache miss − ECache hit] ∗ [
∑

j∈Ni

L(xi, xj) ∗ mij]

In order to prevent the linearizing variable L(xi, xj) from taking arbitrary values,
the following linearization constraints have to be added to the set of constraints:

l(xi) − L(xi, xj) ≥ 0 (16)

l(xj) − L(xi, xj) ≥ 0 (17)

l(xi) + l(xj) − 2 ∗ L(xi, xj) ≤ 1 (18)

The objective function ETotal and the scratchpad size constraint remain un-
changed (cf. equations (12) and (13)).

A commercial ILP Solver [6] is used to obtain an optimal subset of memory
objects which minimizes the objective function. The number of vertices |X | of
the conflict graph G is equal to the number of memory objects, which is bounded
by the number of basic blocks in the program code. The number of linearizing
variables is equal to the number of edges |E| in the conflict graph G. Hence, the
number of variables in the ILP problem is equal to |X |+ |E| and is bounded by
O(|X |2). The actual runtime of the used ILP solver [6] was less than one second
on a Sun-Blade 100 running at 500 MHz for a conflict graph containing 455
vertices. The computation times may be expected to increase if non-commercial
tools (e.g. lp solve [5]) are used. In the next section we describe the experimental
setup used for conducting experiments.

Consumption
Energy

Program
Machine

Simulator
Processor

Memory
Simulator

Consumption
Energy

Simulator

Machine
Program

Processor

Memory
Simulator

C Compiler C Compiler

C Program

Trace
Generation

Trace
Generation

Scratchpad
Algorithm

Loop Cache
Algorithm

Energy Cost
Model

Loop CacheScratchpad

Fig. 4. Experimental Workflow

5 Experimental Setup

The experimental setup consists of an ARM7T processor core, onchip instruction
and data caches, an onchip scratchpad and an off-chip main memory. The used
instruction cache has a direct-mapped organization since this architecture has
been found to be most suitable for low-power instruction caches [20]. The capaci-
ty of the instruction cache was selected according to the size of the corresponding
benchmark. We determine the effect of allocation techniques for scratchpad on
the energy consumption of the instruction memory subsystem. The cacti cache
model [22] was used to calculate the energy consumption per access to a cache,
loop cache and scratchpad memory, all assumed to be onchip and in 0.5µm
technology. The loop cache was assumed to be able to hold a maximum of 4
loops. The energy consumption of the main memory was measured from our
evaluation board [18].

Experiments were conducted according to the workflow presented in figure 4.
In the first step, the benchmarks programs are compiled using ENCC [7], an
energy aware C compiler. Trace generation [21] is a well known I-cache perfor-
mance optimization technique. For a fair comparison, traces are generated for
all the allocation techniques. In the following step, the scratchpad allocation
algorithm can either be the greedy heuristic (cf. subsection 4.1), the ILP based
allocation algorithm (cf. subsection 4.2) or Steinke’s scratchpad allocation algo-
rithm [19]. The generated machine code is then fed into ARMulator [1] to obtain

0%

25%

50%

75%

100%

125%

150%

175%

200%

128 256 512 1024
Scratchpad Size (Bytes)

I-Cache Access Scratchpad Access

I-Cache Miss I-Mem Energy

Fig. 5. Comparison of Scratch-
pad (Heuristic) against Scratchpad
(Steinke) for MPEG

0%

25%

50%

75%

100%

125%

150%

175%

200%

128 256 512 1024
Scratchpad / Loop Cache Size (Bytes)

I-Cache Access Scratchpad Access

I-Cache Miss I-Mem Energy

Fig. 6. Comparison of Scratchpad
(Heuristic) against Loop Cache
(Ross) for MPEG

0%

20%

40%

60%

80%

100%

120%

140%

128 256 512 1024
Scratchpad / Loop Cache Size (Bytes)

SP (Heuristic) SP (ILP) SP (Steinke)

Fig. 7. Comparison of Heuristic,
ILP, Steinke’s and Ross’s Algo-
rithm for MPEG

0%

20%

40%

60%

80%

100%

120%

140%

mpeg g721 adpcm
Benchmarks (128 Bytes)

SP(Heuristic) SP(ILP) SP(Steinke)

Fig. 8. Comparison of Heuristic,
ILP, Steinke’s and Ross’s Algo-
rithm for all benchmarks

the instruction trace. Our custom memory hierarchy simulator [8], based on the
instruction trace, memory hierarchy and the energy cost model, computes the
aggregate energy consumed by the memory subsystem.

For the loop cache configuration, the loop cache is preloaded with the loops
and functions selected by the allocation algorithm presented in [10]. The energy
consumed by the memory subsystem is computed in a similar way, using the
appropriate memory hierarchy and energy cost model.

6 Results

A subset of benchmarks from the Mediabench suite were used to substantiate
our claims concerning energy savings using the proposed algorithm. The size of
the scratchpad/loop cache was varied while keeping the rest of the instruction
memory subsystem invariant. The number of accesses, hits and misses to every
memory in the hierarchy were counted. Based on this information and the energy
model (subsection 3.4), energy consumption was computed.

Figure 5 displays the energy consumption along with all its respective param-
eters (i.e. scratchpad accesses, cache accesses and cache misses) of the proposed
heuristic for the MPEG benchmark. The instruction cache size was set to 2k for

Table 1. Overall Energy Savings

Benchmark MemSize Energy Consumption (µJ) Improvement(%)
(size) (bytes) SP SP SP LC SP(Heu) SP(Heu) SP (Heu)

(Heu) (ILP) (Steinke) (Ross) vs. vs. vs.
SP(ILP) SP(Steinke) LC (Ross)

adpcm 128 3567 3397 2763 2998 -5.0 -29.1 -19.0
(1 KB) 256 1744 1695 2040 1784 -2.8 14.6 2.3

512 225 — 1400 1140 — 84.0 80.3

g721 128 7565 7393 8012 7739 -2.3 5.6 2.2
(4.7 KB) 256 6412 5984 6321 6446 -7.1 -1.4 0.5

512 5249 4478 4469 6131 -17.2 -17.4 14.4
1024 2566 2107 3033 6207 -21.8 15.4 58.7

mpeg 128 6318 6324 12161 10293 0.1 48.0 38.6
(21.4KB) 256 5983 5989 11697 10266 0.1 48.9 41.7

512 3779 3755 10157 10291 -0.6 62.8 63.3
1024 3709 3419 3579 10336 -8.5 -3.6 64.1

-6.5 20.7 28.9

these experiments. All the results are shown as percentages of Steinke’s algo-
rithm [19], with the parameters of that algorithm being denoted as 100%. It is
interesting to note that in spite of higher I-cache accesses and lower scratchpad
accesses, the heuristic reduces energy consumption against Steinke’s algorithm.
The substantially lower I-cache misses are able to over-compensate for higher
I-cache accesses and result in reduced energy consumption. The justification for
this is that Steinke’s algorithm tries to reduce energy consumption by increas-
ing the number of accesses to the energy efficient scratchpad. In contrast, our
heuristic tries to reduce I-cache misses by assigning conflicting memory objects
to the scratchpad. Since I-cache misses account for a significant portion of en-
ergy consumption, the heuristic is able to conserve up to 63% energy against
Steinke’s algorithm. In one case (1024 bytes scratchpad), Steinke’s algorithm
performs marginally better than our approach. For this setup, moving (instead
of copying) the memory objects seems to completely change the program’s cache
conflict behavior. However, there is no way of foreseeing this kind of effect when
applying Steinke’s algorithm and it might happen that instead of reducing the
cache misses, cache performance and energy consumption are deteriorated since
the algorithm doesn’t account for cache behavior.

In fig. 6, we compare a scratchpad allocated with our heuristic against a loop
cache preloaded with Ross’s algorithm [10]. Similar to figure 5, all results are
shown as percentages of the corresponding parameters of Ross’s algorithm [10].
For small scratchpad/loop cache sizes (128 and 256 bytes), the number of accesses
to loop cache are higher than those to scratchpad. However, as we increase
the size, the loop cache’s performance is restricted by the maximum number
of only 4 preloadable memory objects. The scratchpad, on the other hand, can
be preloaded with any number of memory objects as long as their aggregate
size is less than the scratchpad size. Moreover, the number of I-cache misses is

substantially lower if a scratchpad is used instead of a loop cache. Consequently,
a scratchpad is able to reduce energy consumption at an average of 52% against
a loop cache for the MPEG benchmark.

In figure 7, we compare the energy consumption of different scratchpad allo-
cation algorithms (viz. Heuristic, ILP and Steinke’s) for scratchpad based sys-
tems and that of Ross’s algorithm [10] for loop cache based systems. As ear-
lier, the energy consumption due to Ross’s algorithm is denoted as 100% while
the energy consumption of the scratchpad allocation algorithms are denoted as
percentages of Ross’s algorithm. A couple of interesting points can be noted
for the figure. Firstly, the heuristic performs fairly close to the optimal solu-
tion obtained by the ILP based algorithm. Secondly, for the smaller sizes (128
and 256 bytes), loop cache performs better than the scratchpad allocated with
Steinke’s algorithm [19], while the opposite is true for larger sizes. Figure 8 de-
picts the comparison of scratchpad allocation algorithms and Ross’s algorithm
for all benchmarks. A scratchpad and a loop cache of 128 bytes was assumed to
be present in the memory hierarchy. The instruction cache size was set to 1k and
128 bytes for g721 and adpcm, respectively. Observations similar to the previous
figure can be noted.

Finally, table 1 summarizes the energy consumption for scratchpad and loop
cache allocated with the corresponding allocation algorithms.

7 Conclusion and Future Work

In this paper, we model the cache-behavior based scratchpad allocation prob-
lem as a generic non-linear optimization problem. The problem is solved near-
optimally using a heuristic and also optimally using an ILP based approach.
The energy consumption of the heuristic is on average a meagre 6.5% away from
that of the optimal solution. The presented techniques reduce the energy con-
sumption of the system against a published algorithm. An average reduction
of 20.7% in energy consumption due the heuristic is observed. In addition, we
also demonstrate that the simple scratchpad memory allocated with the pre-
sented techniques outperforms a preloaded loop cache. Average energy savings
of 28.9% are observed for the proposed heuristic and even higher values can be
reported for ILP based allocation algorithm. The presented techniques can be
easily extended to handle a variety of complex memory hierarchies.

References

1. ARM. Advanced RISC Machines Ltd. www.arm.com.
2. O. Avissar, R. Barua, and D. Stewart. An Optimal Memory Allocation Scheme for

Scratch-Pad-Based Embedded Systems. IEEE Transactions on Embedded Com-
puting Systems, 1(1):6–26, November 2002.

3. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
Memory: A Design Alternative for Cache On-chip Memory in Embedded Systems.
In Proc. of 10th International Symposium on Hardware/Software Codesign, Col-
orado, USA, May 2002.

4. N. Bellas, I. Haji, C. Polychronopoulos, and G. Stamoulis. Architectural and
Compiler Support for Energy Reduction in Memory Hierarchy of High Performance
Microprocessors. In Proceedings of the International Symposium on Low Power
Electronics and Design ISPLED, Monterey, CA, USA, August 1999.

5. M. Berkelaar. lp solve: a Mixed Integer Linear Program solver. available from:
ftp://ftp.es.ele.tue.nl/pub/lp solve.

6. CPLEX. CPLEX Ltd. www.cplex.com.
7. Department of Computer Science XII, University of Dortmund. ENCC.

http://ls12-www.cs.uni-dortmund.de/research/encc.
8. Department of Computer Science XII, University of Dortmund. MEMSIM.

http://ls12.cs.uni-dortmund.de/∼wehmeyer/LOW POWER/memsim doc.
9. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide To the

Theory of NP-Completeness. Freeman, New York, USA, 1979.
10. S.C.A Gordon-Ross and F. Vahid. Exploiting Fixed Programs in Embedded Sys-

tems: A Loop Cache Example. Computer Architecture Letters, January 2002.
11. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 3. edition, 2003.
12. M. Kamble and K. Ghosh. Analytical Energy Dissipation Models for Low Power

Caches. In Proceedings of the International Symposium on Low Power Electronics
and Design ISPLED, Monterey, CA, USA, August 1997.

13. L.H. Lee, B. Moyer, and J. Arends. Instruction Fetch Energy Reduction Using
Loop Caches For Embedded Applications with small Tight Loops. In Proceedings
of the International Symposium on Low Power Electronics and Design ISPLED,
San Diego, CA, USA, August 1999.

14. P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig. Fast, predictable
and low energy memory references through architecture-aware compilation. In
Proceedings of the Asia and South Pacific Design Automation Conference ASPDAC
2004 (to appear), 2004.

15. MOTOROLA. Motorola Inc. http://e-www.motorola.com/files/shared/doc/
selector guide/SG1001.pdf.

16. P.R. Panda, N.D. Dutt, and A. Nicolau. Memory Issues in Embedded Systems-On-
Chip. Kluwer Academic Publishers, Norwell, MA, 1999.

17. P. Pettis and C. Hansen. Profile guided code positioning. In Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language Design and Implemen-
tation. ACM SIGPLAN, June 1990.

18. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate and Fine
Grain Instruction-Level Energy Model Supporting Software Optimizations. In Pro-
ceedings of International Workshop on Power And Timing Modeling, Optimization
and Simulation PATMOS, Yverdon-Les-Bains, Switzerland, Sep. 2001.

19. S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning Program and Data
Objects to Scratchpad for Energy Reduction. In Proceedings of Design Automation
and Test in Europe DATE, Paris France, March 2002.

20. C.-L. Su, , and A.M. Despain. Cache Design Trade-Offs and Performance Opti-
mization: A Case Study. In Proceedings of the International Symposium on Low
Power Design ISLPD, pages 63–68, 1995.

21. H. Tomiyama and H. Yasuura. Optimal Code Placement of Embedded Software for
Instruction Caches. In Proceedings of the 9th European Design and Test Conference
ET&TC, Paris, France, March 1996.

22. S.J.E. Wilton and N.P. Jouppi. CACTI: An Enhanced Cache Access and Cycle
Time Model. IEEE Journal of Solid-State Circuits, 31(5), May 1996.

