
Cache-Aware Scratchpad Allocation Algorithm

Manish Verma, Lars Wehmeyer, Peter Marwedel
Department of Computer Science XII

University of Dortmund
44225 Dortmund, Germany

{Manish.Verma, Lars.Wehmeyer, Peter.Marwedel}@uni-dortmund.de

Abstract

In the context of portable embedded systems, reducing
energy is one of the prime objectives. Most high-end embed-
ded microprocessors include onchip instruction and data
caches, along with a small energy efficient scratchpad. Pre-
vious approaches for utilizing scratchpad did not consider
caches and hence fail for the au courant architecture. In the
presented work, we use the scratchpad for storing instruc-
tions and propose a generic Cache Aware Scratchpad Allo-
cation (CASA) algorithm. We report an average reduction
of 8-29% in instruction memory energy consumption com-
pared to a previously published technique for benchmarks
from the Mediabench suite.

The scratchpad in the presented architecture is similar
to a preloaded loop cache. Comparing the energy consump-
tion of our approach against preloaded loop caches, we re-
port average energy savings of 20-44%.

1. Introduction
Contemporary Embedded Systems have to satisfy strin-

gent constraints concerning power, performance and cost.
For mobile embedded devices, reduced energy consumption
translates to either increased battery life or reduced dimen-
sions, weight and cost of the device or both. Consequently,
the overall competitiveness of the product is improved.

Several researchers [4, 11] have identified the memory
subsystem as the energy bottleneck of the entire system.
Onchip instruction and data caches were introduced to im-
prove the performance of computer systems by exploiting
the available locality in the program. Caches allow easy
integration and improve both performance and energy of
programs without the need for program analysis and opti-
mization. However, caches are not the most energy efficient
option available for embedded systems. Scratchpad mem-
ories were proposed as an energy efficient alternative to
caches. They also require less onchip area and allow tighter
bounds on WCET prediction of the system. However un-
like caches, scratchpads require explicit support from the
compiler. To strike a balance between these two contrasting

approaches, most of the high-end embedded microproces-
sors (e.g. ARM10E [1], ColdFire MCF5 [9]) include both
onchip caches and a scratchpad.

We assume the memory hierarchy as shown in fig-
ure 1.(a) and utilize the scratchpad for storing instruc-
tions. The decision to store only instructions is motivated
by the fact that the instruction memory is accessed on ev-
ery instruction fetch and the size of programs for mo-
bile embedded devices is smaller compared to their data
size. This implies that smaller scratchpad memories allo-
cated with instructions can achieve greater energy savings
than with data. In this paper, we model the cache behav-
ior as a conflict graph and allocate objects onto the scratch-
pad considering their effect on the I-cache. As shown later,
the problem of finding the best set of objects to be allo-
cated on the scratchpad can be formulated as a variant
of the Maximum Independent Set problem. The prob-
lem is solved using an ILP approach. We compare our
approach against a published technique [13] for the afore-
mentioned architecture. Due to the presence of an I-cache
in our architecture, the latter fails to produce optimal re-
sults and may even lead to the problem ofcache thrash-
ing.

We also compare the energy savings due to our ap-
proach for scratchpad to that achieved by preloaded loop
caches [12], as the utilization of the scratchpad in the cur-
rent setup (see figure 1) is similar to a loop cache. Preloaded
loop caches are architecturally more complex than scratch-
pads, but are less flexible as they can be preloaded with only
a limited number of loops. We demonstrate that with the aid
of a sophisticated allocation algorithm, scratchpad memo-
ries can outperform their complex counterparts.

In the next section, we describe related work and de-
tail the shortcomings of previous approaches. Section 3 de-
scribes the information regarding memory objects, cache
behavior and the energy model. The proposed algorithm is
presented in detail in section 4, followed by the description
of the experimental setup. In section 6 we present the re-
sults for an ARM7T based system and end the paper with a
conclusion and future work.



Data
Cache

Instruction
Cache

Loop

Processor

Cache

Data
Cache

Instruction
Cache

Scratchpad

Processor Loop Cache
Controller

(a) (b)

Figure 1. System architecture: (a) scratchpad
(b) loop cache

2. Related Work

Analytical energy models for memories [7] have been
found to be fairly accurate. We usecacti [15] to determine
the energy per access for caches and preloaded loop caches.
The energy per access for scratchpad memories was deter-
mined using the model presented in [3].

Application code placement techniques [10, 14] were de-
veloped to improve the CPI (cycles per instruction) by re-
ducing the number of I-cache misses. During the first step,
traces were generated by combining the frequently executed
basic blocks, followed by the trace placement step. Au-
thors in [10] placed traces within the function boundary,
while [14] placed them across function boundaries, to re-
duce the I-cache misses.

Several researchers [2, 11] have utilized scratch-
pad memories for assigning global/local variables, whereas
only Steinke et al. [13] considered both program and data
parts (memory objects) to be allocated onto the scratch-
pad. They assumed a memory hierarchy composed of
only scratchpad and main memory. Profit values were as-
signed to program and data parts according to their execu-
tion and access counts, respectively. They then formulated
a knapsack problem to determine the best set of mem-
ory objects to be allocated on the scratchpad.

Although the aforementioned approach is sufficiently ac-
curate for their memory hierarchy, it is fairly imprecise
for the current setup. The first imprecision of the approach
stems from the assumption that execution (access) counts
are sufficient to represent energy consumption by a mem-
ory object. This assumption fails in the presence of a cache,
where execution (access) counts can be decomposed into
cache hits and misses. The energy consumption of a cache
miss is significantly larger than that of a cache hit. Con-
sequently, two memory objects can have the same execu-
tion (access) counts, yet have substantially different cache
misses and hence the energy consumption. The above dis-
cussion stresses the need for a fine-grained energy model.
The second imprecision is due to the fact that conflict rela-
tionship between memory objects is not modeled and hence
they are moved instead of copying from main memory to
the scratchpad. As a result, the layout of the entire program
is changed, which may cause non-conflicting memory ob-

jects to conflict with each other and lead to erratic results.
Various instruction buffers have been proposed to im-

prove the energy consumption of the system. Ross et al. [12]
proposed a Preloaded Loop Cache which can be statically
loaded with pre-identified memory objects. Start and end
addresses of the memory objects are stored in the controller,
which on every instruction fetch determines whether to ac-
cess the loop cache or the L1 I-cache. Consequently, the
loop cache can be preloaded with complex loops as well as
functions. However, to keep the energy consumption of the
controller low, only a small number of memory objects (typ-
ically 2-6) can be preloaded.

The first disadvantage of the aforementioned approach is
due to the architectural feature of the loop cache that allows
only a fixed number of memory objects to be preloaded. The
problem will get prominent for large programs with sev-
eral hot spots. The second disadvantage is similar to the one
explained above for [13], memory objects are greedily se-
lected on the basis of their execution time density (execu-
tion time per unit size). In the wake of the discussion we
enumerate the following contributions of this paper.

• It for the first time studies the effect of a scratchpad
and an I-cache on the system’s energy consumption.

• It stresses the need for a sophisticated allocation algo-
rithm by demonstrating the inefficiency of previous al-
gorithms when applied to the present architecture.

• It presents a novel scratchpad allocation algorithm
which can be easily applied to any memory hierarchy.

• It demonstrates that scratchpad together with an allo-
cation algorithm can replace loop caches.

In the following section, we describe preliminary informa-
tion required for our algorithm.

3. Preliminaries
We start with describing the assumed architecture for the

current research work, followed by the description of the
memory objects. The interaction of memory objects within
the cache is represented using a conflict graph, which forms
the basis of the proposed energy model and the algorithm.

3.1. Architecture

For the presented research work we assume a Harvard
architecture (see figure 1(a)) with the scratchpad present at
the same horizontal level as the L1 I-cache. The scratchpad
is mapped to a region in the processor’s address space and
acts as an alternative location for fetching instructions. As
shown in figure 1(b), the preloaded loop cache setup is sim-
ilar to using a scratchpad.

3.2. Memory Objects

In the first step of our approach we generate traces and
then distribute these traces between offchip main mem-
ory and non-cacheable scratchpad memory. Atrace is a



10

10

5
5 5

5

10

mo1 mo2

mo3

mo5

{30}

{100}{100}

mo4
{110} {110}

Figure 2. Conflict graph

frequently executed straight-line path, consisting of basic
blocks connected by fall-through edges. Our traces are sim-
ilar to the traces in [14] except they are smaller than the
scratchpad size, as larger traces can not be placed on to the
scratchpad as whole. The traces are appended with NOP in-
structions to align them to cache line boundaries. Conse-
quently, a trace will start and end at a cache line, ensuring
a one-to-one relationshipbetween cache misses and corre-
sponding traces. The rational behind using traces is three-
fold. Firstly, traces improve the performance of both the
cache and the processor by enhancing the spatial locality
in the program code. Secondly, due to the fact that traces al-
ways end with an unconditional jump [14], they form an
atomic unit of instructions which can be placed anywhere
in memory without modifying other traces. Finally, traces
are accountable for every cache miss caused by them. In the
rest of the paper, unless specified, traces will be referred to
as memory objects (MO). In the following subsection, we
represent the cache behavior at the granularity of memory
objects by a conflict graph.

3.3. Cache behavior (conflict graph)
The cache maps an instruction to a cache line according

to the following function:

Map(addr) = addrmod
CacheSize

Associativity∗WordsPerLine

Similarly, a memory object is mapped to cache line(s) de-
pending upon its start address and size. Two memory ob-
jects potentially conflict if they are mapped to at least one
common cache line. Conflict cache misses can only be
caused by conflicting memory objects and can be repre-
sented by a conflict graph. The Conflict GraphG (see fig-
ure 2) is defined as follows:

Definition: TheConflict Graph G= (X,E) is a directed
weighted graph with node setX = {x1, . . . ,xn}. Each ver-
texxi in G corresponds to a memory object (MO) in the ap-
plication code. The edge setE contains an edgeei j from
nodexi to xj if a cache-line belonging toxj is replaced by a
cache-line belonging toxi using the cache replacement pol-
icy. In other words,ei j ∈ E if there occurs a cache miss of
xi due toxj . The weightmi j of the edgeei j is the number of

cache misses ofxi that occur due toxj . The weight fi of a
vertexxi is the total number of instruction fetches withinxi .

Conflict graph as shown in figure. 2 is a directed graph
because the conflict relationship determined by any of the
cache replacement policies isantisymmetric. The vertices
and the edges are marked with the corresponding weights
determined by profiling the application. The conflict graph
G and the energy values are utilized to compute the energy
consumption of a memory object according to the energy
model proposed in the following subsection.

3.4. Energy Model

The energyE(xi) consumed by an MOxi is expressed as:

E(xi) =
{

ESP(xi) if xi is present on scratchpad
ECache(xi) otherwise (1)

whereECachecan be computed as follows:

ECache(xi) = Hit (xi)∗ECache hit (2)
+ Miss(xi)∗ECache miss

where functionsHit (xi) and Miss(xi) return the num-
ber of hits and misses, respectively, while fetching the in-
structions of MOxi . ECache hit is the energy of a hit and
ECache miss is the energy of a miss in the I-cache.

Miss(xi) = ∑
xj∈Ni

Miss(xi ,xj) with (3)

Ni =
{

xj : ei j ∈ E
}

where Miss(xi ,xj) denotes the number of conflict cache
misses of MOxi caused due to conflicts with MOxj . The
sum of the number of hits and misses is equal to the num-
ber of instruction fetchesfi in an MOxi :

fi = Hit (xi)+Miss(xi) (4)

For a given input data set, the number of instruction fetches
fi within an MO xi is a constant and is independent of
the memory hierarchy. Substituting the termsMiss(xi) from
equation(3) andHit (xi) from equation(4) in equation(2)
and rearranging derives the following equation:

ECache(xi) = fi ∗ECache hit + (5)

∑
xj∈Ni

Miss(xi ,xj)∗ (ECache miss−ECache hit)

Observing the above equation, we find that the first term is
a constant while the second term is variable which depends
on the overall program code layout and the memory hier-
archy. We would like to point out that the approach [12]
only considered the constant term in its energy model. Con-
sequently, could not optimize the overall memory energy
consumption.

Since there are no misses when an MOxi is present in
the scratchpad, we can deduce the following energy equa-
tion:

ESP(xi) = fi ∗ESP hit (6)

whereESP hit is the energy per access of the scratchpad.



4. Algorithm
Once we have created the conflict graphG annotated

with vertex and edge weights, energy consumption of the
memory objects can be computed. Now, the problem is to
select a subset of memory objects which minimize the num-
ber of conflict edges and the overall energy consumption of
the system. The subset is bounded in size by the scratch-
pad size. In the simplest form, when every node and edge
has a unit weight, the problem is reduced to finding a Max-
imum Independent Set [6]. Unfortunately, even in the sim-
plest form the problem is NP-complete [6]. We will present
an Integer Linear ProgrammingILP based solution, as it
can be easily extended to handle complex memory hierar-
chies and requires an acceptable computation time using a
commercial ILP solver. Moreover, the problem can be ele-
gantly represented using a set of inequations.

In order to explain the algorithm we need to define a
number of variables. The binary variablel(xi) denotes the
location of the memory object in the memory hierarchy:

l(xi) =
{

0, if xi is present on scratchpad
1, otherwise (7)

Miss(xi ,xj) is the number misses of MOxi caused due to
conflict with MO xj . Since a memory object present in the
scratchpad does not conflict with other memory objects, we
can representMiss(xi ,xj) as follows:

Miss(xi ,xj) =
{

0, if xj is present on scratchpad
mi j , otherwise (8)

wheremi j is the weight of the edgeei j connecting vertexxi
to xj . FunctionMiss(xi ,xj) can be reformulated using the
location variablel(xj) and represented as:

Miss(xi ,xj) = l(xj)∗mi j (9)

Similarly, the location variablel(xi) can be used to reformu-
late the energy equation(1) denoting the energy consumed
by the memory object.

E(xi) = [1− l(xi)]∗ESP(xi)+ l(xi)∗ECache(xi) (10)

We substitute the energy equations forECacheandESP from
equations(5) and(6), respectively, into the above equation.
By rearranging the terms we transform the equation(10)
into the following form.

E(xi)= fi ∗ESP hit + (11)
fi ∗ [ECache hit −ESP hit ]∗ l(xi)+
[ECache miss−ECache hit ]∗ [ ∑

j∈Ni

l(xj)∗ l(xi)∗mi j ]

Observing the above equations, we find the last term is a
quadratic degree term. This can be justified by the fact that
the number of misses of a memory objectxi not only de-
pends upon its location but also upon the location of the
conflicting memory objectsxj . Prior to formulating an ILP

problem, we need to linearize the above equation. This can
be achieved by replacing the expressionl(xi) ∗ l(xj) by an
additional variableL(xi ,xj) in the following equation.

E(xi) = fi ∗ESP hit + (12)
fi ∗ [ECache hit −ESP hit ]∗ l(xi)+
[ECache miss−ECache hit ]∗ [ ∑

j∈Ni

L(xi ,xj)∗mi j ]

In order to prevent the linearizing variableL(xi ,xj) from
taking arbitrary values, the following linearization con-
straints are added to the set of constraints.

l(xi) − L(xi ,xj) ≥ 0 (13)
l(xj) − L(xi ,xj) ≥ 0 (14)

l(xi)+ l(xj) − 2∗L(xi ,xj) ≤ 1 (15)

The best set of memory objects which fits into the
scratchpad and minimizes the total energy consump-
tion now has to be identified. The objective function
ETotal denotes the total energy consumed by the sys-
tem.

ETotal = ∑
xi∈X

E(xi) (16)

The scratchpad size constraint can be modeled as follows:

∑
xi∈X

[1− l(xi)]∗S(xi) ≤ scratchpadsize (17)

The sizeS(xi) of memory objectxi is computed without
considering the appended NOP instructions. These NOP in-
structions are stripped away from the memory objects prior
to allocating them to the scratchpad. A commercial ILP
Solver [5] is used to obtain an optimal subset of memory ob-
jects which minimizes the objective function. The number
of vertices|V| of the conflict graphG is equal to the number
of memory objects, which is bounded by the number of ba-
sic blocks in the program code. The number of linearizing
variables is equal to the number of edges|E| in the conflict
graphG. Hence, the number of variables in the ILP prob-
lem is equal to|V|+ |E| and is bounded byO(|V|2). Nev-
ertheless, the maximum runtime of the ILP solver for our
set of real-life benchmarks (upto 19.5kBytes program size)
was found to be less than a second.

Our ILP formulation can be easily extended to handle
complex memory hierarchies. For example, if we had more
than one scratchpad at the same horizontal level in the mem-
ory hierarchy, then we only need to repeat inequation(17)
for every scratchpad. An additional constraint ensuring that
a memory object is assigned to at most one scratchpad is
also required. If we had I-caches at different levels (e.g.
L1, L2) in the memory hierarchy, we need not do anything,
as the algorithm tries to minimize the L1 I-cache misses.
The L2 I-cache misses, being a subset of the L1 I-cache
misses, are thus also minimized. Consequently, the energy
consumption of the whole memory hierarchy is minimized.



Consumption
Energy

Program
Machine

Simulator
Processor

Memory
Simulator

Consumption
Energy

Simulator

Machine
Program

Processor

Memory
Simulator

C Compiler

C Program

Trace
Generation

Trace
Generation

Scratchpad
Algorithm

Loop Cache
Algorithm

Energy Cost
Model

Scratchpad
CASA/Steinke’s

Loop Cache

Algorithm
Ross’s

Algorithm

C Compiler

Figure 3. Experimental workflow

5. Experimental Setup
The experimental setup consists of an ARM7T proces-

sor core, an onchip cache, an onchip scratchpad and an off-
chip main memory. We want to compare the effect of al-
location techniques for scratchpad on the energy consump-
tion of the instruction memory subsystem. Thecacti cache
model was used to calculate the energy consumption per
access for onchip 0.5µm technology cache, loop cache and
scratchpad memories. The loop cache was assumed to con-
tain a maximum of 4 loops. The energy consumption of the
main memory was measured from the evaluation board.

Experiments were conducted according to the workflow
presented in figure 3. In the first step, the benchmarks pro-
grams are compiled using an energy optimizing C com-
piler. Trace generation [14] is a well known I-cache per-
formance optimization technique. Hence, for a fair compar-
ison, traces are generated for both the allocation techniques.
either CASA or the scratchpad allocation algorithm [13] al-
locates memory objects to the scratchpad memory. The gen-
erated machine code is then fed into ARMulator [1] to ob-
tain the instruction trace. Our custom memory hierarchy
simulator [8] based upon the instruction trace, memory hi-
erarchy and the energy cost model, computes the aggregate
energy consumed by the memory subsystem.

For the loop cache configuration, the workflow is simi-
lar to scratchpad workflow. The loop cache allocation algo-
rithm [12] is utilized for assigning loops and functions to
the loop cache. The energy consumed by the memory sub-
system is computed similarly, using the appropriate mem-
ory hierarchy. The runtime overhead of CASA compared
against the other two approaches was negligible.

0%

20%

40%

60%

80%

100%

120%

140%

160%

128 256 512 1024

Scratchpad Size (B yte s)

I-Ca che Acce ss

S cra tchpa d Acce ss

I-Ca che M iss

I-M e m Ene rgy

Figure 4. Comparison of CASA against
Steinke’s algorithm for MPEG benchmark.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

128 256 512 1024

Scratchpad / Loop Cache Size (Byte s)

I-Ca che Acce ss

S cra tchpa d Acce ss

I-Ca che M iss

I-M e m Ene rgy

Figure 5. Comparison of scratchpad against
loop cache for MPEG benchmark.

6. Results
A subset of benchmarks from the Mediabench suite were

used to substantiate our claims on energy savings by the
proposed algorithm. The size of the scratchpad/loop cache
was varied while the rest of instruction memory subsystem
was kept invariant and the number of hits and misses to the
various levels of memory hierarchy were counted. Based
upon the gathered information and the energy model (sub-
section 3.4), energy consumption was computed. Figure 4
displays the parameters of CASA algorithm for the MPEG
benchmark against the published algorithm by Steinke et
al. [13]. Both the algorithms assign memory objects to the
scratchpad incorporated in the presented memory hierar-
chy. A direct mapped 2kB I-cache was chosen for these ex-
periments. All results are shown as the percentage of the
algorithm’s [13] parameters, denoted as 100%. The first
fact to observe is that the number of I-cache accesses are
higher, while the number of scratchpad accesses are lower
than for Steinke’s algorithm. This might beguile the reader
that CASA might cause an increase in energy consumption.
However, this is incorrect since Steinke’s algorithm tries to
reduce energy consumption by increasing the number of ac-
cesses to the energy efficient scratchpad. In contrast, CASA



Benchmark Mem Size Energy Consumption (µJ) Improvement(%)
(size) (Bytes) SP (CASA) SP (Steinke) LC (Ross) CASA vs. Steinke SP (CASA) vs. LC

adpcm 64 3398.37 3261.04 3779.80 -4.2 10.1
(1 kByte ) 128 1694.71 2052.12 2702.20 17.4 37.3

256 224.55 856.83 1480.59 73.8 84.8
29.0 44.1

g721 128 7493.75 8011.68 8343.61 4.0 10.2
(4.7 kBytes) 256 6640.65 6510.00 6734.41 -2.0 1.4

512 4941.53 4951.91 5616.16 0.2 12.0
1024 2106.53 3033.11 4707.76 30.6 55.2

8.2 19.7

mpeg 128 7554.88 10364.46 10918.01 27.1 30.8
(19.5 kBytes) 256 7521.28 9744.85 8624.61 22.8 12.8

512 3904.27 9502.60 5189.06 58.9 24.8
1024 3400.70 3518.72 5261.94 3.4 35.4

28.0 26.0

Table 1. Overall energy savings

tries to reduce I-cache misses by assigning conflicting mem-
ory objects to the scratchpad. Since I-cache misses are the
major source of energy consumption, CASA is able to con-
serve up to 60% energy against Steinke’s algorithm.

Next we compare (see figure 5) scratchpad allocated with
CASA against loop cache preloaded with Ross’s [12] algo-
rithm. Loop cache results are denoted as 100% in figure 5.
For small sizes (128 and 256 bytes), the number of accesses
to loop cache are higher than those to scratchpad. How-
ever, as we increase the size, loop cache’s performance is
restricted by the maximum number of preloadable memory
objects. On the other hand, the scratchpad can be preloaded
with any number of memory objects. Consequently, we ob-
serve a higher percentage of scratchpad accesses. Also us-
ing CASA, the number of I-cache misses for scratchpad are
substantially lower than those for loop cache. Consequently,
scratchpad is able to reduce energy consumption at an aver-
age of 26% against loop cache.

Finally, table 1 summarizes the energy consumption us-
ing CASA for scratchpad. Instruction cache of size 2kB,
1kB and 128 Bytes was assumed for thempeg, g721and
adpcmbenchmarks, respectively.

7. Conclusion and Future Work
In this paper we presented a generic cache-behavior

based scratchpad allocation technique. The technique re-
duced the energy consumption of the system against a
published algorithm. We also demonstrated that the sim-
ple scratchpad memory allocated with the presented tech-
nique is better than a loop cache. The overall average energy
savings of scratchpad allocated with our approach against
scratchpad and loop cache allocated with their respective al-
location algorithms are 21.1% and 28.6% respectively. We
intend to extend the approach by considering preloading of
data and dynamic copying (overlay) of memory objects on

the scratchpad.
References

[1] ARM. Advanced RISC Machines Ltd.
http://www.arm.com/armtech/ARM10Thumb.

[2] O. Avissar, R. Barua and D. Stewart. An Optimal Memory Al-
location Scheme for Scratch-Pad-Based Embedded Systems. In
IEEE Transactions on Embedded Computing Systems, 1(1):6-26
Nov. 2002.

[3] R. Banakar, S. Steinke, B.-S. Lee et al. Scratchpad Memory: A De-
sign Alternative for Cache On-chip Memory in Embedded Systems.
In Proc. of the 10th International Symposium on Hardware/Software
Codesign, Estes Park, CO, May. 2002.

[4] N. Bellas, I. Hajj, C. Polychronopoulos et al. Architectural and Com-
piler Support for Energy Reduction in the Memory Hierarchy of
High Performance Microprocessors. InProc. of the ISLPED Mon-
terey, CA, USA. ACM, Aug. 1998.

[5] CPLEX. CPLEX limitedwww.cplex.com.
[6] M. R. Garey and D. S. Johnson.Computers and Intractability: A

Guide To the Theory of NP-Completeness. W. H. Freeman and Com-
pany, New York, 1979

[7] M. Kamble and K. Ghosh. Analytical Energy Dissipation Models
for Low Power Caches. InProc. of the ISLPED Monterey, CA, USA.
ACM, Aug. 1997.

[8] MEMSIM. Dept. of Computer Science XII, Univ. of Dortmund.
http://ls12.cs.uni-dortmund.de/research/memsim/

[9] Motorola. Motorola ColdFire MCF5XXX processor family.
http://e-www.motorola.com/

[10] P. Pettis and C. Hansen. Profile Guided Code Positioning. InProc. of
the ACM SIGPLAN’90 Conference on Programming Language De-
sign and Implementation. ACM, pages 16-27, Jun. 1990

[11] P. R. Panda, N. D. Dutt, and A. Nicolau.Memory Issues In Embed-
ded Systems-on-chip. Kluwer Academic Publishers, Norwell, MA,
1999.

[12] S. C. A. Gordon-Ross and F. Vahid. Exploiting Fixed Programs in
Embedded Systems: A Loop Cache Example. InIEEE Computer
Architecture Letters, Jan. 2002.

[13] S. Steinke, L. Wehmeyer, B. S. Lee et al. Assigning Program and
Data Objects to Scratchpad for Energy Reduction. InProc. of the
DATE Conference, Paris, France. Mar. 2002.

[14] H. Tomiyama and H. Yasuura. Optimal Code Placement of Embed-
ded software for Instruction Caches. InProc. of the 9th European
Design and Test Conference ET&TC’96 Paris, France. Mar. 1996.

[15] S. J. E. Wilton and N. P. Jouppi. CACTI: An Enhanced Cache Ac-
cess and Cycle Time Model.IEEE Journal of Solid-State Circuits,
31(5):677–688, May 1996.


