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Abstract. In order to meet the requirements concerning both performance and
energy consumption in embedded systems, new memory architectures are being
introduced. Beside the well-known use of caches in the memory hierarchy, proces-
sor cores today also include small onchip memories called scratchpad memories
whose usage is not controlled by hardware, but rather by the programmer or the
compiler. Techniques for utilization of these scratchpads have been known for
some time. Some new processors provide more than one scratchpad, making it
necessary to enhance the workflow such that this complex memory architecture
can be efficiently utilized. In this work, we present an energy model and an ILP
formulation to optimally assign memory objects to different partitions of scratch-
pad memories at compile time, achieving energy savings of up to 22% compared
to previous approaches.

1 Introduction

Since the design of embedded systems is very much driven by applications, it can be
expected that future devices will require significantly more processing power, due to
audio and video applications as well as high computational demands for channel coding.
As a result, more powerful processors have to be used in embedded systems. However,
the electrical energy available in embedded systems (especially in portable systems) is
strictly limited. This has been seen as the most important constraint in the design of
future embedded systems [1]. A significant amount of research on low-power design
techniques has been performed, but the 100 to 1000 fold improvement demanded by
De Man [2] has not yet been achieved, making additional techniques necessary.

Increased processor speeds will also bring a problem to embedded systems which
has so far mainly affected the design of PCs and mainframes: the speed gap between
high end processors and memories is widening. While processor speeds are currently
improving between 50 and 100% per year, the speed of memories is only increasing at
7% per year. Accessing main memory will soon cost as many cycles as a page miss did
in the first computer using virtual memory [3].

For any given technology, access times as well as the energy required per memory
access are a function of the memory size: The larger the memory, the larger the access
times and the energy consumed per access. The impact of memory size on energy and
performance can be seen in figure 1, which shows the increase in energy and cycle times
as the memory size increases. The values in the figure were obtained using a subset of
the CACTI model [4, 5], assuming a feature size of 0.5µm.

In general, due to the increasing sizes of applications and the corresponding mem-
ory sizes, access times and energy consumption will become even larger in the future.
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Fig. 1. Relation of energy and memory size

Therefore, it does make sense to map hot spots in applications to smaller memories
instead of using just one large, homogeneous memory.

Caches have been established as the key solution to ease the problem for PCs and
mainframes. They are not ideal solutions to the aforementioned problem, however.
Small onchip memories, called scratchpad memories, show faster access times, reduced
energy consumption and better predictability [5]. The idea of dividing the large main
memory into a small scratchpad memory and the “remaining” main memory can be
extended to form several small scratchpad memory partitions that are close to the pro-
cessor and therefore fast and energy efficient. In this work, we show how the available
compiler-based allocation algorithms [6, 7] can be extended to be able to allocate mem-
ory objects to several memory partitions.

The remainder of this paper is structured as follows: a description of related work
is provided in section 2. Section 3 presents the toolchain required to exploit the pres-
ence of partitioned memories. Section 4 and 5 introduce the used energy model and the
optimization problem formulation, respectively. We conclude the paper with results in
section 6 and a summary and an outlook on future work.

2 Related Work

Scratchpad memories are being used in small, efficient embedded systems as an alter-
native to caches due to their performance and their reduced energy consumption [5].
Scratchpad memories do not have a hardware to control their contents at runtime. The
scratchpad can either retain the assigned memory objects throughout the running time
of the application (static case), or the contents of the scratchpad may change at runtime
(dynamic case). Allocation techniques to statically allocate data to the scratchpad were
introduced e.g. in [8], whereas [9] and [6] presented a dynamic approach for data and
instructions, respectively. Further work concerning the utilization of scratchpad mem-
ories was conducted by [10, 11]. Both static and dynamic scratchpad usage are under



full control of the compiler or the programmer. In this paper, we will concentrate on the
static allocation technique.

The goal of the static allocation of both instructions and data to the scratchpad
memory in [7] is saving energy. In order to evaluate the energy consumption of a
given memory allocation, an instruction level energy model for the used processor, an
ARM7TDMI [12], was developed [13] and used in the encc compiler [14]. The com-
piler determines the execution counts of functions and basic blocks and the number of
accesses to variables in order to compute the most promising objects to be assigned
to the limited scratchpad space. The actual optimization problem, being similar to the
well-known knapsack problem, is solved using an ILP solver. Then, the chosen memory
objects are placed on the scratchpad, making control flow and address corrections where
necessary. Comparisons against a cache solution showed advantages between 12% and
43% in energy consumption.

In this work, we consider not only one single scratchpad memory, but assume a set
of scratchpad memory partitions. A trend towards small partitioned memories can also
be found in industry, making our approach relevant e.g. for the latest available ARM
processor cores. The ARM9E features two so-called tightly coupled memories (TCMs)
that may either be used as SmartCaches or as plain memory regions [15]. In the lat-
ter case, TCMs can be used like scratchpad memories. Implementations of this core
architecture are available from several hardware vendors [16–18]. ARM’s architecture
model implies that one of the TCMs be used to hold only data while the other is used for
instructions. In the current work, we present a more general approach: a multi-purpose
scratchpad memory is partitioned into several smaller contiguous regions, each of which
is allowed to hold instructions as well as data. In order to optimally exploit these mem-
ory partitions, we have integrated an algorithm into our energy aware encc compiler to
map the most promising memory objects to the different scratchpad memory partitions.

3 Workflow

The workflow used to generate memory layouts and to determine energy consumption
values is depicted in figure 2.

values
encc + SP
algorithm

C−program executable
simulator
enprofiler

Part. +
energy  info

Profiling
Information

energy

DB
Energy

Fig. 2. Workflow



The scratchpad allocation algorithm integrated into the encc compiler takes the ap-
plication program written in C as one of its inputs. The architectural description of the
currently used memory partitioning also includes the “energy per access” values of the
considered memory partitions. Finally, encc requires some profiling information. The
profiling can either be performed on a static basis, i.e. by only considering the source
code of the application, or by compiling the application once, simulating it and back-
annotating the information onto the internal representation of the program. As will be
shown in the results section, even the simple static analysis is capable of characteriz-
ing the program behavior in a sufficiently precise way. The information obtained from
either static analysis or from dynamic profiling and the energy model presented in the
following section 4 are then used to determine

a) the set of most promising objects to allocate to the scratchpad memory and
b) the exact memory layout, i.e. which object to allocate to which memory partition.

This optimization problem is formulated as an integer programming problem as de-
tailled in section 5. We use a commercial ILP solver [19] to solve this problem and
thus to find a mapping of memory objects to memory partitions which yields maximum
energy savings. The resulting executable, with instructions and data distributed among
the different memory partitions, is then simulated using ARM’s instruction set simula-
tor ARMulator and analyzed using our profiling tool enprofiler. In this step, enprofiler
incorporates values from an energy database which contains information derived from
the instruction level energy model described in [13]. These energy values are used to
determine the overall energy consumption of the executable at runtime. The results pre-
sented in this work only consider the energy consumption in the memory subsystem.
These values can be used to compare different memory architectures and allocation
techniques.

4 Energy Model

The energy model used in this work is based on the instruction level energy model
presented in [13], which assumes the overall energy to be the sum of processor and
memory energy:

Etotal = ECPU +EIMem +EDMem (1)

where EIMem is the energy required to fetch an instruction from memory and EDMem

is the energy required to access (read and write) data. Since the proposed optimization
only modifies the memory layout, but not the individual instructions of the original
program, the processor energy ECPU is considered to have no influence on the results
and is therefore ommitted in the following considerations. As part of the future work,
we will also consider different access times for the memory partitions which will have a
positive impact on the energy consumption of the processor due to the reduced number
of memory cycles. The impact of the used memory partition size on the instruction
and data access costs can be seen in figure 1. Depending on the memory partition that
a particular object is assigned to, the corresponding memory access costs have to be
assumed when accessing this object. This is done as follows for global variables and
basic blocks:



4.1 Global Variables

Local variables within a function are usually kept in registers or on the stack, and there
may be several instances of local variables in different contexts. For these reasons, only
global data elements are considered in the current implementation of the optimization
problem. We only consider complete objects such as arrays at the moment. An array
splitting approach as presented in [20] might be added to our method later. The simple
methodology for moving the stack to a different memory partition as described in [7]
can be integrated into the proposed model in a straight-forward manner, thus including
some of the local variables in the consideration.

The energy assigned to a global variable in the model corresponds to the sum of
all accesses to this variable, taking into account the per-access energy of the memory
partition mp used to store the global variable:

Evar = EDaccess,mp ·#accesses (2)

The number of accesses is determined using either static analysis or dynamic pro-
filing, as described above in section 3. The energy contribution of all variables is then
summed up to form EDMem in equation (1).

4.2 Basic Blocks

Since the processor’s contribution to energy dissipation is not considered in this work,
the energy consumption of a basic block is only caused by fetching the instructions from
the corresponding memory partition mp. It can thus be expressed using the following
equation:

Ebb = EI f etch,mp · (#executions) · (#instructions+2) (3)

The number of instructions within the basic block are multiplied with the number
of executions of this particular basic block. The latter value is again determined using
static analysis or dynamic profiling. Finally, we multiply the energy required for a single
instruction fetch from the assumed memory partition mp to determine the total energy
consumption of a basic block in our energy model. The contribution of all basic blocks
is added up to from EIMem in equation (1).

The general addition of the value two to the number of instructions will be refined
later in the extended optimization problem. It is due to the fact that a basic block, in
contrast to e.g. a function, is not always a self-contained object. Consider the example
given in figure 3: in the left part of the figure, all basic blocks are stored contiguously
in one memory region. This means that the edge from BB1 to BB2 is an implicit control
flow edge, i.e. if the conditional branch beq is not taken, then control passes on to the
next consecutive address, which is the first instruction of BB2.

If BB2 is moved to a different memory partition, however, the implicit control flow
edge would lead to the subsequent basic block BB3 being executed after BB1 indepen-
dently of the result of the conditional branch. In order to preserve the original control
flow, an additional unconditional branch has to be inserted following the conditional
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Fig. 3. An additional jumps is required in BB1 when moving BB2 to a different memory partition

branch in BB1. In this way, if the conditional branch is not taken, control passes on to
BB2 in memory partition 2.

In order to model the penalty of moving a single basic block to a different memory
partition, two (potential) instructions are added to the instruction count of each basic
block. In the next section we will see how the relationship between basic blocks is
modelled in such a way that contiguous basic blocks that reside in the same memory
partition are handled correctly, i.e. without considering any additional jump penalty.

5 Optimization Problem Formulation

In order to formulate the optimization problem of assigning memory objects (instruc-
tions and data) to a set of available memory partitions, a couple of preliminary defini-
tions are necessary.

5.1 Preliminaries

We start with the set of memory partitions, which is denoted as

MP := {mp1, . . . ,mpm} (4)

Each of the m memory partitions has a certain size in bytes that can be queried using
the function Size(mpi).

The sets of objects considered in the optimization process are defined as follows:

– set of global variables:
G := {g1, . . . ,gq} (5)

– set of basic blocks:
BB := {bb1, . . . ,bbr} (6)



These sets are then combined into one set of memory objects O:

O ⊆ G∪BB = {o1, . . . ,on} (7)

Like for the memory partitions, function Size(o) returns the size in bytes of memory
object o ∈ O.

In order to determine the energy consumption of a memory object o in memory
partition mp, we define the function Energy(o,mp) which returns the amount of energy
consumbed by object o if it is allocated to memory partition mp. The value returned
by this function corresponds to Evar or Ebb from the previous section, depending on the
type of memory object. This formulation leads to a minimization problem, since the
overall energy consumption of the program should be minimized.

5.2 Basic ILP model

Using the sets and functions defined in the previous section, we can now proceed to
model the optimization problem of allocating memory objects to the different mem-
ory partitions as an ILP problem, which can subsequently be solved using an ILP
solver [19].

The optimization problem uses the matrix Õ containing binary decision variables
õi, j which assume the value 1 if memory object oi is allocated to memory partition mp j.
The objective function can then be written as

Minimize
n

∑
i=1

m

∑
j=1

[Energy(oi,mp j) · õi, j] (8)

The model has to ensure that each memory object is assigned to only one memory
partition. This is achieved by the following constraint:

∀i : 1 ≤ i ≤ n :
m

∑
j=1

õi, j = 1 (9)

The solver also has to take care not to allocate too many objects to a particular
memory partition: the size of the objects allocated to a certain memory partition must
not exceed this partition’s capacity:

∀ j : 1 ≤ j ≤ m :
n

∑
i=1

[Size(oi) · õi, j] ≤ Size(mp j) (10)

This concludes the basic formulation of the ILP optimization problem. However,
this does not yet include the dependencies between basic blocks. If two contiguous basic
blocks stay in the same memory, there is no need to take any additional jumps between
memory partitions into account. Therefore, the next section covers the extension of the
model to correctly handle contiguous basic blocks.



5.3 ILP model extension: contiguous basic blocks

In order to correctly consider basic blocks that are mapped to contiguous memory ad-
dresses in one partition and thus do not need to be connected by an added jump instruc-
tion, the model considers the edges of the program’s control flow graph. Additional
constraints are used to describe whether a particular edge between two subsequent ba-
sic blocks leaves a memory partition or stays within this partition. The advantage of
this approach is that any number of basic blocks can be considered as a unit and stored
in a memory partition without having to enumerate all possible combinations of basic
blocks (as was done e.g. in [7]). This leads to good results and due to the reduced num-
ber of memory objects, also to acceptable running times of the used ILP solver [19]
for our benchmarks. As part of the future work we will work on finding approximation
algorithms that have polynomial running time.

In order to model the edges of the control flow graph, we first introduce a corre-
sponding set

C := {c1, · · · ,cp} (11)

which represents the control flow edges that connect basic blocks. In order to de-
termine whether an edge connects two specific basic blocks, we additionally define the
function V (x,y) which returns the index number k if ox ∈ BB, oy ∈ BB and if ox and
oy are connected by edge ck ∈ C. If the two nodes are not connected by an edge, the
function returns −1.

These definitons are used to add another matrix C̃ containing a binary decision
variable c̃k, j for each edge k and every memory partition j. Variable c̃k, j is assigned the
value 1 if memory partition j is not left when control flows along edge k. In other words:
if two connected basic blocks are within the same memory partition, the corresponding
decision variable is set to 1.

With this additional matrix, a modified objective function can be formulated. By
default, the potentially required additional jumps are always considered. Therefore, if
the corresponding memory partition is not left and the jumps are not required, their
contribution is subtracted from the cost function:

Minimize
n

∑
i=1

m

∑
j=1

[Energy(oi,mp j) · õi, j]−
p

∑
k=1

m

∑
j=1

[StmtEnergy jump · c̃k, j] (12)

StmtEnergy jump corresponds to the energy consumed by one jump instruction. Since
we know which jump instructions are necessary, we can also adjust the size constraint
to reflect the fact that not all initially assumed jumps are required:

∀ j : 1 ≤ j ≤ m :
n

∑
i=1

[Size(oi) · õi, j]−
p

∑
k=1

[StmtSize jump · c̃k, j] ≤ Size(mp j) (13)

Up to this point, we have assumed the decision variables c̃k, j to be set correctly. We
do require additional equations to ensure that they actually reflect the relationship of ba-
sic blocks, edges and memory partitions. This can be achieved by specifying additional
constraints of the form



(k = V (i,x),∀k 6= −1,1 ≤ i ≤ n,1 ≤ x ≤ n),(∀ j,1 ≤ j ≤ m) :

õi, j + õx, j −2c̃k, j ≥ 0 (14)

In this way, a decision variable c̃k, j has to be set to 0 if the two basic blocks con-
nected by edge k do not reside in the same memory partition. Please note that the speci-
fied constraint will only prevent the solver from seting variables to 1 if the edge does not
stay within one memory partition. All remaining variables will be set to 1 automatically
by the solver since this will help to maximize the objective function.

The complete ILP model consists of the objective function (12), the memory parti-
tion size constraint (13), a constraint to ensure that each object is selected only once (9)
and, finally, the edge constraints (14). Passing this model to the ILP solver, it is possible
to determine the optimal allocation of objects to a given set of memory partitions.

6 Results

In order to keep the search space for the different memory partitions at an acceptable
level, not all possible combinations of partitioning memory regions were considered.
Rather, we have decided to consider as the base configuration one scratchpad providing
the entire capacity. This scratchpad memory is then partitioned into two memories of
half the capacity. One of these two scratchpads is then left untouched, whereas the sec-
ond scratchpad is iteratively partitioned in two halfs. The resulting memory partitions
for a total capacity of 4096 bytes are shown in table 1.

# of par- number of partitions of size:
titions 4K 2K 1K 512 256 128 64

7 0 1 1 1 1 1 2
6 0 1 1 1 1 2 0
5 0 1 1 1 2 0 0
4 0 1 1 2 0 0 0
3 0 1 2 0 0 0 0
2 0 2 0 0 0 0 0
1 1 0 0 0 0 0 0

Table 1. Example of all considered memory partitions for a total capacity of 4096 bytes

The benchmarks used to evaluate our approach of assigning objects to partitioned
scratchpad memories are shown in table 2.

First, we present the overall energy savings achievable using the model presented
in this work. Since only memory energy is modified, all results are given as energy
savings in the memory subsystem. For only one single scratchpad memory partition,
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Fig. 4. Energy savings with only one scratchpad partition using static analysis

the results as given in figures 4 and 5 can be achieved. Comparing the two figures, it
becomes obvious that even the simple static analysis used for figure 4 yields good re-
sults. Especially for the “Multi Sort” benchmark, however, figure 5 shows a much more
steady increase in energy savings since the execution/access counts were determined
more precisely using dynamic profiling. For the remaining figures, we have decided to
present results obtained using dynamic profiling in order to show the potential of the
proposed approach. In general, we observe that the energy savings increase with the
available amount of scratchpad space. If the entire program fits in the scratchpad, fur-
ther increasing the scratchpad capacity leads to an increase in the energy consumption
due to the higher per-access costs of larger partitions. These results correspond to the
results presented in [7], where only one scratchpad and a simpler allocation algorithm
was used.
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Fig. 5. Energy savings with only one scratchpad partition using dynamic profiling



benchmark description

multi sort combination of different sorting algorithms
encodecombined part of the GSM kernel
fft viva fast fourier transform
fast idct inverse discrete cosine transform
ref idct idct reference implementation

Table 2. Selected Benchmarks

For the “encodecombined” benchmark, figure 6 shows the possible energy savings
obtainable for different scratchpad capacities when the number of partitions is varied.
The partition sizes are chosen according to table 1. Up to a size of 4096 bytes, the
energy savings can be seen to increase even when only a single scratchpad partition is
used. After that, the energy gain goes down for a single scratchpad partition. If several
partitions are used, however, the maximum gain obtained can be sustained even for
larger scratchpad capacities. This shows that if a processor with a given amount of
scratchpad is being used, it can be profitable to provide the total capacity not as one big
scratchpad, but rather as several smaller partitions, assuming that the used compiler is
able to exploit this kind of memory architecture.
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Fig. 6. Results for encodecombined with increasing scratchpad capacity and varying number of
scratchpad partitions

Based on these values, figure 7 shows the maximum achievable benefit obtained
from partitioning the single scratchpad into smaller parts for all benchmarks using the
described model. The single scratchpad case serves as the baseline in this figure. For
each benchmark, total scratchpad capacity and number of partitions, the combination
with maximum benefit was chosen. Improvements of up to 22% are possible by using
partitioned scratchpad memories instead of just one memory.
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Fig. 7. Relative energy savings with multiple scratchpad partitions

7 Summary and Future Work

In this work, we have described a model incorporated into a compiler that is capable of
allocating program objects (instructions as well as data) to a partitioned onchip scratch-
pad memory. The optimization problem is formulated in the form of ILP equations.
This allows the use of standard solvers and makes it easy to integrate extensions into
the model. We have shown that by using the proposed model and partitioned scratch-
pad memories (instead of just one single larger scratchpad), improvements of up to
22% in the memory subsystem can be obtained. The algorithm presented in [7] can be
completely replaced by the new algorithm presented in this paper since using a single
scratchpad is included in the presented model as a special case.

As part of the future work, reduced access times for smaller memory partitions will
be considered. Also, we plan to integrate into the model the notion of a standby energy
that is always consumed by an active memory partition. In this way, the compiler could
actually influence the decision of whether an additional partition is required or not.
Finally, we are working on ways to avoid the possible worst-case complexity of the
ILP approach by looking for methods that approximate the optimal solutions using
algorithms with polynomial running time.
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