
Dynamic Overlay of Scratchpad Memory for Energy
Minimization

Manish Verma, Lars Wehmeyer, Peter Marwedel
Department of Computer Science XII

University of Dortmund
44225 Dortmund, Germany

{Manish.Verma, Lars.Wehmeyer, Peter.Marwedel}@uni-dortmund.de

ABSTRACT
The memory subsystem accounts for a significant portion of the ag-
gregate energy budget of contemporary embedded systems. More-
over, there exists a large potential for optimizing the energy con-
sumption of the memory subsystem. Consequently, novel memo-
ries as well as novel algorithms for their efficient utilization are be-
ing designed. Scratchpads are known to perform better than caches
in terms of power, performance, area and predictability. However,
unlike caches they depend upon software allocation techniques for
their utilization. In this paper, we present an allocation technique
which analyzes the application and inserts instructions to dynam-
ically copy both code segments and variables onto the scratchpad
at runtime. We demonstrate that the problem of dynamically over-
laying scratchpad is an extension of the Global Register Allocation
problem. The overlay problem is solved optimally using ILP for-
mulation techniques. Our approach improves upon the only pre-
viously known allocation technique for statically allocating both
variables and code segments onto the scratchpad. Experiments re-
port an average reduction of 34% and 18% in the energy consump-
tion and the runtime of the applications, respectively. A minimal
increase in code size is also reported.

Categories and Subject Descriptors:D.3.4 [Programming Lan-
guages]: Processors – Compilers, Memory Management

General Terms: Design Measurement Performance.

Keywords: scratchpad, overlay, dynamic allocation.

1. INTRODUCTION
The design of embedded systems is very much driven by applica-

tions. It is expected that future applications will be derived from the
multimedia domain and will require significantly more processing
power. As a result, powerful processors and large memories will
have to be used in future embedded systems. It is evident that these
processors and memories are exteremely power-hungry, whereas
the electrical energy available in embedded systems (especially in
portable systems) is strictly limited. Consequently, a significant
research on low power techniques is being performed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04,September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

Several researchers [10, 14] have identified the memory sub-
system as the energy bottleneck of the entire system. Memory
hierarchies are being constructed to reduce the memory subsys-
tem’s energy dissipation. Caches and scratchpad memories rep-
resent two contrasting memory architectures. Caches improve the
performance by exploiting the temporal and spatial locality present
in the program. However, for embedded systems, the overheads as-
sociated with caches often negate their benefits. Moreover, caches
are notorious for their unpredictable behavior [9].

On the other hand, a scratchpad memory (SPM) consists of just
a memory array and address decoding circuitry. Due to the ab-
sence of the tag memory and the comparators, scratchpad memo-
ries require much less energy per access than a cache. In addition,
they require less onchip area and allow tighter bounds on WCET
prediction of the system. However, they require complex program
analysis and explicit support from the compiler.

Previous work on SPM usage has mainly focused on static al-
location of the SPM. Unlike a cache which adapts its contents ac-
cording to the program behavior, a statically allocated SPM does
not modify its contents during the runtime of the program. The
static allocation technique may lead to under utilization of the SPM.
Consequently, we present a profile based approach which on the ba-
sis of live ranges of both variables and code segments, replenishes
the contents of the SPM. The technique identifies the points in the
program to insert instructions to copy the contents on and off the
SPM. The points are optimally chosen in order to cause the least
overhead. The technique also computes addresses within the SPM
address range where variables and code segments are to be copied.
These addresses are computed such that a large number of variables
and code segments share the same SPM space.

The rest of the paper is structured as follows: After the presen-
tation of related work, the algorithm for solving the scratchpad
overlay problem is described in Section 3. This is followed by a
presentation of the experimental workflow. A discussion on the ex-
perimental results is presented in Section 5. The paper ends with a
conclusion and future work.

2. RELATED WORK
The research on scratchpad utilization can be classified into two

broad categoriesviz. static allocation and dynamic allocation tech-
niques. In the former, the SPM is loaded once at the start and its
contents remain invariant during the entire execution of the applica-
tion. On the other hand, dynamic allocation techniques change the
SPM contents during the execution to reflect the dynamic behavior
of the application.

Most of the research [3, 14] on static allocation of the SPM
has focused on assigning data elements. The authors [14] were

1. Memory Object
 Determination
 Step

2. Liveness
 Analysis Step

3. Memory
 Assignment Step

4. Onchip Address
 Assignment Step

Figure 1: Workflow of the Scratchpad Overlay Algorithms

the first-ones to demonstrate the effectiveness of the SPMs. They
achieved commendable reductions in the runtime of the applica-
tion by mapping frequently accessed data elements onto the SPM.
Authors in [3] proposed an optimal algorithm for assigning data
elements onto the SPM. The algorithm is based upon profiling the
application and solving a system of binary linear equations. In both
the approaches, data elements (e.g. arrays) that are too large to fit
in the SPM are kept in the main memory.

A recent approach [20] utilizes the SPM to store instructions
and models an instruction cache present in the system as a conflict
graph. Instructions are mapped to the SPM in order to minimize the
conflict cache misses and the energy consumption. Authors in [17,
19] demonstrated the benefits that can be achieved by assigning
both instructions and data elements to the SPM.

In contrast, dynamic utilization of the SPM is still a field of on-
going research. Authors of [10] use Presburger formulas to dynam-
ically copy parts of arrays at runtime. Dynamic copying of instruc-
tions is proposed by authors in [15]. Certain infrequently executed
points (e.g. entry point of a function or a loop) are considered as
copy-points. At these copy-points, copying of the following basic
blocks is considered in order to minimize the energy consumption.

Global register allocationis one of the most researched and fun-
damental topics in code optimization and compiler construction [9].
A compiler initially generates code assuming an infinite number of
symbolic registerswhich have to be assigned to the limited number
of the processor’sreal registers. Those symbolic registers which
cannot be assigned a real register are kept in the main memory.
Spill codeis inserted to bring these symbolic registers to and from
the main memory.Global register allocationattempts to find an as-
signment of the symbolic registers to the processor’s real registers
such that the overhead due to the generated spill code is minimized.
The allocation problem was proven to be NP-complete [7]. Con-
sequently, most of the allocators use a graph coloring [5] based
heuristic. These allocators perform near-optimal allocation for reg-
ular architectures with a large number of processor registers. How-
ever, they fail considerably for irregular architectures which invari-
ably come with a smaller number of registers. In the recent past,
approaches for optimal register allocation [1, 8, 11] have been pro-
posed. The register allocation problem is formulated as an inte-
ger linear program (ILP) and solved using a general purpose ILP
solver [6]. Although global register allocation is NP-complete, au-
thors [8] have empirically demonstrated that it takesO(n3) time to
compute the optimal register allocation for real-life benchmarks.
The runtime was reduced toO(n1.3) when the problem was relaxed
to compute near-optimal solutions [1].

3. SCRATCHPAD OVERLAY (SO)
The problem of scratchpad overlay attempts to share the SPM

between memory objects such that the memory objects are copied
onto the SPM when required and copied off when not required. The

scratchpad overlay problem is a weighted version of theglobal reg-
ister allocationproblem for CISC architectures, as memory objects
can have different sizes. Unlike RISCs, CISCs are relaxed to have
one or more operand(s) of an instruction as a memory location.
This reduces the pressure on the register file and the number of un-
necessary load and store instructions. However, the high cost of
accessing memory motivates toward an optimal utilization of the
register file. The global register allocation problem for CISCs is
also NP-complete [1] and as a result the scratchpad overlay prob-
lem can be proven to be NP-complete. Briefly, the proof argues
that if the scratchpad overlay problem is restricted to have equal
sized memory objects then the problem transforms to the global
register allocation problem. The NP-completeness of the alloca-
tion problem ensures that the scratchpad overlay problem is also
NP-complete. In order to efficiently solve the scratchpad overlay
problem, we break it into two smaller problems. The first problem
assigns memory objects to the SPM or to the main memory and
also determines the optimal locations for the insertion of the spill
code. The second problem computes the addresses of the memory
objects assigned to the SPM. Unfortunately, as shown below both
the problems are NP-complete. Nevertheless, we present optimal
approaches for both the first and the second problem.

The scratchpad overlay problem is solved using the four-step ap-
proach shown in figure 1. In the first step, variables and code seg-
ments from the application code are identified as memory objects
for scratchpad overlay. Liveness analysis is performed in the fol-
lowing step to determine the live range of these memory objects.
The third step involves the optimal assignment of memory objects
to the SPM or to the main memory. In the final step, onchip ad-
dresses of the memory objects assigned to the SPM are computed.

3.1 Memory Objects
We consider the following set of variables and code segments as

candidates for scratchpad overlay:

• Global variables (both scalar and non-scalar)

• Non-scalar local variables

• Code segments calledtraces.

All global variables are considered as they occupy a space in the
data memory. Only non-scalar local variables are considered as
they consume a space on the stack and are generally not assigned to
the register file. We expect that the frequently accessed scalar local
variables will be assigned to the registers during the register alloca-
tion step. Therefore, they are not considered for allocation onto the
SPM. Frequently executed code segments calledtracesare identi-
fied using theTrace Generationtechnique. A trace is a frequently
executed straight-line path consisting of basic blocks connected by
fall-through edges. Our traces are similar to the ones described
in [20]. Traces improve the processor performance by enhancing
the spatial locality present in the program code. Moreover, due to
the fact that traces always end with an unconditional jump [18],
they form an atomic unit of instructions which can be placed any-
where in the memory without modifying other traces. The above
set of candidates is termedMemory Objects(MO). In the following
subsection, we compute the live range of each memory object.

3.2 Liveness Analysis
Liveness analysis is performed on the control flow graph (CFG)

G(N,E) of every function. The node setN of the CFG is the set of
basic blocks present within the function code and the edges belong-
ing to the edge setE represent the possible flow of control during
the execution of the function. The concept ofDEF-USEchains [13]

is extended to compute the liveness of memory objects. A reference
to a memory object can be classified as aDEF, aMOD or aUSE.
If a reference assigns a value to all the elements of a memory object
then it is classified as aDEF. If only some elements but not all are
being assigned, then the reference is assumed to be aMOD . Any
reference reading a value of the element(s) of a memory object is
classified as aUSE.

The nodes of the CFG are attributed withDEF-MOD-USEin-
formation in order to compute the live range of memory objects. A
combination of both static and profiling based analysis method is
used to determine basic blocks containing references to variables
and also the type of those references. The static method is used to
determine basic blocks containing references while dynamic pro-
filing is used to differentiate betweenDEF andMOD references.
Traces, inspite of being a set of basic blocks, are considered simi-
lar to variables. However, they cannot have aDEF or aMOD ref-
erence, as instructions are never defined or modified but are always
executed. Consequently, all basic blocks are assigned aUSErefer-
ence to the corresponding trace. A fixed point iterative algorithm is
then used to compute the live range of every memory object.

3.3 Memory Assignment Problem
The memory assignment problem is formulated such that the

memory objects are assigned to the SPM on the edges rather than
at the nodes of the CFG. The edge based formulation enables the
efficient determination of the optimal points for the spill code in-
sertion. We define the following static attributes (AttribSTATIC) for
every memory object on each edge of the CFG.

AttribSTATIC = {DEF,MOD,USE,CONT}
where theDEF attribute is defined on every edge originating from
a node with aDEF attribute. In contrast, theMOD or USEattribute
is defined on all edges entering a node withMOD or USEattribute,
respectively. If a memory object is live on an edge then theCONT
attribute for the memory object is defined at that edge. In a scenario
when an edge can be assigned more than one static attributes for a
memory object, the following priority order is used to determine
the appropriate attribute.

DEF > MOD > USE> CONT

The priority order defined above guarantees that no DEF-USE chains
are broken. Additionally, spill attributes (AttribSPILL) are defined
on edges to model appropriate spilling of memory objects.

AttribSPILL = {LOAD,STORE}
TheLOADattribute defined on an edge implies that the correspond-
ing memory object can be spill-loaded from the main memory onto
the SPM on the current edge. On the other hand, theSTOREat-
tribute implies that the memory object can be spill stored from the
SPM onto the main memory. TheLOAD attribute is defined on
edges which have theMOD, USE or CONT attribute defined or
which originate from adiverge node. Similarly,STOREattribute is
defined on edges which haveDEF attribute defined or which enter
a merge node. A diverge (merge) node is a node whose out-degree
(in-degree) is greater than 1. We would like to state that a spill at-
tribute can be defined only on those edges where a static attribute
is already defined.

Next, we define a binary variablexi
j k representing the assign-

ment of memory objectmok to the SPM on edgeei .

xi
j k =




1 if mok is present on SPM at edgeei and an
operation corresponding toatj is performed

0 otherwise
(1)

xj

CO NT k

x xi i

DEF k STO RE k,

DEF

ej

ei

CO NT

(a)

xj

CO NT k

x xi i

USE k LO AD k,

USE

ej

ei

CO NT

(b)

xj

CO NT k

x xi i

CO NT k LO AD k,

ej

ei

CO NT

CO NT

(c)

Figure 2: Flow Constraints: (a) DEF, (b) USE and (c) CONT con-
straint

whereei ∈ E, atj ∈ AttribSTATIC∪AttribSPILL andmok ∈ MO. We
first describe the objective function and then the constraints for the
proposed ILP formulation. The objective function represents the
energy savings that could be achieved by scratchpad overlay. The
energy savings (objective function) need to be maximized in order
to minimize the energy consumption of the system.

E = ∑
i

∑
k




Epro f it(i, j,mok) ∗ xi
j k

− Eload cost(i,mok) ∗ xi
LOAD k

− Estorecost(i,mok) ∗ xi
STORE k


 (2)

whereEpro f it(i, j,mok) is the energy savings obtained by assign-
ing memory objectmok to the SPM at edgeei . Eload cost(i,mok)
and Estorecost(i,mok) are the energy overheads of spilling mem-
ory objectmok to and from the SPM at edgeei , respectively. For
the sake of brevity, we refrain from explaining the computation of
Epro f it , Eload cost andEstorecost, computed using an accurate en-
ergy model [16].

Constraints have to be added to prevent the binary variablesxi
j k

from assuming arbitrary values and to obtain a legitimate solution
to the memory assignment problem. We start with explaining the
flow constraints that are added to maintain a legal flow of liveness
of memory objects. The following is aDEF-constraintwhich is
added for all edges withDEF attribute.

xi
DEF k−xj

CONT k−xi
STORE k = 0 ∀mok ∈ MO (3)

Figure 2(a) represents the DEF-constraint, where edgeei contains a
DEF attribute while edgeej is chosen such that the source node of
edgeej is same as the target node of edgeei . Informally, the DEF-
constraint states that if a memory objectmok is defined (DEF) on
the SPM on an edgeei then it can continue (CONT) to remain on
the SPM on the following edgeej or it can be spill-stored (STORE)
to the main memory on the edgeei . Similarly, aMOD-constraint
or USE-constraintis added for edges withMOD or USEattribute.

xi
USE k−xj

CONT k−xi
LOAD k = 0 ∀mok ∈ MO (4)

xi
MOD k−xj

CONT k−xi
LOAD k = 0 ∀mok ∈ MO (5)

As shown in the figure 2(b), the target node of edgeej is the same
as the source node of edgeei . Informally, the USE-constraint states
that if a memory objectmok is being used (USE) on the SPM on
an edgeei then it was already continuing (CONT) on the SPM on
a previous edgeej or it was spill loaded (LOAD) on the edgeei . A
similar explanation exists for the MOD-constraint. The following

xi1

j1 k
,

xi1

LO AD k

xin

jn k ,

xin

LO AD k

ei1 ein

Figure 3: Merge-Node Const.

x
x

in

in
jn k

STO RE k

,x
x

i1

i1
j1 k

STO RE k

,
ei1 ein

Figure 4: Diverge-Node Const.

flow constraint, represented in figure 2(c), is added for edges with
CONTattribute.

xi
CONT k−xj

CONT k−xi
LOAD k = 0 ∀mok ∈ MO (6)

The CONT-constraint (refer figure 2(c)) informally implies that if
a memory objectmok is continuing (CONT) on the SPM on an
edgeei , then it was already continuing (CONT) on a previous edge
ej or it was spill loaded (LOAD) onto the SPM on the edgeei .
The following flow constraints (eqn. 7, 8 and 9, 10) are added to
ensure a legal flow of liveness on merge and diverge nodes, re-
spectively. More importantly, the constraints ensure an optimal
spill code placement [8]. The followingmerge-node constraints
are added for all the merge nodes.

xi
LOAD k−xi

j k ≤ 0 ∀ei ∈ {ei1 . . .ein} atj ∈ {atj1 . . .atjn}(7)

xi1
j1 k = . . . = xin

jn k s.t. atj1 . . .atjn ∈ AttribSTATIC (8)

In the above constraints, edgesei1 . . .ein (refer figure 3) constitute
all the edges entering a merge node. The merge node constraint
ensures that if a memory objectmok is assigned to the SPM on one
of the edges entering the merge node then it must be assigned or
spill loaded (LOAD) on each of the remaining edges. Similarly,
for all the diverge nodes the following constraints (diverge-node
constraint) are added.

xi
STORE k−xi

j k ≤ 0 ∀ei ∈ {ei1 . . .ein} atj ∈ {atj1 . . .atjn}(9)

xi1
j1 k = . . . = xin

jn k s.t. atj1 . . .atjn ∈ AttribSTATIC (10)

As shown in figure 4, edgesei1 . . .ein represent all the edges emerg-
ing from a diverge node. In order to maintain the legality of flow,
if a memory objectmok is assigned to the SPM on one of the edges
exiting a diverge node, then it must be assigned to the SPM or
spill-stored (STORE) to main memory on each of the remaining
edges. Finally, we append thescratchpad size constraintfor all
edges which ensures that the aggregate size of all memory objects
assigned to the SPM on each edge should be less than the SPM size.

∑
k

xi
j k ∗Size(mok) ≤ ScratchpadSize∀ei ∈ E (11)

A commercial ILP solver [6] is used to obtain an optimal assign-
ment of memory objects to the SPM which maximizes the en-
ergy savings while satisfying the above constraints. For every edge
ei ∈ E and for every memory objectmok ∈ MO we need a maxi-
mum of two binary variables, each corresponding to the static and
the spill attributes. Consequently, the total number of variables in
the ILP formulation isO(|MO| ∗ |E|). However, the maximum run-
time of ILP solver was found be less than 16.99 CPU seconds on a
Sun Sparc 1300Mhz compute machine. We still have to determine

the addresses of the memory objects assigned to the SPM, in order
to solve the scratchpad overlay problem. An approach to compute
the addresses is presented in the following subsection.

3.4 Onchip Address Assignment Problem
In the previous step, an implicit assumption was made while for-

mulating the memory assignment problem as an ILP. The assump-
tion was that if the aggregate size of the memory objects assigned
to the SPM on each edge was less than the scratchpad size, then
the onchip addresses can be computed for those memory objects.
This assumption can fail due to a bad address assignment strategy,
which causes fragmentation of the SPM address space. As a result,
memory objects cannot be assigned onchip addresses, despite the
scratchpad size constraint being satisfied. The problem of onchip
address assignment is trivial if all the memory objects are of the
same size. However, the problem becomes NP-complete when the
memory objects are of different sizes [7]. We formulate the address
assignment problem as an ILP problem to compute a valid solution.

In order to compute the address of a memory object, we compute
the offset of its start address from the base address of the SPM. The
integer variableOi

j represents the offset of the memory objectmoj
at the edgeei and it satisfies the following constraint:

0≤ Oi
j ≤ ScratchpadSize−Size(moj) (12)

We start with the description of the constraints present in the
ILP formulation. Satisfying one of the following two constraints
ensures that the offsets of no two memory objects defined at the
same edge overlap with each other.

Oi
j −Oi

k ≥ Size(mok) XOR (13)

Oi
k−Oi

j ≥ Size(moj) (14)

The first constraint (eqn. 13) of the above set of constraints implies
that on edgeei the start address (Oi

j) of the memory objectmoj

is greater than the end address (Oi
k +Size(mok)) of memory object

mok. The second constraint (eqn. 14) implies the reversed place-
ment of the memory objects. The XOR operator in the above set of
constraints cannot be modeled using linear programming. Hence,
we add a binary variableui

j k to linearize the set of constraints.

ui
j k =

{
0 constraint (13) is to be satisfied
1 constraint (14) is to be satisfied

(15)

The following is the linearized form of the above set of constraints
with L being a sufficiently large constant.

Oi
j −Oi

k +L ∗ui
j k ≥ Size(mok) ∀ei ∈ E (16)

Oi
k−Oi

j −L ∗ui
j k ≥ Size(moj)− L ∀ei ∈ E (17)

The above set of constraints is repeated for all pairs of memory ob-
jects which are assigned to the SPM on edgeei . Subsequently, they
are also repeated for all edgesei ∈ E with more than one memory
object assigned to the SPM. Next, a constraint is added to restrict
the offset of a memory objectmok to the same value for all the
edges on which it is assigned to the SPM.

Oi
k−Oj

k = 0 (18)

In the above constraint, edgesei andej are chosen such that source
node of edgeej is the target node of edgeei . Any change in the
offsets of the memory objectmok on edgesei andej is captured
using the following binary variable.

vi j
k =

{
1 if Oi

k 6= Oj
k

0 otherwise
(19)

C Compiler

Scratchpad
Overlay
Algorithm

Consumption
Energy

Program
Machine

Simulator
(Armulator)

Energy
Profiler

Consumption
Energy

Machine
Program

Simulator
(Armulator)

Energy
Profiler

Algorithm

Static
Allocation

C Program

Trace
Generation

Trace
Generation

Algorithm Algorithm

C Compiler

 Static Allocation
 Steinke’s

Scratchpad Overlay

Energy Cost
Model

Figure 5: Experimental Workflow

The unit value of the variablevi j
k would imply an invalid solution

to the address assignment problem. Equation 18 is transformed to
the following form after the insertion of the binary variablevi j

k .

Oi
k−Oj

k−L ∗vi j
k = 0∀ei ,ej ∈ E (20)

The above constraint is repeated for all memory objects assigned
to SPM on both the edgesei ,ej ∈ E and also for all such valid
pair of edges. A valid solution is characterized by the fact that the
offsets of memory objects on all pair of edges remain invariant. The
summation of the binary variablevi j

k for all valid pairs of edges and
for all memory objects is denoted as the objective function of the
ILP formulation.

∑
i

∑
j
∑
k

vi j
k (21)

For a valid solution the value of the objective function should be
zero which is achieved by minimizing the objective function. The
ILP formulation is a Mixed Integer Linear Programming (MIP)
problem, as it consists of both binary and integer variables. The
number of integer variables isO(|MO| ∗ |E|) while the number of
binary variables isO(|MO| ∗ |E|2). The problem is solved using
the branch and boundtechnique of the ILP solver [6], which can
take substantial time for certain problem instances having a large
number of variables.

4. WORKFLOW
The experimental setup consists of an ARM7T processor core,

an onchip SPM and an offchip main memory. We compared the en-
ergy consumption of the system when the onchip SPM is allocated
using the scratchpad overlay technique against the static allocation
technique by Steinke et. al [17]. The energy consumption of the
system is based upon accurate energy models proposed by [4, 16],
where [16] has an accuracy of 98% for our experimental setup.

The experiments were conducted according to the workflow pre-
sented in figure 5. In the first step, the benchmarks programs are
compiled using an energy optimizing C compiler. The I-cache op-
timization technique called trace generation [18] is applied in the
following step. This is followed by the application of the pro-
posed scratchpad overlay technique. The generated machine code

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 64 128 256 512 1024
Scrat chpad Si ze (B ytes)

E
n

er
g

y
C

o
n

su
m

p
t

io
n

(u
J)

TotalEner gy(SO) TotalEner gy(SA)

Figure 6: Energy Consumption of Edge Detection using SO vs. SA

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

64 100 128 200 256 avg.
Scratchpad Size (Bytes)

Processor Energy Memory Energy Total Energy CPU cycles

Figure 7: Edge Detection: Energy and Performance comparison of
SO vs. SA algorithm

is then fed into the ARMulator [2] to obtain a sequence of exe-
cuted instructions. Finally, the energy consumption of the system
is computed using the instruction sequence and the energy mod-
els [4, 16]. A similar workflow is followed to compute the energy
consumption when the SPM is allocated using the static allocation
(SA) approach [17]. In the following section, we discuss the results
obtained using the scratchpad overlay approach.

5. EXPERIMENTAL RESULTS
The proposed technique is evaluated for an assorted set of bench-

marks from MediabenchII [12] and UTDSP benchmark suite. More-
over, for a fair comparison, a benchmark consisting of the sorting
routines presented in [17] is also included. Energy consumption
was computed by varying the size of the SPM, allocated with the
static approach [17] or with the scratchpad overlay (SO) approach.

Figure 6 compares the energy consumption of the edge detection
benchmark when the SPM is allocated using the proposed overlay
technique against the static allocation (SA) technique [17]. The
energy curve for SA algorithm monotonically decreases with the
increase in the SPM size, as the technique can allocate additional
memory objects for larger sizes. In contrast, the energy curve for
the SO algorithm declines faster to reach a threshold value at 256B
of the SPM and thereafter remains constant for larger sizes. The
justification for the behavior is that the SO algorithm is able to
share the SPM among many memory objects. The energy con-
sumption becomes constant when no additional memory objects
can be overlayed on the SPM. Moreover, the energy consumption
of a system with 256B SPM allocated with SO algorithm is equal
to that of a system with 1024B SPM allocated with SA algorithm.
This implies that by sharing a small SPM, equal or higher energy
savings can be obtained than by statically using a large SPM. The

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

edge_det ect ion m peg adpcm histogram m ultisor t avg.

B enchm arks

TotalEner gy Execut ion Tim e C ode Size

Figure 8: Energy, Performance and Code Size comparison using
SO vs. SA algorithm

trend of energy consumption values remains the same for all the
benchmarks. Consequently, a comparison of the two allocation al-
gorithms is presented for a smaller and finer range of SPM sizes.

Figure 7 denotes the normalized energy consumption and CPU
cycles (execution time) values of the SO algorithm. The energy
and performance values of the SA algorithm are denoted as the
unit valued baseline. The efficient utilization of the SPM by the
SO algorithm leads to reductions of upto 65% in memory energy
consumption. Both the processor energy and the execution time are
reduced as accessing the onchip SPM requires less CPU cycles than
the offchip main memory. The total energy consumption, being
the sum of the processor energy and the memory energy, shows
an average reduction of 43%. The application on average requires
21% less CPU cycles for execution.

The comparison of SO and SA algorithms across all benchmarks
are presented in figure 8. The normalized energy values, the ex-
ecution time values and the code sizes are the averages over all
scratchpad sizes. The SO algorithm achieves reductions of 15%,
14%, 55% and 42% in the total energy consumption for mpeg, ad-
pcm, histogram and multisort respectively. Average reductions of
8%, 7%, 32% and 20% in the execution time of the applications are
also reported. The average reductions in energy consumption and
execution time across all benchmarks are 34% and 18%, respec-
tively. The SO approach inserts spill code for loading and storing
of memory objects which is reflected by the increase in the code
size of the application. The average increase in code size of varies
from 12% to 75% for our set of benchmarks. However, the increase
in code size becomes negligible (less than 1%) when the size of the
whole application consisting of both data and code is considered.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a liveness analysis based technique for

dynamic utilization of the scratchpad memory. The problem of dy-
namically overlaying both data and instructions onto the SPM was
shown to be an NP-complete problem. A technique which breaks
the scratchpad overlay problem into two smaller problems and ob-
tains an optimal solution for both the problems was presented. The
presented technique enables efficient utilization of the SPM and
results in reduced energy consumption of the system against a pub-
lished algorithm. The average reductions in energy consumption
and execution time are 34% and 18%, respectively. In the future,
we intend to extend the approach to handle inter-procedural over-
lay of the SPM and would also like to explore the possibility of
obtaining near-optimal results using heuristic approaches.

7. REFERENCES
[1] A. W. Appel and L. George. Optimal spilling for cisc

machines with few registers. InProc. of the Conference on

Programming Language Design and Implementation (PLDI),
pages 243–253, Snowbird, Utah, USA, 2001.

[2] ARM. Advanced RISC Machines Ltd.http://www.arm.com.
[3] O. Avissar, R. Barua, and D. Stewart. An Optimal Memory

Allocation Scheme for Scratch-Pad-Based Embedded
Systems.IEEE Transactions on Embedded Computing
Systems, 1(1):6–26, November 2002.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad Memory: A Design Alternative for
Cache On-chip Memory in Embedded Systems. InProc. of
10th International Symposium on Hardware/Software
Codesign, Colorado, USA, May 2002.

[5] G. J. Chaitin. Register allocation & spilling via graph
coloring. InProc. of the 1982 SIGPLAN Symposium on
Compiler Construction, pages 98–101, Boston,
Massachusetts, USA, 1982.

[6] CPLEX. CPLEX limited. http://www.cplex.com.
[7] M. R. Garey and D. S. Johnson.Computers and

Intractability: A Guide To the Theory of NP-Completeness.
Freeman, New York, USA, 1979.

[8] D. W. Goodwin and K. D. Wilken. Optimal and
Near-optimal Global Register Allocation Using 0-1 Integer
Programming.Software-Practice and Experience,
26(8):929–965, August 1996.

[9] J. L. Hennessy and D. A. Patterson.Computer Architecture :
A Quantitative Approach; second edition. Morgan
Kaufmann, 1996.

[10] M. Kandemir, I. Kadayif, and U. Sezer. Exploiting
Scratch-Pad Memory Using Presburger Formulas. InProc. of
the 14th International Symposium on System Synthesis
(ISSS), pages 7–12, Montreal, P.Q., Canada, 2001.

[11] T. Kong and K. D. Wilken. Precise register allocation for
irregular architectures. InProc. of the 31st annual
ACM/IEEE International Symposium on Microarchitecture,
Dallas, TX, USA, 1998.

[12] MediabenchII.Benchmark Suite for Multimedia and
Communication Systems.
http://cares.icsl.ucla.edu/MediaBenchII/.

[13] S. Muchnick.Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, San
Francisco, California, 1. edition, 1997.

[14] P. R. Panda, N. D. Dutt, and A. Nicolau.Memory Issues in
Embedded Systems-On-Chip. Kluwer Academic Publishers,
Norwell, MA, 1999.

[15] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar,
M. Balakrishnan, and P. Marwedel. Reducing Energy
Consumption by Dynamic Copying of Instructions onto
Onchip Memory. InProc. of the 15th International
Symposium on System Synthesis (ISSS), Kyoto Japan,
October 2002.

[16] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An
Accurate and Fine Grain Instruction-Level Energy Model
Supporting Software Optimizations. InProc. of International
Workshop on Power And Timing Modeling, Optimization and
Simulation PATMOS, Yverdon-Les-Bains, Switzerland, Sep.
2001.

[17] S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel.
Assigning program and data objects to scratchpad for energy
reduction. InProc. of Design Automation and Test in Europe
(DATE), Paris France, March 2002.

[18] H. Tomiyama and H. Yasuura. Optimal code placement of
embedded software for instruction caches. InProc. of the 9th
European Design and Test Conference, Paris France, March
1996. ET&TC.

[19] M. Verma, S. Steinke, and P. Marwedel. Data Partitioning for
Maximal Scratchpad Usage. InProc. of the Asia and South
Pacific Design Automation Conference (ASPDAC), page 77,
January 2003.

[20] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware
Scratchpad Allocation Algorihm. InProc. of Design,
Automation and Test in Europe (DATE), February 2004.

