
High-level Control Flow Transformations for Performance Improvement of

Address-Dominated Multimedia Applications

Heiko Falk C�edric Ghez Miguel Miranda Rainer Leupers

Computer Science 12 DESICS DESICS ISS
University of Dortmund IMEC Lab. IMEC Lab. RWTH Aachen University
Dortmund, D 44221 Leuven, B 3001 Leuven, B 3001 Aachen, D 52056
Heiko.Falk@udo.edu ghez@imec.be miranda@imec.be leupers@iss.rwth-aachen.de

Abstract| This paper describes a set of novel high-

level control 
ow transformations for performance im-

provement of typical address-dominated multimedia ap-

plications. We show that these transformations applied

at the source code level can have a very large impact

on execution time at the cost of limited overhead in

code size for a broad range of instruction set processor

families (i. e. CISC, RISC, DSP, VLIW, . . . ). For a pro-

found evaluation, all transformations are applied to the

C-codes of two real-life applications selected from the

video and image processing domains. A detailed analy-

sis of the e�ect of the transformations is done by compil-

ing and executing the transformed programs on seven

di�erent programmable processors. The measured run-

times indicate quite signi�cant improvements in all pro-

cessor families when comparing the performance of the

transformed codes to their initial version even when

these are compiled using their native optimizing com-

pilers with their most aggressive optimization features

enabled. The average gains in execution time range

from 40.2% and 87.7% depending on the driver, with

an average overhead in code size between 21.1% and

100.9%.

I. Introduction

Typical multimedia applications often involve a large
amount of transfers to the memories of an embedded sys-
tem. This results in huge penalties with respect to runtime
due to slow memories and bus systems as well as power
consumption due to the domination of total system power
by memory related power consumption [20].

In general, source code transformations are applied to
remove Data Transfer and Storage overhead (DTS ). Sev-
eral examples of such methodologies have been described
in related literature, e. g. [16, 4] amongst others.

These methodologies typically achieve a signi�cant re-
duction of memory footprint and bus transfers but lead to
a more complex addressing functionality with respect to ad-
dressing arithmetic and control 
ow modi�cation. There-
fore, that overhead must be removed to ensure a good to-
tal system performance, especially for programmable pro-
cessors. For that purpose, several address optimization
methodologies and techniques have been proposed in lit-

erature, mostly located at the assembly code abstraction
level [11, 7, 17, 18], but also at the source code level [12, 14].
However, they mostly focus on the optimization of the
arithmetic related issues but do not address control 
ow
execution issues which is the contribution of this paper.

The control 
ow overhead introduced by DTS approaches
originates e. g., when reducing the required memory foot-
print but also when exploiting the data reuse opportunities
present in the code. However, we have observed that also
real-life multimedia code can exhibit such behaviour (as it
is the case for one of the two drivers used in this work) even
when not processed by DTS related transformations.

With the help of if-statements within global loops, the
memory footprint is reduced by loop merging transforma-
tions implemented for array references in local loops with
di�erent but still overlapping iteration domains. With the
help of extra copy signals and extra (local) loops, most
memory accesses presenting data reuse opportunities can be
localized at the lower layers of the memory hierarchy, hence
reducing system bus load. However, this results in overhead
in control 
ow which leads to overall runtime degradation
resulting mostly from stalls in the execution of the instruc-
tion pipeline but also from increased miss rates of the in-
struction cache.

Some overhead in arithmetic is also present due to the
condition expressions of the extra if-statements and the
adapted indexing, but also due to overhead originally
present in the code. However, that one can be largely elim-
inated by �rst applying an (address) arithmetic optimiza-
tion stage, e. g. the ones developed within the ADOPT
project [14]. These optimizations are implemented at the
source code level and in a processor independent way.

These address optimizing source code transformations (in
fact all loop iterator dependent arithmetic including condi-
tions over loop iterators) have been proven to be e�ective
for multimedia applications independently of the processor
architecture for which the applications have been compiled
and benchmarked.

In this paper, we demonstrate that after the optimization
of the address and condition related arithmetic, huge im-
provements in runtimes can still be achieved. The largest
potential for optimization lies in the simpli�cation of the
generated control 
ow structures which has not been con-
sidered so far. A new systematic technique for source code



transformation is presented that allows to automatically re-
duce the amount of branch evaluation in the inner loop of
a nest by the use of a novel loop nest split technique.
Further optimization of the addressing can be performed

(even after the optimization of the arithmetic functionality)
by replacing small ring bu�ers by register variables (namely,
ring bu�er replacement) such that no addressing code is
required for these at all. This can be done very eÆciently
by avoiding unnecessary data moves between the functional
units and the register �les by applying novel loop unrolling
techniques steered by control 
ow issues.
An important advantage of using source code transforma-

tions compared to compiler optimizations is that an imple-
mentation of such techniques can be done independently
of architectural features of di�erent processors and inde-
pendently of intermediate representations and data struc-
tures used within the compiler. Native compilers especially
designed and tuned for a processor architecture are still
needed as back-end for the generation of highly optimized
assembly code. Hence, the source code optimization ap-
proach is highly portable.
The code transformations proposed in this paper have

been applied to two multimedia applications written in
ANSI C in a systematic way, partially with the help of
already implemented tools. The optimized code versions of
the benchmarks have been compiled for seven di�erent pro-
grammable processors and their runtimes have been mea-
sured on the real processor hardware.
The remainder of this paper is organized as follows: A

survey of work related to address code generation and
source code transformations is given in section II. Sec-
tion III presents the optimizations applied to the bench-
marks. An overview of the applications serving as bench-
marks and the processors considered is given in section IV.
Section V contains a detailed description of the measured
results. Section VI summarizes and concludes this paper.

II. Related Work

Some particular DTS source code transformation
methodologies are DTSE [4] and ADOPT [14] which are al-
ready mentioned previously. Besides these methodologies,
many approaches have been presented for the automated
generation of high-quality address code. In [11, 7, 17, 18],
heuristics for the computation of memory layouts for pro-
gram variables and for the address assignment problem are
described. These approaches are situated at the level of
address registers and post-increment/decrement operations
provided by the instruction set of digital signal processors
(DSPs). For this reason, they are implemented as compiler
built-in optimizations.
A loop transformation framework is suggested by Kelly

and Pugh [9]. This framework helps in representing loop
transformations in a uni�ed formal way, but does not target
the problem of selection and ordering of transformations.
Liem et al. [12] have proposed a framework for the anal-

ysis of array references and for the eÆcient use of address
generation units (AGU s). In their work, the analysis of
memory accesses is done by pro�ling at the level of address

registers, whereas the optimizations performed afterwards
are expressed at the source code level.
Zory and Coelho [21] have investigated source code trans-

formations in the context of factorization of algebraic ex-
pressions and eÆcient mapping of such expressions to spe-
cial hardware capabilities of processors.
Manniesing et al. [13] present a way for transforming em-

bedded applications especially for DSPs with instruction
set extensions according to the Single Instruction Multiple
Data (SIMD) paradigm. Source code is rewritten with the
help of a transformation tool for ANSI-C [3] which is based
on pattern recognition strategies.
In the domain of intermediate representations suitable

for source code transformations, the SUIF [19] system is
well-known. It provides a set of data structures for the
representation and optimization of programs together with
a parser supporting C and Fortran as well as a back-end
printing out the contents of the data structures as C code.
The LANCE system proposed by Leupers [10] uses an

executable intermediate representation. ANSI-C programs
are represented as statements of 3-address code that are
stored in the form of ANSI-C instructions. This way, opti-
mizations based on the LANCE representation can be seen
as low-level source code transformations.

III. Transformations

In this section, the source code transformations to be
applied after the DTS and address optimization stages are
illustrated. They focus on the optimization of the control

ow and address related issues.
The transformations presented in this section are cur-

rently partly automated. These tools are based on the
SUIF [19] intermediate representation. Due to the proto-
type nature of our tools, some manual intervention is still
required. During this manual process, care has been taken
to ensure that always a formal and systematic approach
has been used when transforming the benchmarks. In the
future, this will allow us to fully automate the entire op-
timization process by implementing a complete tool chain
for source code transformations.

A. Loop Nest Split for Branch Evaluation Optimization

Very often, manifest if-statements are present inside loop
nests in order to detect particular ranges in the complete
loop iteration space. This introduces a large overhead
within the loops, because on the one hand, many computa-
tions have to be done for the evaluation of the conditions.
On the other hand, a very irregular control 
ow is gener-
ated leading to a sub-optimal performance of the processor
pipeline. A typical situation1 is depicted in �g. 1. As can
be seen, two if-statements with eight conditions on the in-
duction variables have to be evaluated in the innermost
j-loop. This leads to the execution of more than 90 mil-
lion if-statements throughout the entire loop nest. Since
the code is already written in an optimized manner (i. e.

1Taken from the Motion Estimation benchmark presented in sec-
tion IV.



common subexpressions are eliminated and loop invariant
code is moved out of the inner loops), it is obvious that the
if-statements themselves represent the main bottleneck in
this code.

for (z=0; z<20; z++)

for (x=0; x<36; x++) f

x1=4*x;

for (y=0; y<49; y++) f

y1=4*y;

for (k=0; k<9; k++) f

x2=x1+k-4;

for (l=0; l<9; l++) f

y2=y1+l-4;

for (i=0; i<4; i++) f

x3=x1+i; x4=x2+i;

for (j=0; j<4; j++) f

y3=y1+j; y4=y2+j;

if (x3<0 || 35<x3 || y3<0 || 48<y3)

then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)

then block 2; else else block 2; gggggg

Fig. 1. Loop Nest before Splitting

The code fragment above seems to be suitable for the
application of conventional loop unswitching as proposed
by Bacon et al. [1], which is able to move if-statements out
of frequently executed loops (see �g. 2).

for (i=1; i<n; i++) f if (x<7)

a[i]=a[i]+c; for (i=1; i<n; i++) f

if (x<7) a[i]=a[i]+c;

b[i]=a[i]*c[i]; b[i]=a[i]*c[i]; g

else else

b[i]=a[i-1]*b[i-1]; g for (i=1; i<n; i++) f

a[i]=a[i]+c;

b[i]=a[i-1]*b[i-1]; g

Fig. 2. Conventional Loop Unswitching

Unfortunately, this well-known technique requires the
conditions of the if-statements to be loop-invariant which
is not the case here. To our knowledge, no optimization
technique exists which is able to reduce the control 
ow
overhead in situations like the one shown in �g. 1. In con-
trast, the loop nest split technique presented in this section
complements the conventional loop unswitching, since we
explicitly focus on loop-variant if-statements and are able
to optimize them.
We have found that a large potential for optimization

can be exploited when carefully analyzing the conditions
of the if-statements and the induction variables. We have
developed and implemented optimization strategies based
on genetic algorithms that are capable of identifying ranges
of values of the induction variables where all conditions of
the if-statements are proven to be true. For this purpose,

a polyhedral representation of conditions in loop nests is
used. In a �rst step, a genetic algorithm optimizes each
single condition in a loop nest isolated without consider-
ing the structure of entire if-statements in the loop nest
and generates optimized polyhedra for all conditions. Here-
after, these optimized polyhedra are combined to one single
polyhedron representing the whole loop nest with all if-
statements and conditions and thereby modelling a global
search space. To this global search space, a second genetic
algorithm is applied which determines the globally best so-
lution for an entire loop nest [5, 6]. For the example given
above, our technique has lead to the result that both if-
statements in the j-loop are true for x � 10 or y � 14.

The goal of our loop nest split technique is to generate
a supplementary loop nest covering exactly these ranges of
the induction variables determined by the analysis. There-
fore, the y-loop is split by duplicating the loop nest located
inside the y-loop, i. e. all loops from the k- to the j-loop.
The duplicated loop nest is guarded by a new if-statement
ensuring that this copy is only executed for the values of x
and y determined by the analysis. Since for these values, it
is known that the conditions of the if-statements are true,
the if-statements can be removed from the duplicated loop
nest resulting in a piece of code with linear control 
ow.
The transformation of the code from �g. 1 is illustrated
in �g. 3. After our optimization, only a total number of
around 7 millions of if-statements is executed.

for (z=0; z<20; z++)

for (x=0; x<36; x++) f

x1=4*x;

for (y=0; y<49; y++)

if (x>=10 || y>=14) f /* Splitting-If */

for (y new=y; y new<49; y new++)

for (k=0; k<9; k++)

for (l=0; l<9; l++)

for (i=0; i<4; i++)

for (j=0; j<4; j++) f

then block 1; then block 2; g

y = y new;

g else f

y1+4*y;

for (k=0; k<9; k++) f

x2=x1+k-4;

for (l=0; l<9; l++) f

y2=y1+l-4;

for (i=0; i<4; i++) f

x3=x1+i; x4=x2+i;

for (j=0; j<4; j++) f

y3+y1+j; y4+y2+j;

if (0 || 35<x3 || 0 || 48<y3)

then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)

then block 2; else else block 2; gggggg

Fig. 3. Loop Nest after Splitting



B. Ring Bu�er Replacement

As already mentioned in section I, circular copy signals
can be introduced for data-reuse optimization, therefore
many array accesses are performed using modulo operators.
This very often leads to the e�ect that many small arrays
are involved where the dividend depends on the induction
variable of a loop, as shown on the left side of �g. 4. In
these cases, arrays serve as ring bu�ers that are accessed in
a circular way within loops.

It is the goal of the ring bu�er replacement techniques
presented in this section to scalarize these arrays, i. e. to
replace them by a set of scalar variables. Every access to
an element of the original array is replaced by the corre-
sponding scalar variable as principally shown on the right
side of �g. 4.

int ip[3]; int ip0,ip1,ip2;

for(x=..;..;x++)f for(x=..;..;x++)f

ip[x % 3] = code; ...

a = ip[(x-2) % 3]*68; ipx = code;

a += ip[(x-1) % 3]*99; a = ipy*68;

a += ip[x % 3]*68;g a += ipz*99;

a += ipx*68;g

Fig. 4. Ring Bu�er Replacement

Conventional optimizations for array scalarization al-
ready exist (see e. g. [1, 15]), but they are unable to handle
the circular access to the ring bu�er. In contrast, our tech-
niques consisting of a scalarization and an unrolling step are
able to replace the ring bu�ers and model the circular access
to its elements. The main advantages of the techniques pre-
sented here are �rstly that complex addressing arithmetic
is removed from the code. Since the memory addresses of
scalar variables are determined at compile time, no costly
address calculations have to be performed by a processor
at runtime. This holds for all kinds of processors, even for
DSPs with complex address generation units. The second
advantage of the ring bu�er replacement is that the newly
inserted scalar variables are automatically fed into the reg-
ister allocation phase of a compiler. Thus, the compiler
can decide to keep the scalars in processor registers lead-
ing to faster and less energy-consuming accesses to the ring
bu�er. In the following two subsections, the scalarization
and unrolling steps mentioned above are illustrated.

B.1. Ring Bu�er Scalarization

In a �rst phase, the elements of a ring bu�er are scalar-
ized so that explicit addressing expressions like e. g. (x-2)

% 3 (see left side of �g. 5) and the implicit addition with
the base address of the array are removed from the code.

Special care has to be taken to model the circular access
to the elements of the ring bu�er correctly. This is done
by inserting some copy instructions at the beginning of a
loop as shown on the right side of �g. 5. With the help of
these copy instructions, the contents of the scalars is shifted

int ip[3]; int ip0,ip1,ip2;

for(x=..;..;x++)f for(x=..;..;x++)f

ip[x % 3] = code; ip2 = ip1;

a = ip[(x-2) % 3]*68; ip1 = ip0;

a += ip[(x-1) % 3]*99; ip0 = code;

a += ip[x % 3]*68;g a = ip2*68;

a += ip1*99;

a += ip0*68;g

Fig. 5. Ring Bu�er Scalarization

by one position in every loop iteration and consequently
models the cyclic behavior of ring bu�ers.

Obviously, this scalarization step leads to a slight over-
head, because additional instructions and data transfers are
inserted. This overhead can not be removed using standard
copy propagation techniques, but we are able to eliminate
it with the help of the loop unrolling technique proposed in
the following section.

B.2. Loop Unrolling for Ring Bu�ers

Conventional loop unrolling (see e. g. Muchnick [15]) is
a very common technique for reducing loop overhead. The
determination of the so-called unrolling factor is normally
done by an analysis of size and number of iterations of
a loop so that an explosion of code size is avoided. In
contrast, loop unrolling in the context of ring bu�er re-
placement is steered by the number of copy instructions
inserted by the scalarization step described in section B.1.
The left side of �g. 6 shows 3 variables created by the ring
bu�er scalarization. The contents of variables ip1 and ip0

is copied to ip2 and ip1, and a new value is assigned to ip0.
These two copy instructions can be removed completely by
unrolling the loop with factor 3 and adapting de�nitions
and uses of the ipx variables. The resulting code is shown
on the right side of �g. 6.

for(x=..;..;x++)f for(x=..;..;x+=3)f

ip2 = ip1; ip2 = code;

ip1 = ip0; a = ip1*68;

ip0 = code; a += ip0*99;

a = ip2*68; a += ip2*68;

a += ip1*99; ip1 = code;

a += ip0*68;g a = ip0*68;

a += ip2*99;

a += ip1*68;

ip0 = code;

a = ip2*68;

a += ip1*99;

a += ip0*68;g

Fig. 6. Loop Unrolling for Ring Bu�ers



IV. Experimental Setup

For evaluating the e�ects of the transformations, two
multimedia applications from the image processing domain
have been used as test drivers. The �rst one is a cavity de-
tection algorithm (CAVITY, [2]) mainly used in the med-
ical �eld for detecting tumour cavities in computer tomo-
graphy pictures. The second benchmark is an MPEG4 full
search motion estimation kernel (ME, [8]) used in video
en/decoding algorithms. For clearly demonstrating that
the techniques presented in this paper are not necessar-
ily depending on previous DTS-like optimizations, only
the CAVITY benchmark has passed the DTSE transfor-
mations [4]. In contrast, both drivers are address opti-
mized [14] so that the memory and addressing optimized
versions serve as starting point for the performance oriented
transformations described in this paper.
It is obvious that strong interdependencies exist between

the ring bu�er scalarization and our loop unrolling tech-
nique. Because of these relations, these two transformations
should be executed sequentially without any other transfor-
mation in between. Since clearly no interdependencies exist
between the loop nest split technique of section A and the
ring bu�er scalarization / loop unrolling, the former trans-
formation can principally be executed before or after the
latter ones. Still, we have decided to do the loop nest split-
ting before any other transformation. This is only due to
the fact that the analysis routines for the loop nest splitting
are easier to implement when unrolled loops don't need to
be considered.
All code versions generated during the entire transforma-

tion process were compiled with the highest degree of op-
timization for an Intel Pentium 3, Sun UltraSparc-III, HP-
9000, TriMedia TM-1000, Texas Instruments TMS320C6x
and an ARM7TDMI core both in 32-bit arm-mode and 16-
bit thumb-mode. For the Pentium, the Visual-C++ com-
piler was used, for all other platforms we used the highly
optimizing compilers provided by the processor manufac-
turers (e. g. Sun Workshop, TI Code Generation Tools).
Runtimes were measured by executing and pro�ling the
compiled programs on existing hardware using either avail-
able workstations or evaluation boards. The usage of real
hardware is advantageous because all measurements can be
done within a very small time frame without depending
on simulation tools which are known to be imprecise and
slow. Furthermore, the available caches of all processors
(except TI C6x and ARM7TDMI) are considered automat-
ically when measuring the on-board execution times.

V. Results

The tables I and II show the runtimes of the benchmarks
on the di�erent processors. Runtimes are measured for the
memory/address optimized version of a benchmark (des-
ignated as \Reference Code" in the tables) and after each
of the transformations presented in section III. The last
row in these tables shows the total improvements measured
when applying the transformations presented in this paper.
For this purpose, the fastest code version generated dur-

ing transformation (highlighted in bold font) is compared
with the reference code. Empty rows denote missing code
versions where a transformation could not be applied since
that benchmark did not expose an opportunity. For all
processors, the runtimes in the following tables are given in
CPU seconds.

As table I shows, the loop nest split and ring bu�er scalar-
ization steps are the ones leading to the highest gains for
the CAVITY benchmark on all platforms (between 21.8%
and 66.3% altogether). The subsequent transformations
lead to further improvements, the best runtimes vary be-
tween 32.5% (SUN) and 74% (TriMedia) of the runtimes
before transformation. On the average over all processors,
the runtimes have been improved by 40.2%.

In the case of the ME benchmark, a signi�cant speed-up
is achieved by performing loop nest splitting (see table II).
Hereafter, the runtimes vary between 9.2% and 18.3% of
the referenced code version. This surprising result is due
to the fact that our analysis shows that all if-statements
in the heart of a 7-fold loop nest evaluate to true for more
than 92% of the iteration space. The fastest runtimes reach
from 8.6% (ARM) up to 17.4% (C6x). The total average
improvement of the transformations presented in this paper
lies around 87.8%.

Tables III and IV show the evolution of code sizes during
the transformation of both benchmarks. Code sizes are rep-
resented by the number of assembly instructions generated
by the compilers for the di�erent source code versions. As
can be seen from table III, the code sizes of the CAVITY
benchmark increase between 75.7% (HP) and 127.3% (Pen-
tium) after the application of loop nest splitting, ring bu�er
scalarization and loop unrolling. On the average, the trans-
formations presented in this paper lead to an increase by
100.9%. This increase by a factor of two is very moderate,
since one would expect an increase by a factor of six due to
loop nest splitting (factor 2) and loop unrolling (factor 3).
In the case of the ME benchmark, the code size increases
are even more moderate (see table IV). Here, the appli-
cation of loop nest splitting and unrolling makes the code
grow between only 5.7% (ARM thumb) and 63% (HP). Af-
ter the whole transformation process, an average code size
increase of 21.1% is observed.

These numbers show that modern optimizing compilers
are not capable of achieving improvements comparable to
the gains obtained by the source code transformations pre-
sented here. This is due to the fact that compilers con-
centrate on standard optimizations. In contrast, the tech-
niques described here go far beyond this scope and are
application domain speci�c in such a way, that particular
properties of the code generated by memory and address
optimization phases are recognized and exploited success-
fully.2

2Note however, that our techniques are general enough so that
the execution of these DTS stages is not a necessary precondition.
For example, the application of the loop nest splitting on the ME
benchmark is possible without DTSE (see also [5, 6]).



TABLE I
Runtimes of CAVITY

[CPU sec.] Pentium Sun HP TriMedia TI C6x ARM7 thumb ARM7 arm

Reference Code 0.97 0.83 0.6 5.17 10.09 4.58 5.34

Loop nest split 0.75 0.37 0.36 3.83 8.48 3.73 4.63

Ring bu�er scal. 0.66 0.28 0.41 4.04 6.27 3.15 4.09

Loop unrolling 0.63 0.27 0.33 3.91 5.73 2.94 3.79

Improvement (%) 35.05 67.47 45 25.92 43.21 35.81 29.03

TABLE II
Runtimes of MOTION ESTIMATION

[CPU sec.] Pentium Sun HP TriMedia TI C6x ARM7 thumb ARM7 arm

Reference Code 1.95 1.29 1.9 20.45 19.97 351.17 420.79

Loop nest split 0.26 0.17 0.27 2.14 3.66 33.57 38.93

Ring bu�er scal.

Loop unrolling 0.25 0.19 0.27 2.08 3.47 32.18 36.16

Improvement (%) 87.18 86.82 85.79 89.83 82.61 90.84 91.41

TABLE III
Code sizes of CAVITY

[#Asm instrs.] Pentium Sun HP TriMedia TI C6x ARM7 thumb ARM7 arm

Reference Code 513 766 511 1790 612 608 473

Loop nest split 885 1047 670 2535 1103 958 751

Ring bu�er scal. 719 879 592 2480 708 757 600

Loop unrolling 1166 1399 898 4035 1163 1224 964

TABLE IV
Code sizes of MOTION ESTIMATION

[#Asm instrs.] Pentium Sun HP TriMedia TI C6x ARM7 thumb ARM7 arm

Reference Code 324 372 430 1570 416 730 416

Loop nest split 358 423 512 1680 497 774 450

Ring bu�er scal.

Loop unrolling 352 425 701 2095 478 772 447

VI. Conclusions

In this article, we present a set of several high-level
control 
ow transformations for runtime improvement of
address-dominated multimedia applications. The optimiza-
tions proposed here have been applied to two di�erent im-
age processing applications. The generated source codes
have been compiled and executed on a set of seven di�er-
ent processors. The average gains in execution time range
from 40.2% up to 87.8%, with an average overhead in code
size between 21.1% and 100.9%.

The fact that we achieve signi�cant improvements over
seven di�erent processors and optimizing compilers clearly
shows that our approach of compiler-independent source
code transformations is highly performant. A higher po-
tential for optimization can be exploited when taking into
account the underlying processor organization constraints

during a subsequent processor-dependent transformation
phase. This is part of our future work.

References

[1] D. F. Bacon, S. L. Graham and O. J. Sharp. Compiler Trans-
formations for High-Performance Computing. ACM Computing
Surveys, 26(4), Dec. 1994.

[2] M. Bister, Y. Taeymans and J. Cornelis. Automatic Segmen-
tation of Cardiac MR Images. IEEE Journal on Computers in
Cardiology, 1989.

[3] M. Boekhold, I. Karkowski and H. Corporaal. Transforming
and Parallelizing ANSI C Programs Using Pattern Recognition.
High Performance Computing and Networking conference, Am-
sterdam, Apr. 1999.

[4] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. G.
Kjeldsberg et al. Data access and storage management for em-
bedded programmable processors. Kluwer Acad. Publ., Boston,
2002.



[5] H. Falk. Control Flow Optimization by Loop Nest Splitting
at the Source Code Level. Research Report 773, University of
Dortmund, Oct. 2002.

[6] H. Falk and P. Marwedel. Control Flow driven Splitting of
Loop Nests at the Source Code Level. In Design, Automation
and Test in Europe (DATE), Munich, Mar. 2003.

[7] C. Gebotys. DSP Address Optimization Using A Minimun
Cost Circulation Technique. In International Conference on
Computer-Aided Design (ICCAD), San Jose, Nov. 1997.

[8] S. Gupta, M. Miranda, F. Catthoor and R. Gupta. Analysis
of High-level Address Code Transformations for Programmable
Processors. InDesign, Automation and Test in Europe (DATE),
Paris, Mar. 2000.

[9] W. Kelly and W. Pugh. A Unifying Framework for Iteration
Reordering Transformations. In First International Conference
on Algorithms and Architectures for Parallel Processing, pages
153 { 162, Brisbane, Apr. 1995. IEEE.

[10] R. Leupers. Code Optimization Techniqes for Embedded Proces-
sors - Methods, Algorithms and Tools. Kluwer, Boston, 2000.

[11] R. Leupers and P. Marwedel. Algorithms for Address Assign-
ment in DSP Code Generation. In International Conference on
Computer-Aided Design (ICCAD), San Jose, Nov. 1996.

[12] C. Liem, P. Paulin and A. Jerraya. Compilation Methods for
the Address Calculation Units of Embedded Processor Systems.
Journal of Design Automation for Embedded Systems, 2(1), Jan.
1997.

[13] R. Manniesing, I. Karkowski and H. Corporaal. Automatic
SIMD Parallelization of Embedded Applications Based on Pat-
tern Recognition. In Lecture Notes in Computer Science, Berlin,
2000. Springer.

[14] M. Miranda, F. Catthoor, M. Janssen and H. de Man. High-
level Address Optimisation and Synthesis Techniques for Data-
Transfer Intensive Applications. IEEE Transactions on VLSI
Systems, 6(4):677 { 686, Dec. 1998.

[15] S. S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, San Francisco, 1997.

[16] P. R. Panda, N. Dutt and A. Nicolau. Memory Issues in Em-
bedded Systems-On-Chip. Kluwer Acad. Publ., Boston, 1999.

[17] A. Sudarsanam, S. Liao and S. Devadas. Analysis and eval-
uation of address arithmetic capabilities in custom DSP archi-
tectures. In Design Automation Conference (DAC), Anaheim,
June 1997.

[18] S. Udayanarayanan and C. Chakrabarti. Address Code Gener-
ation for Digital Signal Procesors. In Design Automation Con-
ference (DAC), Las Vegas, June 2001.

[19] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. An-
derson et al. An Overview of the SUIF Compiler System.
http://suif.stanford.edu/suif/suif1, 1995.

[20] S. Wuytack, F. Catthoor, L. Nachtergaele and H. De Man.
Power Exploration for Data Dominated Video Applications. In
International Symposium on Low Power Electronics and Design
(ISLPED), Monterey, Aug. 1996.

[21] J. Zory and F. Coelho. Using Algebraic Transformations to
Optimize Expression Evaluation in Scienti�c Code. In Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT), Paris, Oct. 1998.


