Dynamic Overlay of Scratchpad Memory for Energy
Minimization

Manish Verma, Lars Wehmeyer, Peter Marwedel
Department of Computer Science XI|
University of Dortmund
44225 Dortmund, Germany

{Manish.Verma, Lars.Wehmeyer, Peter.Marwedel} @uni-dortmund.de

ABSTRACT Several researchers [10, 14] have identified the memory sub-

The memory subsystem accounts for a significant portion of the ag- SYStem as the energy bottleneck of the entire system. Memory
hierarchies are being constructed to reduce the memory subsys-

gregate energy budget of contemporary embedded systems. More;"™~'¢ dissinati h d hpad .
over, there exists a large potential for optimizing the energy con- €M'S energy dissipation. Caches and scratchpad memories rep-

sumption of the memory subsystem. Consequently, novel memo- resent two contrasting memory architectures. Caches improve the
ries as well as novel algorithms for their efficient utilization are be- Performance by exploiting the temporal and spatial locality present

ing designed. Scratchpads are known to perform better than cacheérl th_e program. However, for embedde_d SyStef“S' the overheads as-
in terms of power, performance, area and predictability. However, sociated with caches often negate their benefits. Moreover, caches

unlike caches they depend upon software allocation techniques ford® notorious for their unpredictable behavior [9). . .
their utilization. In this paper, we present an allocation technique ON the other hand, a scratchpad memory (SPM) COHSIStShOfJUSt
which analyzes the application and inserts instructions to dynam- a memc;ryharray and addres; (:]ecodlng circuitry. Duehtoé e ab-
ically copy both code segments and variables onto the scratchpad>€"¢€ © {he tag memory and the comparators, scratchpad memo-
at runtime. We demonstrate that the problem of dynamically over- res require much less energy per access_than a cache. In addition,
laying scratchpad is an extension of the Global Register Allocation they_re_qwre less onchip area and allow tlght_er bounds on WCET
problem. The overlay problem is solved optimally using ILP for- predlctllon of the system. However, they require complex program
mulation techniques. Our approach improves upon the only pre- 2nalysis and eXEI'C't Support fromrt]he con_1plllefr. q o al
viously known allocation technique for statically allocating both Prévious work on SPM usage has mainly focused on static al-

variables and code segments onto the scratchpad. Experiments rel_ocation of the SPM. Unlike a cache which adapts its contents ac-

port an average reduction of 34% and 18% in the energy consump-cording to the program behavior, a statically allocated SPM does

tion and the runtime of the applications, respectively. A minimal 1Ot modify its contents during the runtime of the program. The
increase in code size is also reported. static allocation technique may lead to under utilization of the SPM.

Consequently, we present a profile based approach which on the ba-
sis of live ranges of both variables and code segments, replenishes
the contents of the SPM. The technique identifies the points in the
General Terms: Design Measurement Performance. program to insert instructions to copy the contents on and off the
Keywords: scratchpad, overlay, dynamic allocation. SPM. The points are_optimally chosen in order to cause the least
overhead. The technique also computes addresses within the SPM
address range where variables and code segments are to be copied.
1. INTRODUCTION These addresses are computed such that a large number of variables
The design of embedded systems is very much driven by applica- and code segments share the same SPM space.
tions. Itis expected that future applications will be derived fromthe The rest of the paper is structured as follows: After the presen-
multimedia domain and will require significantly more processing tation of related work, the algorithm for solving the scratchpad
power. As a result, powerful processors and large memories will overlay problem is described in Section 3. This is followed by a
have to be used in future embedded systems. It is evident that thesgresentation of the experimental workflow. A discussion on the ex-
processors and memories are exteremely power-hungry, whereaperimental results is presented in Section 5. The paper ends with a
the electrical energy available in embedded systems (especially inconclusion and future work.
portable systems) is strictly limited. Consequently, a significant

research on low power techniques is being performed. 2. RELATED WORK

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guage$: Processors — Compilers, Memory Management

The research on scratchpad utilization can be classified into two

broad categoriegiz. static allocation and dynamic allocation tech-
Permission to make digital or hard copies of all or part of this work for niques. In the former, the SPM is loaded once at the start and its
personal or classroom use is granted without fee provided that copies arecontents remain invariant during the entire execution of the applica-
not made or distributed for profit or commercial advantage and that copies tion. On the other hand, dynamic allocation techniques change the

bear this notice and the full citation on the first page. To copy otherwise, to SPM contents during the execution to reflect the dynamic behavior
republish, to post on servers or to redistribute to lists, requires prior specific of the application

permission and/or a fee.) . .
CODES+ISSS'04September 810, 2004, Stockholm, Sweden. Most of the research [3, 14] on static allocation of the SPM

Copyright 2004 ACM 1-58113-937-3/04/000855.00. has focused on assigning data elements. The authors [14] were

1. Menory Object 2 Liveness §cratchpad 'overlay problem s aweig_hted version ofjibbal reg-
Det er ni nat i on — Anal ysis Step ister allocationproblem for CISC architectures, as memory objects
Step can have different sizes. Unlike RISCs, CISCs are relaxed to have
one or more operand(s) of an instruction as a memory location.
* This reduces the pressure on the register file and the number of un-

4 onehio Add s necessary load and store instructions. However, the high cost of
- hchip ress < - Membry accessing memory motivates toward an optimal utilization of the
Assi gnment Step Assignment Step register file. The global register allocation problem for CISCs is
also NP-complete [1] and as a result the scratchpad overlay prob-
lem can be proven to be NP-complete. Briefly, the proof argues
Figure 1: Workflow of the Scratchpad Overlay Algorithms that if the scratchpad overlay problem is restricted to have equal
sized memory objects then the problem transforms to the global
register allocation problem. The NP-completeness of the alloca-
the first-ones to demonstrate the effectiveness of the SPMs. Theytign problem ensures that the scratchpad overlay problem is also
achieved commendable reductions in the runtime of the applica- Np-complete. In order to efficiently solve the scratchpad overlay
tion by mapping frequently accessed data elements onto the SPMproblem, we break it into two smaller problems. The first problem
Authors in [3] proposed an optimal algorithm for assigning data assigns memory objects to the SPM or to the main memory and
elements onto the SPM. The algorithm is based upon profiling the 150 determines the optimal locations for the insertion of the spill
application and solving a system of binary linear equations. In both code. The second problem computes the addresses of the memory
the approaches, data elements (e.g. arrays) that are too large to figpjects assigned to the SPM. Unfortunately, as shown below both
in the SPM are kept in the main memory. the problems are NP-complete. Nevertheless, we present optimal
A recent approach [20] utilizes the SPM to store instructions approaches for both the first and the second problem.
and mOdels an inStrUCtiOn CaChe pl’esent in the SyStem as a ConfliCt The Scratchpad Overlay problem is solved using the four-step ap_
graph. Instructions are mapped to the SPM in order to minimize the proach shown in figure 1. In the first step, variables and code seg-
conflict cache misses and the energy consumption. Authors in [17, ments from the application code are identified as memory objects
19] demonstrated the benefits that can be achieved by assigningor scratchpad overlay. Liveness analysis is performed in the fol-
both instructions and data elements to the SPM. lowing step to determine the live range of these memory objects.
going research. Authors of [10] use Presburger formulas to dynam- o the SPM or to the main memory. In the final step, onchip ad-

ically copy parts of arrays at runtime. Dynamic copying of instruc- dresses of the memory objects assigned to the SPM are computed.
tions is proposed by authors in [15]. Certain infrequently executed

points €.g. entry point of a function or a loop) are considered as 3.1 Memory Objects
copy-points. At these copy-points, copying of the following basic we consider the following set of variables and code segments as
blocks is considered in order to minimize the energy consumption. candidates for scratchpad overlay:

Global register allocatioris one of the most researched and fun-
damental topics in code optimization and compiler construction[9]. ~ ® Global variables (both scalar and non-scalar)
A compiler initially generates code assuming an infinite number of
symbolic registersvhich have to be assigned to the limited number
of the processor’'seal registers Those symbolic registers which e Code segments call@thces
cannot be assigned a real register are kept in the main memory.)))
Spill codeis inserted to bring these symbolic registers to and from All global variables are considered as they occupy a space in the
the main memoryGlobal register allocatiorattempts to find anas- ~ data memory. Only non-scalar local variables are considered as
signment of the symbolic registers to the processor’s real registersthey consume a space on the stack and are generally not assigned to
such that the overhead due to the generated spill code is minimized the register file. We expect that the frequently accessed scalar local
The allocation problem was proven to be NP-complete [7]. Con- v_arlables will be assigned to the registers during the register alloca-
sequently, most of the allocators use a graph coloring [5] based tion step. Therefore, they are not considered for aIIocatlpn on_to the
heuristic. These allocators perform near-optimal allocation for reg- SPM- Frequently executed code segments caftetesare identi-
ular architectures with a large number of processor registers. How- fied using theTrace Generatioriechnique. A trace is a frequently
ever, they fail considerably for irregular architectures which invari- €xecuted straight-line path consisting of basic blocks connected by
ably come with a smaller number of registers. In the recent past, _fall-through edg_es. Our traces are similar to the ones descrlt_)ed
approaches for optimal register allocation [1, 8, 11] have been pro- In [20]. Traces improve the processor performance by enhancing
posed. The register allocation problem is formulated as an inte- the spatial locality present in the program code. Moreover, due to
ger linear program (ILP) and solved using a general purpose ILP the fact that traces always end with an unconditional jump [18],
solver [6]. Although global register allocation is NP-complete, au- they form an atomic unit of instructions which can be placed any-
thors [8] have empirically demonstrated that it takis?®) time to where in the memory without modifying other traces. The above
compute the optimal register allocation for real-life benchmarks. Set of candidates is termétemory Object¢MO). In the following
The runtime was reduced @n'-3) when the problem was relaxed subsection, we compute the live range of each memory object.

e Non-scalar local variables

to compute near-optimal solutions [1]. 3.2 Liveness Analysis
Liveness analysis is performed on the control flow graph (CFG)
3. SCRATCHPAD OVERLAY (SO) G(N,E) of every function. The node sBtof the CFG is the set of

The problem of scratchpad overlay attempts to share the SPM basic blocks present within the function code and the edges belong-
between memory objects such that the memory objects are copiedng to the edge s represent the possible flow of control during
onto the SPM when required and copied off when not required. The the execution of the function. The concepbEF-USEchains [13]

is extended to compute the liveness of memory objects. A reference
to a memory object can be classified aB3&F, aMOD or aUSE. /\&/\ ©

If a reference assigns a value to all the elements of a memory object DEF T < o >
then it is classified as BEF. If only some elements but not all are ‘ el ¥

being assigned, then the reference is assumed toM®[@. Any € | Xoer ks X srore « 1| TeonTk e Xeowrr

reference reading a value of the element(s) of a memory object is
classified as &SE. C> (_ConNT D conT D

The nodes of the CFG are attributed witieEF-MOD-USEin- T

formation in order to compute the live range of memory objects. A e | Xeours €| Xuse ¢ » X omo el Xeourir X oo s
combination of both static and profiling based analysis method is
used to determine basic blocks containing references to variables C

. : USE
and also the type of those references. The static method is used to @ > CCOJD
determine basic blocks containing references while dynamic pro-
filing is used to differentiate betweddEF and MOD references. (a) (b) (c)

Traces, inspite of being a set of basic blocks, are considered simi-

lar to variables. However, they cannot havBBF or aMOD ref- . .

erence, as instructions are never defined or modified but are always 19ureé 2: Flow Constraints: (a) DEF, (b) USE and (c) CONT con-
executed. Consequently, all basic blocks are assighéErefer- straint

ence to the corresponding trace. A fixed point iterative algorithm is

then used to compute the live range of every memory object. whereg € E, atj € Attribst aticU Attribspy, andma, € MO. We

3.3 Memory Assignment Problem first describe the objective function and then the constraints for the
| . . proposed ILP formulation. The objective function represents the
The memory assignment problem is formulated such that the geqy savings that could be achieved by scratchpad overlay. The

memory objects are assigned to the SPM on the edges rather than,,erqy savings (objective function) need to be maximized in order
at the nodes of the CFG. The edge based formulation enables thg, minimize the energy consumption of the system.

efficient determination of the optimal points for the spill code in-

sertion. We define the following static attributégttibstatd for Eprofit(i,J,ma) * xij K
every memory object on each edge of the CFG. E= z Z - Eload_cost(i_a ma) Xi_OAD ‘ 2
Attribstaric = {DEF,MOD,USE CONT} ' — Estorecost(l,MQ) * Xs70oRe K

where theDEF attribute is defined on every edge originating from WhereEprofit (i, j,ma) is the energy savings obtained by assign-
anode with 2EF attribute. In contrast, theOD or USEattribute N9 memory objecmq, to the SPM at edge:. Ejoad cost(i, M)

is defined on all edges entering a node Wt®D or USEattribute, and Estorecost(i,mo) are the energy overheads of spilling mem-
respectively. If a memory object is live on an edge thenG@NT ory objectmq to and from the SPM at edgg, respectively. For
attribute for the memory object is defined at that edge. In a scenario the Sake of brevity, we refrain from explaining the computation of
when an edge can be assigned more than one static attributes for &profit» Eload_cost and Estorecost, computed using an accurate en-

memory object, the following priority order is used to determine ©€rgy model [16]. _ o
the appropriate attribute. Constraints have to be added to prevent the binary varlad?kes

from assuming arbitrary values and to obtain a legitimate solution
DEF > MOD >USE>CONT to the memory assignment problem. We start with explaining the
gow constraints that are added to maintain a legal flow of liveness
of memory objects. The following is BEF-constraintwhich is
added for all edges witBEF attribute.

The priority order defined above guarantees that no DEF-USE chain
are broken. Additionally, spill attribute®\ttribgp|) are defined
on edges to model appropriate spilling of memory objects.

.] j] _
Attribsp; . = {LOAD,STORE XDEF k— XCoNT k— XsTOrREK = 0 Ymae MO (3)

TheLOAD attribute defined on an edge implies that the correspond- Figure 2(a) represents the DEF-constraint, where edgentains a
ing memory object can be spill-loaded from the main memory onto DEF att_nbute while edge; is chosen such that the source node of
the SPM on the current edge. On the other hand SR@REat- edgee; is same as the target node of edgenformally, the DEF-
tribute implies that the memory object can be spill stored from the constraint states that if a memory objeat, is defined DEF) on
SPM onto the main memory. THeOAD attribute is defined on ~ the SPM on an edge then it can continueGONT) to remain on
edges which have thB1OD, USE or CONT attribute defined or ~ the SPMon the following edgg or it can be spill-storedJTORE
which originate from aliverge nodeSimilarly, STOREattribute is to the main memory on the edge Similarly, aMOD-constraint
defined on edges which halEF attribute defined or which enter ~ OF USE-constraints added for edges witllOD or USEattribute.
amerge nodeA diverge (merge) node is a node whose out-degree i ' i

(in-degree) is greater than 1. We would like to state that a spill at- XUSE k™ XJ_CONT k" Xoapk = 0 VmaceMO)
tribute can be defined only on those edges where a static attribute XiMODk*XJCONT — xiLOAD k = 0 vmg.e MO (5)

is already defined.

Next, we define a binary variabld representing the assign- ~ AS shown in the figure 2(b), the target node of edgés the same
ment of memory objeanq, to the SPM on edge as the source node of edge Informally, the USE-constraint states

that if a memory objecing, is being usedYSE) on the SPM on

1 if mq¢is present on SPM at edgeand an an edges then it was already continuing©ONT) on the SPM on
Xjk = operation corresponding i; is performed (1) a previous edge; or it was spill loadedl(OAD) on the edge. A

0 otherwise similar explanation exists for the MOD-constraint. The following

the addresses of the memory objects assigned to the SPM, in order
to solve the scratchpad overlay problem. An approach to compute
the addresses is presented in the following subsection.

3.4 Onchip Address Assignment Problem

In the previous step, an implicit assumption was made while for-
mulating the memory assignment problem as an ILP. The assump-
tion was that if the aggregate size of the memory objects assigned
to the SPM on each edge was less than the scratchpad size, then
the onchip addresses can be computed for those memory objects.
This assumption can fail due to a bad address assignment strategy,
which causes fragmentation of the SPM address space. As a result,

Figure 3: Merge-Node Const. Figure 4: Diverge-Node Const. memory objects cannot be assigned onchip addresses, despite the
scratchpad size constraint being satisfied. The problem of onchip
address assignment is trivial if all the memory objects are of the

flow constraint, represented in figure 2(c), is added for edges with same size. However, the problem becomes NP-complete when the

CONT attribute. memory objects are of different sizes [7]. We formulate the address
i i o — 0 vm MO 6 assignment problem as an ILP problem to compute a valid solution.
XCONT k™ XCoNT k™~ XLoADK = &€ ®) In order to compute the address of a memory object, we compute

The CONT-constraint (refer figure 2(c)) informally implies that if the offset of its start address from the base address of the SPM. The
a memory objectng is continuing CONT) on the SPM on an integer variabld)'j represents the offset of the memory objex;
edges, then it was already continuin€ONT) on a previous edge at the edgey and it satisfies the following constraint:

ej or it was spill loaded {OAD) onto the SPM on the edgg. i . .

Tjhe following flow constraints (eqn. 7, 8 and 9, 10) are added to 0< Oli < ScratchpadSize Siz¢mo;) (12)
ensure a legal flow of liveness on merge and diverge nodes, re- We start with the description of the constraints present in the
spectively. More importantly, the constraints ensure an optimal |LP formulation. Satisfying one of the following two constraints
spill code placement [8]. The followinmerge-node constraints ensures that the offsets of no two memory objects defined at the

are added for all the merge nodes. same edge overlap with each other.
X oapk—Xjx <O Ve € {a1...an} atj € {atj1...atjn}(7) O, —0f > Sizdma) XOR 13)
xijllk =...= x‘j’;] « St. atj...atjy € AttribstaTic 8) L — Oij > Sizémoj) (14)

In the above constraints, edggs. . . e (refer figure 3) constitute The first constraint (eqn. 13) of the above set of constraints implies
all the edges entering a merge node. The merge node constrainthat on edges the start addresﬂ) of the memory objecing;
ensures that if a memory objetiy is assigned to the SPMon one s greater than the end addre&} (- Sizéma,)) of memory object

of the edges entering the merge node then it must be assigned Ohq,. The second constraint (eqn. 14) implies the reversed place-

spill loaded LOAD) on each of the remaining edges. Similarly, ment of the memory objects. The XOR operator in the above set of
for all the diverge nodes the following constraintiverge-node constraints cannot be modeled using linear programming. Hence,

constrain) are added. we add a binary variabldj « to linearize the set of constraints.
| —x, <0 Vge{a... atj € {ati1...atjn 9 . . .
XS_TORE K%k = & € {@...an} atj € {atj...aln}(9) 4 _ | O constraint (13)is to be satisfied (15)
x']-llk =...= x'j’;] kSt atj1...atjy € AttribstaTic (10) ik™) 1 constraint (14) is to be satisfied

As shown in figure 4, edges, ... g, represent all the edges emerg- The following is the linearized form of the above set of constraints
ing from a diverge node. In order to maintain the legality of flow, with L being a sufficiently large constant.

if a memory objecqy is assigned to the SPM on one of the edges i i i .

exiting a diverge node, then it must be assigned to the SPM or Oj —O+Lxuj, = Sizdma) Ve cE (16)
spill-stored ETORE to main memory on each of the remaining OL—Oij —L *uijk > Sizdémo)— L VecE (17)
edges. Finally, we append thseratchpad size constrairior all o)

edges which ensures that the aggregate size of all memory objects_The above set of constraints is repeated for all pairs of memory ob-

assigned to the SPM on each edge should be less than the SPM sizd€Cts which are assigned to the SPM on eelg&ubsequently, they
are also repeated for all edgase E with more than one memory

i .) object assigned to the SPM. Next, a constraint is added to restrict
ij K * Sizémqy) < ScratchpadSize/'s € E (11) the offset of a memory objechoy to the same value for all the
edges on which it is assigned to the SPM.
A commercial ILP solver [6] is used to obtain an optimal assign- ; i
ment of memory objects to the SPM which maximizes the en- k-0 = 0 (18)

ergy savings while satisfying the above constraints. For every edge|n the above constraint, edgasande; are chosen such that source

& € E and for every memory objecnq, € MO we need a maxi- pgqe of edgesj is the target node of edgg. Any change in the
mum of two binary variables, each corresponding to the static and ssets of the memory objechq, on edgess ande; is captured
the spill attributes. Consequently, the total number of variables in using the following binary variable. !

the ILP formulation i<O(|MO| x |E|). However, the maximum run- _ _
time of ILP solver was found be less than 16.99 CPU seconds on a NI { 1 if O, #£0)}
=

Sun Sparc 1300Mhz compute machine. We still have to determine 0 otherwise (19)

St ei nke’ s
Scrat chpad Overl ay Static Allocation 10000 - —o— TotaEner gy(SO) —B-TotaErer gy(SA)
Al gorithm b

Al gorithm

9000
=N
C Conpi ler |=-------- Toseooos T 7000
| S o0 AN
‘ £ AN
ot on e ~—
S 4000
< 3000 N * \E\H

T
512 1024

; B
Scr at chpad Stati & 2000
rat chpa atic
Overlay ~- Ene;vgﬁelcost --= Allocation 1000
Al gorithm Al gorithm 0
Machi ne Machi ne
Program Program
Si mul at or Si nul at or
(Arnul ator) (Arnul at or)
Ener gy
1’0
0,9
Ener gy 0.8 7
Consunpt’i on 0,7 1

128 256
Scat chpad Si ze (Bytes)

Figure 6: Energy Consumption of Edge Detection using SO vs. SA

1,1 ——‘ B Processor Energy 1 Memory Energy B Total Energy B CPU cycles }—

Ener gy
Profiler

Ener gy

Consunpti o
0,6 7
. . 0,5 7
Figure 5: Experimental Workflow 04 |
037
. 0.2 1
The unit value of the variablvaiJ would imply an invalid solution 011

to the address assignment problem. Equation 18 is transformed to 0"

. i 28 200 256 avg.
the following form after the insertion of the binary varlalvua

1
Scratchpad Size (Bytes)

|
Ok — Olj< -L *\)kj = Ova.gcE (20) Figure 7: Edge Detection: Energy and Performance comparison of
The above constraint is repeated for all memory objects assigned SO vs. SA algorithm
to SPM on both the edges,e; € E and also for all such valid
pair of edges. A valid solution is characterized by the fact that the
offsets of memory objects on all pair of edges remain invariant. The is then fed into the ARMulator [2] to obtain a sequence of exe-
summation of the binary variabié! for all valid pairs of edges and cuted instructions. Finally, the energy consumption of the system

for all memory objects is denoted as the objective function of the IS computed using the instruction sequence and the energy mod-
ILP formulation. els [4, 16]. A similar workflow is followed to compute the energy

i consumption when the SPM is allocated using the static allocation
> ZVL (21) (SA) approach [17]. In the following section, we discuss the results
| obtained using the scratchpad overlay approach.

For a valid solution the value of the objective function should be

zero which is achieved by minimizing the objective function. The 5 EXPERIMENTAL RESULTS

ILP formulation is a Mixed Integer Linear Programming (MIP) Th d techni . luated f ted set of bench-
problem, as it consists of both binary and integer variables. The € proposed technigue IS evaluated for an assorted Set of benc
number of integer variables B(|MO| x |E|) while the number of marks from I\/_Iedlabenc_hll [12] and UTDSP benghr_nark suite. More-
binary variables i(|MO| |E|2). The problem is solved using over, for a fair comparison, a benc.hmark consisting of the sortllng
the branch and boundechnique of the ILP solver [6], which can routines presented in [.17] IS algo included. Energy consur_nptlon
take substantial time for certain problem instances having a Iargewas. computed by varying the size of the SPM, allocated with the
number of variables. static approach [17] or with the scratchpad_overlay (SO) approac_h.
Figure 6 compares the energy consumption of the edge detection
benchmark when the SPM is allocated using the proposed overlay
4. WORKFLOW technique against the static allocation (SA) technique [17]. The
The experimental setup consists of an ARM7T processor core, energy curve for SA algorithm monotonically decreases with the
an onchip SPM and an offchip main memory. We compared the en- increase in the SPM size, as the technique can allocate additional
ergy consumption of the system when the onchip SPM is allocated memory objects for larger sizes. In contrast, the energy curve for
using the scratchpad overlay technique against the static allocationthe SO algorithm declines faster to reach a threshold value at 256B
technique by Steinke et. al [17]. The energy consumption of the of the SPM and thereafter remains constant for larger sizes. The
system is based upon accurate energy models proposed by [4, 16]justification for the behavior is that the SO algorithm is able to
where [16] has an accuracy of 98% for our experimental setup. share the SPM among many memory objects. The energy con-
The experiments were conducted according to the workflow pre- sumption becomes constant when no additional memory objects
sented in figure 5. In the first step, the benchmarks programs arecan be overlayed on the SPM. Moreover, the energy consumption
compiled using an energy optimizing C compiler. The I-cache op- of a system with 256B SPM allocated with SO algorithm is equal
timization technique called trace generation [18] is applied in the to that of a system with 1024B SPM allocated with SA algorithm.
following step. This is followed by the application of the pro- This implies that by sharing a small SPM, equal or higher energy
posed scratchpad overlay technique. The generated machine codsavings can be obtained than by statically using a large SPM. The

2,001 WTowErer gy DEseationTime BCodeSim Programming Language Design and Implementation (PL.DI)
pages 243-253, Snowbird, Utah, USA, 2001.

[2] ARM. Advanced RISC Machines Ltattp://www.arm.com.
[3] O. Avissar, R. Barua, and D. Stewart. An Optimal Memory
Allocation Scheme for Scratch-Pad-Based Embedded
SystemslEEE Transactions on Embedded Computing

Systemsl(1):6-26, November 2002.
[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad Memory: A Design Alternative for
e y - — Cache On-chip Memory in Embedded System®?ioc. of
el detedion - mpea P enchm ke e o 10th International Symposium on Hardware/Software
CodesignColorado, USA, May 2002.
. . .) [5] G.J. Chaitin. Register allocation & spilling via graph
Figure 8: Energy, Performance and Code Size comparison using coloring. InProc. of the 1982 SIGPLAN Symposium on
SO vs. SA algorithm Compiler Constructionpages 98-101, Boston,
Massachusetts, USA, 1982.
[6] CPLEX. CPLEX limited http://www.cplex.com.
trend of energy consumption values remains the same for all the [7] M. R. Garey and D. S. JohnsoBomputers and
benchmarks. Consequently, a comparison of the two allocation al- Intractability: A Guide To the Theory of NP-Completeness
gorithms is presented for a smaller and finer range of SPM sizes. Freeman, New York, USA, 1979.
Figure 7 denotes the normalized energy consumption and CPU [8] D. W. Goodwin and K. D. Wilken. Optimal and
cycles (execution time) values of the SO algorithm. The energy Near-optimal Global Register Allocation Using 0-1 Integer

and performance values of the SA algorithm are denoted as the Eé(()g)r%rggw_l Sgg OEY;‘J;F;B%C&I.CG and Experience

unit valued baseline. The efficient utilization of the SPM by the [9] J. L. Hennessy and D. A. Patters@@omputer Architecture :
SO algorithm leads to reductions of upto 65% in memory energy A Quantitative Approach; second editiddorgan
consumption. Both the processor energy and the execution time are Kaufmann, 1996.

reduced as accessing the onchip SPM requires less CPU cycles thafil0] M. Kandemir, I. Kadayif, and U. Sezer. Exploiting

the offchip main memory. The total energy consumption, being Scratch-Pad Memory Using Presburger Formula®rbe. of
the sum of the processor energy and the memory energy, shows the 14th International Symposium on System Synthesis

: o . ISSS)pages 7-12, Montreal, P.Q., Canada, 2001.
an average reduction of 43%. The application on average reqwres[ll] SI' Kon)gpa?]d K D. Wilken Precis% register allocation for
21% less CPU cycles for execution. . et y

i) irregular architectures. IRroc. of the 31st annual
The comparison of SO and SA algorithms across all benchmarks ACM/IEEE International Symposium on Microarchitecture

are presented in figure 8. The normalized energy values, the ex- Dallas, TX, USA, 1998.

ecution time values and the code sizes are the averages over al[12] MediabenchllBenchmark Suite for Multimedia and
scratchpad sizes. The SO algorithm achieves reductions of 15%, Communication Systems .

14%, 55% and 42% in the total energy consumption for mpeg, ad- http://cares.icsl.ucla.edu/MediaBenchll/.

pcm, histogram and multisort respectively. Average reductions of [13] S- Muchnick Advanced Compiler Design and

8%, 7%, 32% and 20% in the execution time of the applications are ::n:grl]%?;ggtaégﬂgﬂr%gag_Kezlijtfig}? nlngg%bllshers, San

also reported. The average reductions in energy consumption an 14] P. R. Panda, N. D. Dutt, and A. NicolaMemory Issues in
execution time across all benchmarks are 34% and 18%, respec- Embedded Systems-On-CHiguwer Academic Publishers,
tively. The SO approach inserts spill code for loading and storing Norwell, MA, 1999.

of memory objects which is reflected by the increase in the code [15] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar,

size of the application. The average increase in code size of varies M. Balakrishnan, and P. Marwedel. Reducing Energy

from 12% to 75% for our set of benchmarks. However, the increase Consumption by Dynamic Copying of Instructions onto
Onchip Memory. InProc. of the 15th International

in code size becomes negligible (less than 1%) when the size of the h is (1988
whole application consisting of both data and code is considered. g%rg;%%?lg%cz).n System Synthesis (IS8)o Japan,
[16] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An

6. CONCLUSIONS AND FUTURE WORK Accurate and Fine Grain Instruction-Level Energy Model

In thi ted ali Ivsis based techni f Supporting Software Optimizations. Rroc. of International

nthis paper we presented a liveness analysis based lechnique for — \orkshop on Power And Timing Modeling, Optimization and
dynamic utilization of the scratchpad memory. The problem of dy- Simulation PATMOSYverdon-Les-Bains, Switzerland, Sep.
namically overlaying both data and instructions onto the SPM was 2001.
shown to be an NP-complete problem. A technique which breaks [17] S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel.
the scratchpad overlay problem into two smaller problems and ob- Assigning program and data objects to scratchpad for energy
tains an optimal solution for both the problems was presented. The reduction. InProc. of Design Automation and Test in Europe

(DATE), Paris France, March 2002.
[18] H. Tomiyama and H. Yasuura. Optimal code placement of
embedded software for instruction cachesPtoc. of the 9th

presented technigue enables efficient utilization of the SPM and
results in reduced energy consumption of the system against a pub

lished algorithm. The average reductions in energy consumption European Design and Test ConferenBaris France, March
and execution time are 34% and 18%, respectively. In the future, 1996. ET&TC.
we intend to extend the approach to handle inter-procedural over-[19] M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for
lay of the SPM and would also like to explore the possibility of Maximal Scratchpad Usage. Rroc. of the Asia and South
obtaining near-optimal results using heuristic approaches. Pacific Design Automation Conference (ASPDAz)ge 77,
January 2003.

[20] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware

7. REFERENCES) .) Scratchpad Allocation Algorihm. IRroc. of Design,
[1] A. W. Appel and L. George. Optimal spilling for cisc Automation and Test in Europe (DATEebruary 2004.

machines with few registers. Proc. of the Conference on

