
Influence of Onchip Scratchpad Memories
on WCET prediction∗

Lars Wehmeyer, Peter Marwedel
Embedded Systems Group, CS Dept., University of Dortmund, Germany

{Lars.Wehmeyer, Peter.Marwedel}@udo.edu

May 27, 2004

Abstract

In contrast to standard PCs and many high-performance com-
puter systems, systems that have to meet real-time requirements
usually do not feature caches, since caches primarily improve
the average case performance, whereas their impact on WCET
is generally hard to predict. Especially in embedded systems,
scratchpad memories have become popular. Since these small,
fast memories can be controlled by the programmer or the com-
piler, their behavior is perfectly predictable. In this paper, we
study for the first time the impact of scratchpad memories on
worst case execution time (WCET) prediction. Our results in-
dicate that scratchpads can significantly improve WCET at no
extra analysis cost.

1 Introduction

For the currently available technologies, there is an increas-
ing speed gap between processor speeds and memory speeds.
Caches are being used in order to bridge that gap, especially in
PC-like systems. However, the approach used in such systems
has some disadvantages for embedded systems:

1. Caches are known to be one of the main contributors to
the total energy consumption of systems [1], and

2. Caches are typically designed to improve the average case
access time.

Analysis techniques to determine their contribution to the
worst case execution time are complicated and, for some re-
placement policies, just missing. Scratch pad memories (some-
times also known as tightly coupled memories) are small mem-
ories mapped into the address space of a system. They are used
whenever an address is within the address range assigned to
that memory. Scratch pad memories are more energy efficient
than main memories (since they are smaller) but also more ef-
ficient than caches (since only the required information is read
from or written into the scratchpad memory). Scratchpads are
currently being used by designers in a very ad-hoc fashion, and

∗This work has been sponsored in part by EU-project ARTIST2

a comprehensive methodology of how to use them is, surpris-
ingly, still missing.

Earlier work proposed compile-time algorithms for mapping
hot spots of applications to scratchpad memories. This work
was mainly motivated by the resulting energy savings, much
of which result from a reduction of the average access time.
However, the algorithms also have an extremely beneficial im-
pact on worst case execution time estimation: it is fully pre-
dictable which memory will be used for a certain memory ac-
cess. Hence, scratchpad memories provide 100% predictability
concerning the timing of memory references. This predictabil-
ity is explored in the current paper. In this work, we combine
views from three different perspectives: an architectural view
on scratchpad-based memory structures, a compiler view on
how to map hot spots to these memories and a real-time system
view on the resulting WCET. To the best of our knowledge, it is
the first paper that provides a detailed analysis of the impact on
the WCET of optimized mappings of applications to scratchpad
memories.

2 Related Work

Many architectural features are included in modern micropro-
cessors in order to meet the customers’ demand for high aver-
age case performance. Especially in embedded systems having
to meet real-time constraints, this is in general not very help-
ful, since the inclusion of pipelines, caches and branch predic-
tion units makes it more difficult to predict a guaranteed upper
bound for worst case exeution time [2]. Complicated analysis
tools have been developed and are in use to shed light on the
effect of these architectural features on WCET (see [3] for an
overview). The difficulty lies in the fact that e.g. for caches, the
hardware detects at runtime whether a memory access results
in a cache hit or miss. In order to predict this behavior dur-
ing WCET analysis, the worst case behavior of the cache has
to be determined for the considered application. Several anal-
ysis methods have been proposed for instruction caches [4, 5]
as well as for data caches [6]. The aforementioned publica-
tions solely deal with inclusion of caches in WCET estimation,
which shows the considerable analysis effort required to predict
cache behavior.

1



aiT [7] is a software tool that can help developers of safety-
critical applications to verify that their programs will always
meet the specified deadlines. This is done by determining
an upper bound for the worst case execution time of the ap-
plication. aiT guarantees the generated WCET results to be
safe, which is generally infeasible using simulation techniques
alone. Also, aiT abolishes the need to perform time consum-
ing simulation runs in order to determine typical performance
values. The aiT WCET analyzer has been designed according
to the requirements of Airbus France for validating the timing
behaviour of critical avionics software.

Scratchpad memories are being used as an alternative to
caches due to their performance and their reduced energy con-
sumption [8]. Scratchpad memories do not have a hardware to
control their contents at runtime. Therefore, the assignment of
memory objects to the different memories has to be handled
either by the programmer or, in an automated process, by the
compiler, who can analyze memory access patterns and dis-
tribute objects accordingly. The scratchpad can either retain
the assigned memory objects throughout the running time of
the application (static case), or the contents of the scratchpad
may change at runtime (dynamic case). Allocation techniques
to statically allocate data to the scratchpad were introduced e.g.
in [9], whereas [10, 11] presented a dynamic approach for data
and instructions, respectively. Further work concerning the uti-
lization of scratchpad memories was conducted by [12, 13].
Both static and dynamic scratchpad usage are under full con-
trol of the compiler or the programmer, making the methods
inherently predictable at compile time. In this paper, we will
concentrate on the static allocation technique.

For the work presented in [14], the goal of the static alloca-
tion of both instructions and data to the scratchpad memory is
energy saving. Therefore, an instruction level energy model for
the used processor, an ARM7TDMI [15], was developed [16]
and used in the encc compiler. The compiler determines the
execution counts of functions and basic blocks and the number
of accesses to variables in order to compute the most promising
objects to be assigned to the limited scratchpad space. The ac-
tual optimization problem, which is similar to the well-known
knapsack problem, is solved using an ILP solver. Then, the
chosen memory objects are placed on the scratchpad, making
control flow and address corrections where necessary.

3 Workflow

To determine a scratchpad memory’s impact on WCET, we
used the workflow shown in figure 1: The encc compiler gen-
erates an executable program which makes use of the available
scratchpad. The memory objects allocated to the scratchpad
memory are chosen according to the following algorithm (for
details, please refer to [14]) which selects those elements with
the highest benefit with respect to energy. In order to do this,
all memory objects are weighted according to their execution or
access frequency (for functions or data elements, respectively).
The size of the objects is also considered, allowing the opti-

C−Program

encc

executable

ARMulator

aiT

Performance
Actual

WCET

SP
Size

Figure 1: Workflow

mzation problem to be formulated as an integer programming
problem as follows:

Maximize
∑

i

m(i) ∗ E(Fi) +
∑

j

m(j) ∗E(Dataj)

subject to

∑

i

m(i) ∗ S(Fi) +
∑

j

m(j) ∗ S(Dataj) <= SPsize

where m(x) is a binary decision variable having the value ′1′

if the corresponding object is allocated to the scratchpad and
E(x) is the benefit in energy consumption if object x is stored
on the scratchpad instead of main memory. S(x), the size of
object x, is used in the constraints to ensure that the scratchpad
capacity is not exceeded. In this form, the optimization prob-
lem can be solved using a commercial ILP solver [17]. The
encc compiler then uses the solver’s results to allocate the cho-
sen objects to the scratchpad memory. The scratchpad size is
varied in powers of two from 0 to a total of 4096 bytes in our
experiments.

The generated executable with the optimal set of objects al-
located to the scratchpad is then fed through ARM’s instruction
set simulator ARMulator to obtain the number of actually exe-
cuted cycles for the given input data set. Apart from this, the ex-
ecutable is analyzed using aiT [7] to determine an upper bound
for the WCET (commonly called WCET) of the executable.

aiT supports the specification of memory regions with dif-
ferent attributes. The only relevant attribute for this work is the
number of wait states that occur during memory accesses. Ac-
cording to the values measured for our ARM7 evaluation board,
we assumed three waitstates for all main memory accesses and
one wait state for scratchpad accesses.

To enable aiT to analyze the executable with memory ob-
jects allocated to the scratchpad, some annotations concerning
instructions that use PC-relative addressing are required. These
annotations ensure that the correct addresses will always be as-
sumed during aiT’s analysis. In order to keep the manual an-
notation overhead low, we decided to allow only the allocation
of complete functions (i.e. not basic blocks and multi basic
blocks as described in [14]) and data elements onto the scratch-
pad. This restriction can be easily overcome with a slightly
increased annotation effort. The used toolchain supports this
annotation process.

2



4 Results

The benchmarks used to explore the impact of a scratchpad on
WCET are given in table 1. They comprise two speech encod-
ing and decoding algorithms from the mediabench benchmark
suite [18]. The programs were compiled with varying scratch-
pad sizes, as described in the previous section. The execution
time is expected to decrease (along with the energy consump-
tion) when the scratchpad capacity is increased. The effect
of larger scratchpad size on average case performance and on
WCET can be seen in figures 2 to 4.

Name Description

adpcm Speech encoding and decoding using
Adaptive Diff. Pulse Code Modulation

G.721 Speech encoding and decoding, reference
implementation of the CCITT

Multi Sort Combination of sorting algorithms

Table 1: Benchmarks

0 16 32 64 128 256 512 1024 2048 4096
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000

Execution Time vs. WCET (G.721)

WCET

Execution Time

Scratchpad Size [Bytes]

C
yc

le
s 

[x
10

00
]

Figure 2: Results for G.721 benchmark

The G.721 benchmark takes a little more than 2 million cy-
cles to complete with our used input data on a system with
only one main memory, whereas aiT estimates the WCET for
the worst case input to be about 4 million cycles. Since it is
in general not possible to determine the worst case input data
set for an arbitrary application, using a simulation approach is
not feasible to determine a guaranteed upper bound for WCET.
As can be seen in figure 2, increasing the scratchpad capacity
not only improves the average execution time, but also has a
strong positive effect on the WCET estimate. Where average
case execution time is reduced to about 1,250,000 cycles for
a 4k scratchpad, corresponding to a reduction of 43%, WCET
reduces down to 1,650,000 cycles, which means a reduction of
58% compared to the inital case with no scratchpad. Thus, the
effect on WCET is even greater than the effect on average case
execution time.

For the Multi Sort benchmark, similar results can be ob-
served. By only changing the scratchpad capacity and using
our compile-time algorithm to solve the problem of allocating
an optimal set of memory objects to the scratchpad memory,

0 16 32 64 128 256 512 1024 2048 4096
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

Execution Time vs. WCET (Multi_Sort)

WCET

Execution Time

Scratchpad Size [Bytes]

C
yc

le
s 

[x
10

00
]

Figure 3: Results for Multi Sort benchmark

we find that the WCET decreases by about 65%, whereas the
actual execution time for our used average input data only de-
creases by about 50%. Without further requirements concern-
ing WCET analysis (as e.g. required if a cache was used in the
system), the use of a scratchpad memory thus shows a positive
impact on WCET.

0 128 256 512 1024 2048 4096
0

50

100

150

200

250

300

350

400

450

500

Execution Time vs. WCET (adpcm)

WCET

Execution Time

Scratchpad Size [Bytes]

C
yc

le
s 

[x
10

00
]

Figure 4: Results for adpcm benchmark

For the adpcm benchmark, even the initial WCET values
are very close to the actual execution times. This seems to
be due to the fact that all execution paths within this bench-
mark are very similar to the critical path. Despite this good
initial WCET estimate, using a scratchpad can still improve
the WCET prediction: If an onchip memory of more than 512
bytes is used, the difference between actual performance and
WCET becomes negligible. The reductions in average case ex-
ecution and WCET estimate reduce by 49% and 63%, respec-
tively, highlighting the fact that WCET benefits strongly from
use of a scratchpad memory.

One reason for the positive effect of scratchpad memo-
ries is possibly due to worst case assumptions concerning
pipeline stalls. In the case of a three stage pipeline (as in the
ARM7TDMI used in our experiments), a pipeline stall will re-
quire three instructions to be fetched from memory before the
next result is generated by the CPU. If the latency for a single
memory access is three cycles, then nine additional memory

3



cycles will be required to completely re-fill the pipeline (as-
suming, as on our evaluation board, memory chips that do not
support accelerated burst transfers). If, on the other hand, the
used memory has a latency of only one cycle (as is the case for
a scratchpad memory), then the pipeline can be filled with only
three additional memory cycles. aiT has to assume all pos-
sible pipeline stalls to be able to guarantee that the predicted
WCET result is always safe. The fact that the overhead for
these pipeline stalls can be reduced by using a scratchpad mem-
ory explains the good results concerning WCET.

5 Summary and Future Work

In this work we show for the first time that using scratchpad
memories in real-time systems is beneficial for WCET esti-
mation. Using a known algorithm to allocate memory objects
(both instructions and data) to the scratchpad memory, and a
commercially available WCET analysis tool, we have shown
that the decrease of the WCET caused by scratchpad memories
is even larger than the decrease of the average case execution
time. This is possible without any modification in the used tim-
ing analysis tool. Many performance enhancing architectural
modifications (e.g. caches) make WCET estimation a difficult
task. If scratchpads are being used, the user only needs to know
the latency cycles of the used memories.

This work shows an additional advantage of scratchpad
based architectures beyond previously published results (which
investigated average case execution time and energy consump-
tion). All this is feasible with a decreased complexity of WCET
tools.

In the future, we will consider how scratchpad memories
compare to cache models that are being supported in some
WCET analyzers today. This comparison is not really fair,
since caches require extensive support and careful analysis in
WCET analysis, whereas scratchpad memories can be inte-
grated at no extra analysis costs. However, caches are being
used in many systems today to improve the average perfor-
mance and therefore have a practical significance.

Apart from using the energy-aware allocation algorithm
from [14], we will also consider employing a similar technique
which primarily takes into account the memory objects that
lie on a program’s critical path. By reinforcing the selection
of these memory objects instead of those memory objects that
consume most energy, the positive effect on WCET should be-
come even more obvious.

6 Acknowledgement

The authors would like to thank “AbsInt” Angewandte Infor-
matik GmbH for their support concerning WCET analysis us-
ing the aiT framework.

References
[1] Milind B. Kamble and Kanad Ghose. Analytical Energy Dissipation

Models for Low-Power Caches. In Proc. International Symposium on
Low Power Electronics and Des ign, pages 143–148. ACM/IEEE, Au-
gust 1997.

[2] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The Influence of Processor Architecture on the Design and the
Results of WCET Tools. Proceedings of the IEEE, 91(7), July 2003.

[3] Peter Puschner and Alan Burns. A Review of Worst-Case Execution-
Time Analysis. Journal of Real-Time Systems, 18(2/3):115–128, May
2000.

[4] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance
Estimation of Embedded Software with Instruction Cache Modeling. In
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pages 380–387, November 1995.

[5] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache Modeling
for Real-Time Software: Beyond Direct Mapped Instruction Caches. In
Proceedings of the IEEE Real-Time Systems Symposium, December 1996.

[6] Thomas Lundqvist. A WCET Analysis Method for Pipelined Micropro-
cessors with Cache Memories. Technical report, Dept. of Computer En-
gineering, Chalmers University of Technology, June 2002.

[7] AbsInt Angewandte Informatik GmbH. aiT: Worst Case Execution Time
Analyzers. http://www.absint.com/ait, 2004.

[8] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad Memory: A Design Alternative for Cache On-chip Memory
in Embedded Systems. In 10th Int. Symp. on Hardware/Software Code-
sign (CODES), May 2002.

[9] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory Issues in Embedded
Systems-On-Chip. Kluwer Academic Publishers, 1999.

[10] M.Kandemir, J.Ramanujam, M.J.Irwin, N.Vijaykrishnanand I.Kadayif,
and A.Parikh. Dynamic Management of Scratch-Pad Memory Space.
In Proceedings of the 2001 ACM Design Automation Conference. DAC,
June 2001.

[11] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan,
and P. Marwedel. Reducing Energy Consumption by Dynamic Copying
of Instructions onto Onchip Memory. Int. Symp. on System Synthesis
(ISSS), pages 213–218, 2002.

[12] J.Ph. Diguet, S. Wuytack, F. Catthoor, and H. De Man. Formalized
Methodology for Data Reuse Exploration in Hierarchical Memory Map-
pings. In ISLPED 1997 Monterey CA. ACM, August 1997.

[13] P.R.Panda, F.Catthoor, N.D.Dutt, K.Danckaert, E.Brockmeyer,
C.Kulkarni, A.Vandercapelle, and P.G.Kjeldsberg. Data and mem-
ory optimization techniques for embedded systems. pages 149–206,
April 2001.

[14] S. Steinke, L.Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning Program
and Data Objects to Scratchpad for Energy Reduction. Design, Automa-
tion and Test in Europe (DATE), pages 409–417, 2002.

[15] ARM Ltd. ARM7TDMI Technical Reference Manual.
http://www.arm.com/pdfs/DDI0210B 7TDMI R4.pdf, 2004.

[16] S. Steinke, M. Knauer, L. Wehmeyer, , and P. Marwedel. An Accurate
and Fine Grain Instruction-Level Energy Model Supporting Optimiza-
tions. In Proceedings of the International Workshop - Power and Timing
Modeling, Optimization and Simulation, Yverdon-les-bains, Switzerland,
September 2001.

[17] ILOG. CPLEX. http://www.ilog.com/products/cplex.

[18] Stephen Brown. MediaBench Home.
http://cares.icsl.ucla.edu/MediaBench, 2004.

4


