
Compiler based Exploration of DSP Energy Savings
by SIMD Operations

Markus Lorenz
Peter Marwedel

University of Dortmund
Dept. of Computer Science 12

44221 Dortmund, Germany
email: Markus.Lorenz@udo.edu
email: Peter.Marwedel@udo.edu

Thorsten Dräger
Gerhard Fettweis

Technische Universit¨at Dresden
Vodafone Chair For Mobile
Communication Systems
01062 Dresden, Germany

email: draeger@ifn.et.tu-dresden.de
email: fettweis@ifn.et.tu-dresden.de

Rainer Leupers

Aachen University of Technology
Integrated Systems for Signal Processing

52056 Aachen, Germany
email: leupers@iss.rwth-aachen.de

Abstract— The growing use of digital signal processors (DSPs)
in embedded systems necessitates the use of optimizing compil-
ers supporting their special architecture features. Beside the ir-
regular DSP architectures for reducing chip size and energy con-
sumption, single instruction multiple data (SIMD) functionality
is frequently integrated with the intention of performance im-
provement. In order to get an energy-efficient system consisting
of processor and compiler, it is necessary to optimize hardware
as well as software. It is not obvious that SIMD operations can
save any energy: ifn operations are executed in parallel, each of
them might consume the same amount of energy as if there were
executed sequentially. Up to now, no work has been done to inves-
tigate the influence of compiler generated code containing SIMD
operations w.r.t. the energy consumption. This paper deals with
the exploration of the energy saving potential of SIMD operations
for a DSP by using a generic compilation framework including
an integrated instruction level energy cost model for our target
architecture. Effects of SIMD operations on the energy consump-
tion are shown for several benchmarks and an MP3 application1.

I. I NTRODUCTION

Today,digital signal processors(DSPs) are frequently used
in embedded systemsto permit application specifications in
software. Since performance, chip size and energy consump-
tion are crucial points in embedded systems, special hardware
features are implemented. For example, performance is in-
creased by supportinginstruction level parallelism(ILP) and
single instruction multiple data(SIMD) operations. Chip size
(and energy) is reduced by restricting the number of commu-
nication wires and by the use of special-purpose register files.
Often it is necessary to find a trade-off between these opti-
mization goals. Until now most research effort in reducing
power/energy consumption has focused on the field of low-
power design of integrated circuits (for an overview see e.g.
[1]). However, to obtain an energy-efficient system, optimizing
the software running on the hardware is essential, too. Since
many programs are still written in assembly code, which is a
very time consuming and error prone process leading to hardly
portable code, there is a need for compilers supporting the spe-
cial DSP architectural features and capable of generating effi-

1This work has been sponsored by the German Research Foundation
(DFG).

cient assembly code.
Obviously, the exploitation of SIMD operations bears a huge

potential for reducing the execution time. For example mak-
ing use ofn parallel functional units in an SIMD operation,
the benefit isn : 1 compared to asingle instruction single
data (SISD) operation. The benefit is potentially reduced if
(un)packing of data words is required and/or additional loop
transformations have to be applied in order to enable the use of
SIMD operations (s. e.g. [2]).

If the execution of an SIMD operation consumes more en-
ergy than an SISD operation, the exploitation of SIMD op-
erations can lead to a performance improvement but can also
cause a more energy-intensive machine program. Energy op-
timizations are possible with compiler frameworks allowing a
fast and precise evaluation of different machine programs in
terms of energy consumption.

In this paper, the influence of compiler generated code con-
taining SIMD operations on the energy consumption is inves-
tigated for the first time. In order to evaluate programs also
w.r.t. energy consumption we have developed an instruction
level energy cost model for our target architecture and have
integrated it into our compiler and simulator. This allows well-
founded statements about the energy saving potential for our
target architecture. Due to the generic implementation of our
tools, the energy exploration of other SIMD architectures can
be done in a similar way.

The paper is structured as follows: In the next section an
overview of related work in this area is given. The target ar-
chitecture of the M3-DSP and its instruction level energy cost
model is described in section III. After introducing our compi-
lation framework in section IV, experimental results for several
benchmarks and an MP3 application are presented. Finally we
conclude the paper in section VI.

II. RELATED WORK

In order to avoid the disadvantages of hand-crafted as-
sembly code, different strategies have been proposed dealing
with exploitation of SIMD operations within compilers (s. e.g.
[3, 4, 5, 6]). Usually, loop transformations likeloop fission,
strip mining, reduction recognitionor scalar expansionare
performed in order to improve the exploitation of SIMD op-
erations [7]. However, the influence of SIMD operations on

energy consumption is not reported.
In [2], a technique is proposed which aims at reducing the

overhead of SIMD operations caused by (un)packing opera-
tions for the TriMedia TM1300 processor. The technique is
manually applied to one benchmark on the source code level.
In addition, the presented energy results for this benchmark are
limited to the data memory.

Up to now, there are only a few compilers with integrated
energy cost models (s. e.g. [8, 9, 10, 11]). However, none of
these consider the exploitation of SIMD operations.

To the best of our knowledge, our compiler framework is the
only one capable of making use of SIMD operations and allow-
ing an evaluation of the energy consumption w.r.t. an energy
cost model. In [12] we have published compiler optimization
techniques with the aim of minimizing the energy consump-
tion of embedded applications, containing only few results for
small benchmarks concerning the exploitation of SIMD oper-
ations. In complement to that, this paper aims at investigating
the influence of SIMD operations on energy consumption in
more detail. For this reason, we have improved our vectoriza-
tion technique so that our SIMD optimization technique is ap-
plicable to real-life applications including an MP3 application.
Effects of loop transformations, often performed to increase
the use of SIMD operations, are demonstrated too.

III. TARGET ARCHITECTURE

A. M3-DSP
The M3-DSP is an instance of a scalable DSP platform for

mobile communication applications [13]. The platform per-
mits a fast design of DSPs adapted to special applications. In
order to meet constraints with respect to real-time processing,
chip area, and energy dissipation, the platform supports among
others, the following features: There is a scalable number of
data paths that enable processing either on a single data path
or on all data paths in parallel according to the SIMD princi-
ple. In the case of the M3-DSP there are 16 data path slices.
In order to provide an effective use of all data path slices in
parallel, the memory is organized as an on-chipgroup mem-
ory: Addressing one 16-bit data word always means address-
ing an entire group of 16 such words. The addressed group
is loaded into an intermediate register from which the values
are distributed to thegroup registersin the data paths by an
application-specific inter-communication network. The M3-
DSP contains a 4-stage pipeline and is organized as avery long
instruction word(VLIW) architecture.

B. Instruction Level Energy Cost Model
During the code generation process and for simulation it is

necessary to evaluate different code sequences w.r.t. the en-
ergy consumption. However, repeated simulations or measure-
ments would mean an unacceptable overhead. Thus, a suitable
cost model permitting a precise and quick evaluation of arbi-
trary instruction sequences is essential. Tiwari [8] reports an
instruction level energy model based on measurement of the
energy consumption of a single instruction (base energy cost)
and of the switching activities of successive instructions (over-
head energy cost) meeting these requirements. Based on Ti-
wari’s work, we have developed a modified instruction level
energy cost model for the M3-DSP using measurements on the

silicon chip [14]. A validation of our energy cost model shows
a deviation of less than 2% compared to measurements on the
real hardware when executing the whole program.

As expected, the energy cost model shows that load and
store instructions have a more significant contribution to the
energy consumption than SISD instructions (SISD = single in-
struction single data) of the data path. SIMD instructions show
the highest energy consumption (4-5 times more compared to
SISD instructions) but perform up to 16 useful computations in
parallel. For this reason, if the overhead caused by (un)packing
operations and loop transformations is small (or zero), execut-
ing SIMD instructions will potentially reduce the total energy
dissipation of an application.

IV. COMPILATION FRAMEWORK

The compilation process is started by transforming a given
C source program into a machine independent representation
of our generic low-level intermediate representation(GeLIR)
[15] which serves as exchange format for all succeeding trans-
formations and optimizations. In contrast to traditional in-
termediate representations it allows for storing machine de-
pendent program and target architecture information. For in-
stance, GeLIR supports the specification of irregular data paths
containing special-purpose register resources, restricted paral-
lelism and SIMD operations. Information about the energy
consumption of processor instructions is also stored in the
GeLIR data structures and permits an efficient evaluation of
different code sequences. After applying the SIMD code gen-
erator, assembly code is emitted. In addition, the resulting
GeLIR representation can be simulated. Due to the integrated
energy cost model, information w.r.t. energy consumption is
generated for the simulated application, too.

In the following, the main steps of our code generator in-
cluding the SIMD optimization are described. Code genera-
tion is started after the source program is transformed into the
GeLIR data structures. At this level of abstraction the source
program is given by a set ofdata flow graphs(DFGs) which
are then separately mapped to assembly code by performing
the following steps:

1. Preprocessing
The main task of this step is the generation of alterna-
tive machine programs (or solutions) of the source pro-
gram. This is done by inserting the minimum number
of graph nodes which are needed to generate all possible
data transfer paths between two specific graph nodes and
generating an initial covering of the graph nodes with pro-
cessor resources. The example in figure 1 shows that for
each graph node a set of machine operationsOp, set of
functional unitsFU, set of instruction typesIT 2 and sets
of resources for destinationDef and argumentsArg are
stored.

2. SIMD optimizations
The exploitation of SIMD operations (or vectorization)
is done by analyzing loops which can be vectorized

2Instruction types are used for specifying parallel execution possibilities of
different machine operations. Thus, two operations having the same instruc-
tion type can potentially be executed in parallel.

(see e.g. [16]). If it is recognized that specific opera-
tions embedded in the analyzed loop can be vectorized,
the set of operation alternatives is restricted. Commu-
nication with the code generator is done by performing
restrictions with respect to the available machine opera-
tion alternatives which can cover a specific GeLIR graph
node. This entails further restrictions e.g. with respect
to the available register alternatives. It is thus possible
to control the compilation process by preserving poten-
tial alternatives for example with respect to register files.
In addition, there is no need for special source language
extensions.

The result of this step is a DFG with restricted resource
alternatives. For example if SIMD operations should be
performed, the corresponding SISD resource alternatives
are erased. In figure 1 these is demonstrated by crossed
out resources.

3

*

2 LD

&a

+

CPCP

CP

CP

CP

Op ={ ,SIMD_MUL}
FU ={ ,DMU}
IT ={1}
Def ={ , ,ACCU,’simd*’}
Arg1={ , , ,’CNST2’,A,B,C}
Arg2={ , , , ,A,B,C,D}

MUL0
DMU0

ACCU0
A0 B0 C0
A0 B0 C0 D0

’*’

Op ={CP,ST, , ,VDT,...}
FU ={AGU,DTU, }
IT ={1,2}
Def ={MEM, , , , , , ,

A,B,C,D,ACCU,’simd*’}
Arg1={’addr’}
Arg2={ , ,ACCU,’simd*’}

ElDT MV
LMU

A0 B0 C0 D0 ACCU0 ’*’

ACCU0 ’*’

Op ={ ,SIMD_ADD}
FU ={ ,DMU}
IT ={1}
Def ={ ,ACCU}
Arg1={ , , ,A,C,D}
Arg2={ , , ,A,B,ACCU}

ADD0
DMU0

ACCU0
A0 C0 D0
A0 B0 ACCU0

ST

&b CP

3

CP

Fig. 1. DFG covering after SIMD optimization

3. Code generation
In this step, the process of code generation aims at re-
stricting the remaining set of resource alternatives by opti-
mizing according to a specified cost function. In addition,
every graph node has to be assigned to a specific con-
trol step. Since the generation of optimal assembly code
means solving an NP-hard optimization problem, we are
using an optimization algorithm based on a genetic al-
gorithm. The result is a DFG with scheduled and paral-
lelized (or compacted) graph nodes covered by processor
resources.

4. Address code generation
In this step, the address code for the given memory ac-
cess sequence of a specific basic block is generated.
The resulting sequential address code is inserted into the
GeLIR-code and is then compacted by reusing the genetic
algorithm driven code generator.

In order to increase the number of loops which can be vec-
torized, loop transformations are applied before starting the
code generation process. This is done on source code level by
using standard techniques [7]. The influence of commonly ap-

plied loop transformation to the energy consumption is shown
in the following section.

V. EXPERIMENTAL RESULTS

In this section, experimental results concerning the influence
of SIMD operations to the energy consumption are presented.
All data was generated by our compiler framework and the
GeLIR simulator including the energy cost model of the M3-
DSP. In the next subsection, the impact of loop transformations
on the code quality is shown for an example program. After
that, results for several DSP benchmarks and an MP3 applica-
tion are presented.

A. Impact of Loop Transformations
In this subsection we will demonstrate the impact of

frequently applied loop transformations to the code quality for
the followingoriginal example program.

for(i=0; i<1024; i++)
for(j=0; j<40; j++) {

if(cnd<42) {
y[i] += x[i]*a[j];
sum += z[i];

}
else

y[i] += x[i]*b[j];
}

We have applied the loop transformationsunswitching, in-
terchange, split, reduction recognitionin this order. After ap-
plying a specific loop transformation we have compiled the
generated source code by our compiler. The simulation results
are presented in figure 2 and are all relative to theoriginal
program code (100%).

Fig. 2. Loop transformation (100%̂= original)

The application of all loop transformations in total results in
a reduction of the execution time by 93%, the energy consump-
tion and the number of memory accesses by 89% compared to
the original program. Due to the forced execution of energy-
intensive SIMD operations the average power consumption is
increased by 49%. The increase of code size by 76% for this
program seems to be high, but usually only small program
parts (mainly innermost loops) are subject to loop transfor-
mations. Otherwise a trade-off between performance/energy
optimization and code size optimization has to be found.

B. Impact of SIMD Optimizations
In the following, results are presented for eight DSP rou-

tines and an MP3 application. The CPU time requirements of

1
7

5 8 11 6 1
0

1
2
8 1
5
2

1
4
6

1
5
9

1
3
8

11
2

1
0
8

1
0
3 1

3
3

2
4

6
9

65 97 11 9

6
1

3
9

2
8

7
1

1
2

91
3

7 1
0

6
8

4
21
0

2
4

5
9

4
46

0

1
4
8

0

20

40

60

80

100

120

140

160

180

n_real_up lms dot_prod fir cmultiply hamming biquad lattice mp3 average

% execution time energy consumption #memory accesses average power consumption

Fig. 3. Results for SIMD optimization: (100%̂= SISD-mode)

our code generator in SISD-mode on a 2,66 GHz Intel Pentium
4-processor ranges between 23 seconds for then real update
routine and 1448 seconds for the MP3 application. The compi-
lation times for the SIMD-mode are similar. Note that in most
cases the best result is already found early in the optimization
process. For this reason, the runtime of our code generator
could be drastically reduced in most cases without code qual-
ity losings.

In figure 3, results are presented in terms of execution time,
energy consumption, number of memory accesses and average
power consumption. In order to show the effect of using SIMD
operations, all results are related to results not using SIMD
optimization.

The results show that the execution time is reduced between
31% formp3 and 95% forn real up . On the average, the
number of execution cycles is reduced by 76% for all bench-
marks.

Although an SIMD operation consumes 4-5 times more en-
ergy compared to the corresponding SISD operation, the en-
ergy consumption is reduced between 29% formp3 and 93%
for n real up . On the average the energy consumption can
be reduced by 72%, because our vectorization technique makes
effective use of the 16 data paths by SIMD operations. The en-
ergy reduction is almost as large as the execution time. The
number of energy-intensive memory accesses is reduced dras-
tically.

Results concerning the power consumption confirm the pre-
viously made observations. As expected, the increased use of
SIMD operations leads also to a higher average power con-
sumption. For example the results for thecmultiply bench-
mark show that the average power consumption is only 59%
higher although the execution time is reduced by 94%.

VI. CONCLUSIONS

The growing use of digital signal processors in embedded
systems necessitates the use of optimizing compilers support-
ing the special architecture features. In order to improve per-
formance of these systems, SIMD functionality is frequently
involved. In this paper, the influence of compiler generated
SIMD operations to energy consumption is investigated for the
first time. This is done by using a generic compilation frame-
work including an instruction level energy model. Results for
our target architecture have shown that energy can nearly be re-

duced to the same extent as execution time, although the execu-
tion of an SIMD operation of the target architecture consumes
4-5 times more energy compared to the corresponding SISD
operation. Making use of SIMD operations leads to an aver-
age reduction of 72% in terms of energy and 76% in terms of
performance. Due to the generic implementation of our tools,
the exploration of other SIMD architectures w.r.t. energy con-
sumption can be done in a similar way.

REFERENCES

[1] J.M. Rabaey and M. Pedram, editors.Low Power Design Methodologies.
Kluwer Academic Publishers, 1996.

[2] P. Op de Beeck, C. Ghez, E. Brockmeyer, M. Miranda, F. Catthoor, and
G. Deconinck. Low-Power Implementation of an OFDM Based Channel
Receiver in Real-Time Using a Low-End Media Processor. InProc. of
Workshop on Wireless Communications and Networking (WCN), 2002.

[3] D.J. DeVries. A Vectorizing SUIF Compiler. PhD thesis, University of
Toronto, June 1997.

[4] N. Sreraman and R. Govindarajan. A Vectorizing Compiler for Multime-
dia Extensions.Intern. Journal of Parallel Programming, 28(4), 2000.

[5] S. Larsen and S. Amarasinghe. Exploiting Superword Level Parallelism
with Multimedia Instruction Sets. InProc. of PLDI, 2000.

[6] R. Leupers. Code Selection for Media Processors with SIMD Instruc-
tions. InProc. of DATE, 2000.

[7] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for
High-Performance Computing.ACM Computing Surveys, 26(4), 1994.

[8] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Soft-
ware: A First Step towards Software Power Minimization. InIEEE
Transactions on VLSI Systems, 1994.

[9] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. A Frame-
work for Energy Estimation of VLIW Architecture. InProc. of ICCD,
2001.

[10] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon.
Energy Estimation and Optimization of Embedded VLIW Processors
based on Instruction Clustering. InProc. of DAC, 2002.

[11] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan,
and P. Marwedel. Reducing Energy Consumption by Dynamic Copying
of Instructions onto Onchip Memory. InProc. of ISSS, 2002.

[12] M. Lorenz, L. Wehmeyer, T. Dr¨ager, and R. Leupers. Energy
aware Compilation for DSPs with SIMD Instructions. InProc. of
LCTES/SCOPES, 2002.

[13] G. Fettweis, M. Weiss, W. Drescher, U. Walther, F. Engel, and
S. Kobayashi. Breaking new grounds over 3000 MOPS: A broadband
mobile multimedia modem DSP. InProc. of ICSPAT, 1998.

[14] T. Dräger and G. Fettweis. Energy Savings with Appropriate In-
terconnection Networks in Parallel DSP. InProc. of the DFG-
Workshop ”Grundlagen und Verfahren verlustarmer Informationsverar-
beitung (VIVA)”, 2002.

[15] GeLIR. http://ls12-www.cs.uni-dortmund.de/research/gelir/.
[16] H. Zima. Supercompilers for Parallel and Vector Computers. ACM

Press, 1990.

