
Combined Data Partitioning and Loop Nest Splitting for
Energy Consumption Minimization

Heiko Falk and Manish Verma

University of Dortmund, Computer Science 12, D-44221 Dortmund, Germany

Abstract. For mobile embedded systems, the energy consumption is a limiting
factor because of today’s battery capacities. Besides the processor, memory ac-
cesses consume a high amount of energy. The use of additional less power hun-
gry memories like caches or scratchpads is thus common. This paper presents
a combined approach for energy consumption minimization consisting of two
complementary and phase-coupled optimizations, viz. data partitioning and loop
nest splitting. In a first step, data partitioning partitions large arrays found in
typical embedded software into smaller ones which are placed onto an on-chip
scratchpad memory. Although being effective w. r. t. energy dissipation, this op-
timization adds overhead to the code since the correct part of a partitioned array
has to be selected at runtime. Therefore, the control flow is optimized as a second
step in our framework. In this phase, loop nests containingif-statements are split
using genetic algorithms leading to minimizedif-statement executions. However,
loop nest splitting leads to an increase in code size and can potentially annul the
program layout achieved by the first step. Consequently, the proposed approach
iteratively applies these optimizations till a local optimum is found.
The proposed framework of combined memory and control flow optimization
leads to considerable energy savings for a representative set of typical embed-
ded software routines. Using an accurate energy model for the ARM7 processor,
energy savings between 20.3% and 43.3% were measured.

1 Introduction

The emergence of portable or mobile computing and communication devices such as
cellular phones, pagers, handheld video games etc. is probably the most important factor
driving the need for low power design. Current battery technologies such as Li-Io have
capacities of 90 Watt-hours /kg [1], meaning that 10 hours of operation for a device
consuming 20 W of operating power would require a battery weight of around 2.2kg.
Thus, the cost and weight of the batteries become bottlenecks that prevent the reduction
of system cost and weight unless efficient low power design techniques are adopted.

Since it has been shown that 50%–75% of the power consumption in embedded
multimedia systems is caused by memory accesses [2, 3], the efficient utilization of
memories is of major interest for the construction of low power devices. Main memory
is the slowest and the most energy consuming memory type. On one hand, the high
amount of main memory accesses is a reason for its high energy dissipation. On the
other hand, the high latency during main memory accesses causes several wait states
to a processor. To avoid these problems, a very effective way of energy reduction is to
build up a memory hierarchy.

2

Additional memories are able to reduce the number of main memory accesses for
frequently used instructions or variables.Cachesare well known and included in many
processor designs. Besides the data memory itself, they consist of an additional tag
memory and of logic components enabling the fast comparison of addresses with the
contents of the tag memory. The advantage of caches is their easy integration into a
system since the detection of cache hits is done automatically by the hardware. For em-
bedded systems, caches are often not well suited due to their inherently high energy
consumption during tag memory access and comparison. Additionally, the accurate de-
termination of worst case execution times often is difficult in a cache-based environment
which is a critical issue for embedded real-time systems [4].

Recently, the utilization ofscratchpad memorieshas become an important alterna-
tive to caches [5, 6]. A scratchpad is a small memory mapped into the processor’s ad-
dress space requiring only simple address decoders. The absence of logic components
checking the validity of data is the reason for their low energy consumption. However,
this property requires a careful mapping of instructions or data to the memory which
has to be done by the programmer or the compiler.

This paper presents a novel combination of automated compiler optimizations for
achieving an energy efficient utilization of scratchpad memories. For a given ARM7
based system architecture, adata partitioningstep is performed first [7]. In this step,
parts of a program and of its data are assigned optimally (i. e. least energy consuming) to
the scratchpad. In particular, large arrays frequently found in data-dominated embedded
software are split into several pieces. Data partitioning enables the storage of fragments
of the original array in the scratchpad which was impossible before.

Since the software must take care of accessing the correct part of a split array,if-
statements dynamically selecting the appropriate sub-array have to be inserted into the
program’s code. Although being beneficial w. r. t. energy consumption, data partitioning
adds overhead to the software. The execution of the additionalif-statements requires
several CPU cycles and can lead to degraded pipeline performance due to pipeline
stalls. To avoid this overhead, we apply a significantly improved loop splitting tech-
nique for control flow optimization (originating from [8, 9]) as the second step after
data partitioning. This optimization minimizesif-statement executions so that the neg-
ative side-effects of data partitioning are largely eliminated. The improved control flow
is achieved at the cost of increased code size. The size of the program and data objects
placed on the scratchpad is bounded by the scratchpad size. Any increase in code size
could potentially invalidate the program and data layout achieved in the previous step.
Nevertheless, the size of frequently executed program objects is increased by a small
amount and a hill-climbing approach can be utilized to obtain a locally optimal solution.

The main contribution of this paper is the successful exploration of the synergy ef-
fects of these two individual optimizations. The results clearly show that our control
flow optimization is able to eliminate overheads caused by data partitioning. However,
data partitioning enables loop nest splitting in our framework since loop nest splitting
without data partitioning would be impossible. These two optimizations are related to
each other in a phase-coupled sense and complement each other such that, when com-
bined, they lead to considerable energy savings. Our proposed combined approach en-
sures that the finally generated code contains a minimum of control flow overhead but a

3

maximum of data stored in low energy scratchpads. Additionally, the recently presented
algorithms for loop nest splitting are extended substantially. Using the techniques de-
scribed in this paper, we are able to relax restrictions imposed by the original analysis
algorithms [8, 9] so that more general classes of applications can be optimized.

A survey of work related to memory hierarchy exploitation and low power code
generation is given in section 2. The phase-coupled algorithm for combined data par-
titioning and loop nest splitting is presented in section 3. Section 4 presents the tech-
niques used for data partitioning, whereas loop nest splitting and its new extensions
are described in section 5. Section 6 contains a detailed description of the measured
experimental results, and section 7 summarizes and concludes this paper.

2 Related Work

Code optimizations for caches include well-known techniques likeloop tiling, loop in-
terchangeor loop fusion[10, 11]. Since applications spend most of their runtime in
innermost loops, these optimizations concentrate on loop nests. The iteration space of
loop nests is reordered in such a way that a higher locality of data accesses is achieved.
The higher the spatial and temporal locality of data accesses, the fewer cache misses oc-
cur during program execution resulting in a more efficient cache utilization. Even nowa-
days, locality optimization is an area of ongoing research. In [12], loops are aligned so
that the time between two successive accesses to the same memory location (temporal
locality) is minimized. A graph based optimization strategy is used in [13] to cluster
array references in loops with spatial or temporal reuse. This technique leads to average
reductions of cache misses by 13.8%.

Array padding[10] is a good example of a data layout transformation. Here, unused
data locations are inserted between columns of an array so as to reduce cache set con-
flicts and cache miss jamming. An approach for simultaneous generation of optimized
data layouts and temporal locality improvement is presented in [14]. In this article,
geometric models and algorithms are used to minimize TLB misses.

Panda et al. [15] presented an efficient use of a memory hierarchy by placing the
most commonly used variables onto the scratchpad. The dynamic copying of array parts
was studied in [5]. However, the preconditions imposed by this algorithm are very re-
strictive so that only a limited class of applications can be analyzed. An approach for
statically placing both data and program parts onto a scratchpad memory basing on
the analysis of instruction execution and variable accesses is presented in [16]. In that
paper, only whole variables are considered at a time. Consequently, a large non-scalar
variable (i. e. an array) could either be placed onto the scratchpad as a whole or not at
all, potentially leading to a sub-optimal memory utilization.

A methodology of source code transformations for data access and storage manage-
ment (DTSE) is presented in [17]. The described techniques can be applied to complex
memory hierarchies consisting of multi-level caches and on-chip memories. However,
the authors only focus on the optimization of data flow and neglect that the control flow
gets very irregular since many additionalif-statements are inserted. This impaired con-
trol flow has not yet been targeted by the authors. The results given in our paper clearly
show the importance of combining data and control flow optimizations for the design

4

of low power embedded systems. In the following section, we present the combined
approach for phase-coupled data partitioning and loop nest splitting.

3 Algorithm for Phase-Coupled Energy Minimization

As will be described in section 4, data
partitioning improves scratchpad utilization
but impairs the control flow due to the ad-
dition of if-statements. Loop nest splitting
improves the control flow but increases the
code size and can potentially annul the allo-
cation of the scratchpad. Hence, it is obvious
that both optimizations influence each other.
As a consequence, data partitioning and loop
nest splitting need to be applied in a phase
coupled manner which is described in this
section.

1 Algorithm(∆SPLIT) {
2 Energy = INFINITY;
3 SPLIT = DataPartitioning();
4 do {
5 LoopNestSplitting(SPLIT);
6 OldEnergy = Energy;
7 if (SP-Objects <= ScratchpadSize)
8 Energy = ComputeEnergy(SPLIT);
9 else

10 Energy = INFINITY;
11 SPLIT -= ∆SPLIT;
12 ∆Energy = OldEnergy - Energy;
13 } while(∆Energy ≥ 0);
14 return(OldEnergy); }

Fig. 1. Algorithm for energy minimization

The proposed algorithm (cf. fig. 1) implements a hill-climbing approach. It starts
with an initial scratchpad allocation obtained after data partitioning (line 3) followed
by loop nest splitting (line 5). Since data partitioning defines which basic blocks and
array fragments are placed on the scratchpad, code size increases of individual basic
blocks after loop nest splitting may lead to an invalid solution exceeding the scratch-
pad’s capacity. This situation is checked after loop nest splitting (lines 7–10). For a valid
allocation, the energy consumption is computed (line 8) and the change in energy dissi-
pation caused by loop nest splitting is calculated (line 12). Since∆Energy is positive in
this case, the algorithm’s loop steps into a second iteration. There, the algorithm must
necessarily stop since no better valid solution can be obtained due to the optimality of
the integer linear programming based approach of data partitioning.

However, if the initial allocation is invalid, the algorithm iteratively tries to obtain
a valid solution. For this purpose, the splitting pointSPLIT originally stemming from
data partitioning is adjusted by a user defined offset∆SPLIT , and loop nest splitting is
re-applied again. The algorithm stops when it has ascertained a locally optimal solution.
Since neither data partitioning nor loop nest splitting modify existing data dependencies
between array elements, the algorithm of figure 1 does not need to do data dependence
analysis.

4 Data Partitioning

Considering aggregate array variables as the candidates for placement onto the small
on-chip memory is not the ideal decision, as this may lead to the under-utilization of
the on-chip memory and to a high energy consumption by the application. The pro-
posed data partitioning approach rectifies the aforesaid problem by partitioning an ar-
ray present in the application into smaller array variables. The energy consumption of
the application is then reduced by placing one of the smaller array variables onto the

5

on-chip memory, which is not large enough to contain the whole array variable. The
data partitioning approach works in the following stepwise manner:

1. Whenever beneficial, the scratchpad is maximally filled with arrays entirely fitting
into this memory [16].

2. Among all remaining arrays, one candidate arrayA is chosen for partitioning.
3. ForA, a splitting pointSPLIT is computed leading to the maximum reduction of

energy consumption. If no splitting point exists leading to a reduction of energy
dissipation,A is not split. It is proceeded to step 2 where another array is chosen.

4. Given the arrayA and the splitting point, the original application is transformed.

The array having the highest valence (i. e. energy consumption per element) which
could not be placed on the scratchpad memory in its entirety by the algorithm presented
in [16] is chosen in step 2. Step 3 is solved in a phase coupled manner usinginteger
linear programming (ILP)(cf. section 4.1). The step of application transformation is
described in section 4.2.

4.1 Integer Linear Program

The formulation of the integer linear program for data partitioning is based on the ob-
servation that the splitting of an array implicitly leads to changes of an application’s
code due to the selection of the correct fragment of a split array during runtime. If an
arrayA is to be split, only those basic blocks of an application need to be modified
which accessA. These modified basic blocks which access a split arrayA are termed as
referencing basic blocksin the following.

For a program containingm basic blocks referencing an arrayA of lengthn, the
integer linear program used for data partitioning is basically formulated using a set
V := VBB ∪ VRBB ∪ DD ∪ VA of binary decision variables.VBB andVRBB each consist
of m decision variables. A variablevi

BB equal to 1 (1≤ i ≤ m) (vi
RBB resp.) denotes the

case where basic blocki (referencing basic blocki, resp.) is placed on the scratchpad.
DD is a single binary variable which is equal to 1 only if arrayA is partitioned. A
variablevj

A ∈VA equal to 1 (1≤ j ≤ n) models the splitting of arrayA at positionj.
Using these decision variables, data partitioning is formulated as a knapsack prob-

lem. To each basic block, referencing basic block and split parts of arrayA, their corre-
sponding sizes are attached. The integer linear program contains constraints in order to
ensure that the size of all objects placed on the scratchpad does not exceed the scratch-
pad’s capacity. Additional constraints are included guaranteeing the consistency of an
actual assignment of values to the decision variables (e. g. if a referencing basic block
RBBi is placed on the scratchpad, its original counterpartBBi must not be considered).

The objective function to be maximized during data partitioning models the energy
savings achieved by an assignment of values to the decision variables, compared to the
energy consumption of an unpartitioned application totally stored in background main
memory. The objective function considers all energy related aspects of data partitioning:
access frequencies of basic blocks and array elements, the savings due to the placement
of objects on the scratchpad and the overhead due to the more complex code of the
referencing basic blocks in order to access the correct part of a split array at runtime.
For more details, the interested reader is referred to the original publication [7].

6

#define SIZE 100

int A[SIZE];
for (i=0; i<SIZE/2; i++)

for (j=0; j<i; j++) {
data = A[i+j];
... }

→

#define SIZE 100
#define SPLIT 70
#define READ ACCESS(value,index)

if (index < SPLIT) value = Aleft[index];
else value = Aright[index-SPLIT];

int Aleft[SPLIT],Aright[SIZE-SPLIT];
for (i=0; i<SIZE/2; i++)

for (j=0; j<i; j++) {
READACCESS(data,i+j);
... }

Fig. 2. A typical code fragment before and after data partitioning

4.2 Application Transformation

The application transformation step takes an application code, a chosen arrayA and a
splitting pointSPLIT as inputs and outputs a transformed application. Specifically,A is
replaced by two smaller arraysAleft andAright (cf. figure 2) which are generated
according toSPLIT . The application code is modified in such a way that all accesses
to the arrayA are replaced by anaccess macro. The access macro determines which
of the two smaller arrays are being referenced on the basis of the index expression and
the splitting pointSPLIT . Figure 2 displays a typical example of the original and the
modified application codes. The access macro in the figure 2 represents a read access
to the arrayA. A similar access macro can also be constructed for the write accesses as
well, though it is omitted for the sake of simplicity of the code examples.

As can be seen from figure 2, the proposed way of data partitioning leads to a bi-
partitioning of arrays. Generally, the integer linear program can easily be rewritten so
thatn-way partitions are supported. In the context of the ARM7 based system studied
in section 6, it turned out that the generation of partitions larger than 2 is disadvanta-
geous since the resulting complex if-then-else structures over-compensate any savings.
Similarly, an e. g. trapezoidal array partitioning is not beneficial due to the increased
control flow overhead.

5 Loop Nest Splitting for Control Flow Optimization

As described in the previous section, preprocessor macros containingif-statements are
inserted in a program’s code for selecting the correct partition of a split array during
runtime. Given that array references typically occur in the innermost loops of embed-
ded software, theseif-statements constitute an overhead w. r. t. runtime and energy con-
sumption which should not be neglected. We propose to apply a substantially improved
variant ofloop nest splitting[8] for the optimization of theseif-statements.

The transformation presented in our paper determines ranges of loop iterations
where allif-statements in the loop nest are provably satisfied. Using this information,
the loop nest is rewritten so that noif-statement is executed for these iteration ranges.
In figure 3, the example code shown in figure 2 is depicted before and after loop nest
splitting (note that the access macro shown in figure 2 is expanded now). Loop nest
splitting detects that the outeri loop iterates from 0 to 49, while the innerj loop steps
from 0 to the actual value ofi . Considering the conditioni+j<70 inserted by data par-
titioning, it is recognized that this condition must necessarily be true fori ≤ 35. Using

7

for (i=0; i<50; i++)
for (j=0; j<i; j++) {

if (i+j<70)
data = Aleft[i+j];

else
data = Aright[i+j-70];

... }

→

for (i=0; i<50; i++)
if (i<=35)

for (; i<=35; i++)
for (j=0; j<i; j++) {

data = Aleft[i+j];
... }

else
for (j=0; j<i; j++) {

if(i+j<70)
data = Aleft[i+j];

else
data = Aright[i+j-70];

... }

Fig. 3. A typical code fragment before and after loop nest splitting

this information, a newif-statement (thesplitting-if) is inserted in the loop nest exactly
checking this condition. Sincei<=35 implies thati+j<70 is true, thethen-part of the
splitting-if consists of the body of thei loop without anyif-statements. To minimize
executions of the splitting-if, a secondi loop is inserted in thethen-part counting to the
corresponding bound of the iteration ranges (i. e. this loop ensures that all iterations of
the i loop up toi <= 35 are executed without any further evaluation of the splitting-
if). Theelse-part of the splitting-if is an exact copy of the original loop body. Using this
code transformation, a reduction ofif-statement executions from 1,225 down to 610 can
be achieved for the codes depicted in figure 3.

The techniques for loop splitting presented previously [8] are limited such that only
restricted classes of loops can be analyzed. Since all loop bounds are required to be
constant, a loop nest as depicted in figure 3 could not be optimized. Section 5.1 briefly
reflects the basic concepts of loop nest splitting. In section 5.2, the techniques of [8] are
significantly extended enabling the optimization of more general classes of applications.

5.1 Analysis Techniques for Loop Nest Splitting

This section gives a brief summary of the recently published concepts for splitting loop
nests [8]. For a given loop nestΛ = {L1, . . . ,LN} of depthN, Ll denotes a single loop
l with its index variableil and the lower and upper bounds,lbl andubl , respectively.
Every loopLl can contain one or moreif-statement whose conditions depend on the
index variables ofΛ. Such conditions are said to be loop-dependent. Theif-statements
must have the formatif (C1 ⊕C2 ⊕ . . .) whereCx are loop-dependent conditions
that are combined using logical operators⊕ ∈ {∧,∨}. Every single loop-dependent
conditionC of an if-statement has to be an affine expression of the index variablesil

and can thus be represented asC =
N
∑

l=1
(cl ∗ il)+c≥ 0 for constantscl ,c∈ Z.

The analysis for loop nest splitting consists of three different stages. In the first step
calledCondition Optimization , all loop-dependent conditionsC are analyzed sepa-
rately using a genetic algorithm (GA). GAs are employed since ILP is not suitable due
to the non-linear objective function. For every conditionC and every loopLl , two val-
ueslb ′

C,l andub′
C,l are determined during this step. These values represent ranges of

iterations of the loop nest where conditionC is satisfied for all index variablesil with
lb ′

C,l ≤ il ≤ ub′
C,l . These values are chosen in such a way that a loop nest splitting using

8

lb ′
C,l andub′

C,l minimizes the total execution ofif-statements. For this purpose, the fit-
ness function of the GA computes the total number of executedif-statements after loop
nest splitting for a given set oflb ′

C,l andub′
C,l values. These computations are done

very efficiently in linear time using a set of numerical formulas. The fewer the number
of executedif-statements, the higher is the fitness of an individual.

Since this GA gives optimized results only for a single condition of anif-statement,
these partial results need to be combined which is done duringGlobal Search Space
Construction. Here, for every conditionC and its associated valueslb ′

C,l andub′
C,l , a

polyhedron [18]PC is generated. In general, a polyhedronP is a set of points in anN-
dimensional geometric space which is defined by linear inequalities:P= {x∈Z

N |Ax≥
b} for an integer matrixA and a constant vectorb. For the construction ofPC, constraints
of the formatil ≥ lb ′

C,l andub′
C,l ≥ il are used. Furthermore, appropriate constraints for

all lower and upper loop bounds are needed:il ≥ lbl andubl ≥ il . If two conditions
Cx andCy are connected using the&& operator in anif-statement, the corresponding
polyhedraPx andPy are intersected. For the|| operator, the union of polyhedra is used.
This way, polyhedra can be built representing those iterations of the loop nest where a
singleif-statement is satisfied. Since allif-statements in a loop nest need to be fulfilled
for loop nest splitting, all these polyhedra representing a singleif-statement need to be
combined using the intersection. The resulting polyhedronG called theglobal search
spacerepresents those loop nest iterations where allif-statements are satisfied.

Due to the nature of the union operator,G is a finite union of polyhedra:G =
R1 ∪R2∪ . . .∪RM. Each polyhedronRr of G defines a region where allif-statements
in a loop nest are satisfied. But it should be avoided to use all such regions ofG for
loop nest splitting since this would lead to an increased number of executions ofif-
statements. Therefore, a second GA is applied toG for a Global Search Space Explo-
ration . The goal of this second GA is to select only those regionsRr of G leading to
a total minimization ofif-statement executions. After the termination of the GA, only
the constraints of the selected regionsRr are considered for generating the conditions
of the splitting if-statement.

5.2 Modeling and Analysis of Loops with Non-Constant Bounds

Although the techniques summarized in the previous section already lead to large im-
provements [8], they are not applicable in the area of efficient memory hierarchy ex-
ploitation. As previously mentioned, all loop boundslbl andubl are explicitly required
to be constant. This section presents extensions and improvements of [8] which elimi-
nate this restriction and allow loop nest splitting to be applied to more general classes
of embedded software, including popular sorting algorithms and DSP filter routines.

The only advantage of constant loop bounds as required in [8] is the simplicity of
the GA for condition optimization. For valueslb ′

C,l andub′
C,l generated by the GA,

the fitness function only evaluates some formulas consisting of sum-of-products of the
constant loop bounds andlb ′

C,l resp.ub′
C,l . This way, the exact number ofif-statement

executions can be computed and minimized. The restriction to constant loop bounds is
not used elsewhere during loop nest splitting. In general, the basic structure of loop nest
splitting as previously summarized is able to treat non-constant loop bounds, since the
employed polyhedral models support complex iteration spaces.

9

Hence, we decided to maintain the basic structure of the analysis algorithms for loop
nest splitting consisting of condition optimization, global search space construction and
search space exploration. The problem formulation for loop nest splitting is given by:

Definition 1 (Loop Nest Splitting). Let Λ = {L1, . . . ,LN} be a loop nest of depth N.
For every loop Ll ∈ Λ, a pair (lb′

l ,ub′l) is computed defining an interval of the index
variable il . For lb′

l ≤ il ≤ ub′l , all loop-variantif -statements inΛ are satisfied.(lb′
l ,ub′l)

is chosen such that a minimization ofif -statement executions is achieved.

Since this is similar to the satisfiability of constraints with simultaneous minimiza-
tion of an objective function, definition 1 describes an NP complete problem. The use
of GAs here is motivated by their ability to find high-quality solutions especially for
such complex optimization problems [19]. Furthermore, other well-known optimization
strategies (e. g. ILP) can not be used due to the non-linearity of the objective function.

As already mentioned, polyhedral models are an integral part of the analysis. Since
they base on linear inequalities, we allow loop bounds to be affine expressions:

Definition 2 (Affine Loop Bounds).Let Λ = {L1, . . . ,LN} be a loop nest of depth N.
1. For the outermost loop L1, the bounds lb1 and ub1 are constant values.
2. For any other loop Ll ∈ {L2, . . . ,LN}, the loop bounds are affine expressions of the

surrounding variables i1, . . . , il−1. Hence, the index variable il iterates between

lbl =
l−1
∑
j=1

(c′
j ∗ i j)+c′ ≤ il ≤

l−1
∑
j=1

(c′′
j ∗ i j)+c′′ = ubl (c′

j ,c
′,c′′

j ,c
′′ ∈ Z const.)

The constant outermost loop bounds ensure thatΛ is still fully analyzable at compile
time due to the absence of data dependencies. The variable inner bounds imply that the
number ofif-statement executions subject to condition optimization not only depends
on the values(lb ′

C,l ,ub′
C,l) generated by the GA. Now, implicit dependencies on a vari-

able i j exist if the bounds of an inner loopLl depend oni j . Hence, the formerly used
formulas computing theif-statement executions are invalid. Instead, the GA’s fitness
function is restructured such that it modelsΛ after splitting using a set of(lb ′

C,l ,ub′
C,l)

values. For this purpose, the following chromosomal encoding is employed:

Definition 3 (Chromosomal Encoding).Let Λ = {L1, . . . ,LN} be a loop nest.
1. A chromosomeC is an array of integer values of length2∗N+1.
2. For l ∈ {1, . . . ,N}, geneC [2∗ l −1] (C [2∗ l] resp.) denotes lb′C,l (ub′

C,l resp.). This
way, the GA defines the regions of iterations with satisfied condition C.

3. GeneC [2∗N + 1] stores theinnermost loopλ for loop nest splitting. This gene
states that loop nestΛ is split at loop Lλ, i. e. the splitting-if is placed in loop Lλ.

The pseudo-code of the fitness function for optimizing a conditionC is depicted in
figure 4. The main goal of this function is to update two counters accurately. The first
one (if count) stores the number ofif-statement executions for a given chromosome
C . penalty counts how many times conditionC is not satisfied when it is supposed by
C that it should be satisfied. Usingpenalty , illegal individuals generated by the GA
are detected.

Principally, this fitness function contains the entire loop nestΛ as can be seen from
lines 3 and 17 of figure 4 (dots denote the omitted loopsL2, . . . ,LN−1). For every loop,

10

code is required to modelΛ after a potential splitting (lines 4–15 resp. 18–25). When
entering a loopLl , it is first checked whetherLl contains the splitting-if (cf. lines 4 and
18). If this is not the case, the algorithm proceeds to loopLl+1 (line 15).

Otherwise,Ll contains the splitting-
if (lines 6 and 20) whose execution re-
quires to incrementif count (lines 5
and 19). The splitting-if for loopLl

checks genesC [1], . . . ,C [2∗ l] and ver-
ifies that the index variablesi1, . . . , il
actually are within the ranges speci-
fied by these genes. If the splitting-if is
true, the duplicated loopLl (cf. the sec-
ond i loop in figure 3) counting to the
new upper boundub′

C,l is executed next

(lines 7 and 21). Within this loop, the
remaining loop nestLl+1, . . . ,LN can be
found (lines 8–9). Since the splitting-
if is true when executing this code, it
is assumed that conditionC is also true
so that counterif count is not altered
in lines 7–10 resp. 21–22. But since
the GA can generate illegal individuals
for which conditionC is false, care has
to be taken to detect these situations.
Lines 10 and 22 check whether the con-
dition C is true or not. If it is false, an

1 double fitness(lb ′
C,1, ub′

C,1,..., lb ′
C,N, ub′

C,N, λ) {
2 int if count=0, penalty=0;
3 for (lb1 ≤ i1 ≤ ub1) {
4 if (λ==1) {
5 if count++;
6 if (i1 ≥ lb ′

C,1 && i1 ≤ ub′
C,1) {

7 for (i1 ≤ ub′
C,1)

8 ...
9 for (lbN ≤ iN ≤ ubN)

10 if (! satisfied(C)) penalty++;
11 } else
12 ...
13 for (lbN ≤ iN ≤ ubN)
14 if count++;
15 } else
16 ...
17 for (lbN ≤ iN ≤ ubN) {
18 if (λ==N) {
19 if count++;
20 if (i1 ≥ lb ′

C,1 && i1 ≤ ub′
C,1 && ... &&

iN ≥ lb ′
C,N && iN ≤ ub′

C,N) {
21 for (iN ≤ ub′

C,N)
22 if (! satisfied(C)) penalty++;
23 } else
24 if count++;
25 } ... }
26 if (penalty==0)
27 return((double) (1/if count));
28 else
29 return((double) (1/(penalty+ ERR))); }

Fig. 4. Fitness function for condition optimization

illegal individual is detected and counterpenalty is incremented.

Finally, some code is required for a false splitting-if in loopLl . In analogy to fig-
ure 3, the remaining loop nestLl+1, . . . ,LN is copied into theelse-part of the splitting-if
(see lines 11–13). In loopLN, the counterif count is incremented (lines 14 and 24)
since anif-statement checking conditionC would be executed.

The fitness function terminates by returning the fitness of an individual based on
the countersif count and penalty . If an individual is valid, counterpenalty is
zero (line 26) and the inverse ofif count is returned to the GA. This way, individuals
implying few if-statement executions have a high fitness. For an invalid individual (line
29), a large constantERRis added topenalty , and the inverse of this sum is passed to
the GA. This way, illegal individuals can never have a better fitness than legal ones.

As can be seen from figure 4, this fitness function has exponential complexity. Its
runtime now depends on the depthN of a loop nest and the actual loop bounds. Affine
loop bounds (cf. definition 2) ensure that the following analysis steps of global search
space construction and search space exploration do not need to be modified since the
affine bounds can directly be modeled by corresponding polyhedral constraints.

11

Memory Type #Cycles

Scratchpad 1 Cyc
Main mem. (16 bit) 1 Cyc + 1 wait state
Main mem. (32 bit) 1 Cyc + 3 wait states

Table 1.CPU cycles for memories

Memory Type Size Energy [nJ] Memory Type Size Energy [nJ]

Scratchpad 128 B 0.53 Scratchpad 256 B 0.61
Scratchpad 512 B 0.69 Scratchpad 1 kB 0.82
Scratchpad 2 kB 1.07 Scratchpad 4 kB 1.21
Scratchpad 8 kB 2.07 Main (16 bit) 512 kB 24.0

Main (32 bit) 512 kB 49.3

Table 2.Energy consumption of memories

6 Benchmarking Results

The data partitioning and loop nest splitting techniques presented in this paper are fully
implemented. To demonstrate the efficacy of our combined approach, typical embedded
system benchmarks were passed through the algorithm described in section 3. The un-
changed original source codes and the finally generated codes of the benchmarks (i. e.
the code after data partitioning and loop nest splitting) were fed into an energy-aware
research compiler [20] for the ARM7 architecture. During compilation, all optimiza-
tions were enabled to explore the maximum optimization potential. The generated as-
sembly outputs of the compiler were finally processed by a simulator and an energy
profiler. Both the compiler and the energy profiler make use of an instruction-level en-
ergy model [21] for the ARM7 having a very high accuracy of 98.3%. This way, the
energy consumption and runtimes of our benchmarks can be computed reliably. The
key characteristics of this energy model are briefly summarized in tables 1 and 2. Since
data partitioning and loop nest splitting are performed at the level of C source codes
as also illustrated by the code examples given in sections 4 and 5, our framework can
easily be ported to other processors by simply providing an appropriate energy model.

For the experiments, benchmarks from different domains were selected. First, we
used a 40 orderFIR filter as a typical embedded DSP algorithm. Second, the sort-
ing algorithmsinsertion sort (INS)andselection sort (SELS)were analyzed. Finally,
a complete MPEG4 motion estimation routine(ME) was studied. The relevance of the
extensions for loop nest splitting presented this paper is clearly demonstrated by the
fact that a splitting of the FIR, INS and SELS benchmarks is impossible using the re-
stricted techniques originally presented in [8]. The runtimes of our implemented tools
are very low, not more than 39.8 CPU seconds are required to execute the algorithms
described in sections 4 and 5 on a Sun Blade 1000 running at 750 MHz. The maximum
contribution of loop nest splitting to these runtimes only amounts to 5.18 CPU seconds.
Experiments were conducted by varying the scratchpad sizes. The following figures 5
and 6 show the impact of our optimization methodology for scratchpad sizes which
are individually tuned for every benchmark, but kept fixed during all measurements.
In these cases, a memory size of 1.8 kB was used for FIR, and 1.3 kB were used for
INS and SELS. The ME routine with its large video frames was analyzed using a mem-
ory size of 119 kB. In order to demonstrate the stability of the proposed optimization
methodology, detailed results for a large variety of scratchpad sizes are given in figure 7
using the SELS benchmark.

Figure 5 shows the effects of the combination of data partitioning and loop nest
splitting on the energy consumption of the benchmarks. All results are shown as a per-
centage of the original unoptimized benchmark codes denoted as 100%. For both data
partitioning and loop nest splitting, the relative energy consumed by the memory sys-

12

0%

20%

40%

60%

80%

100%

120%

140%

Memory Energy Processor Energy Total System Energy

FIR INS ME SELS

Data Partitioning

0%

20%

40%

60%

80%

100%

120%

140%

Memory Energy Processor Energy Total System Energy

FIR INS ME SELS

Data Partitioning + Loop Nest Splitting

Fig. 5. Relative energy consumption after data partitioning and loop nest splitting

tem (i. e. background main memory and on-chip scratchpad), by the ARM7 processor
and by the total system (i. e. processor plus memories) is depicted.

The left diagram of figure 5 clearly shows that data partitioning is a highly effective
optimization w. r. t. the memory system. From columnMemory Energy, it can be seen
that the partitioning of arrays and the placement of parts of arrays onto a scratchpad
leads to energy savings between 36.7% (FIR) and 84.2% (SELS). Due to the impaired
control flow after data partitioning, the energy consumed by the ARM7 processor gener-
ally increases when compared to the original code version. ColumnProcessor Energy
shows additional energy consumptions between 6% (SELS) and 30.8% (INS). In the
case of the ME benchmark, an energy reduction of 28.6% was measured. This is due
to the fact that ME is very data-intensive and needs to access memory very frequently.
Since the ARM7 CPU accesses an on-chip memory much faster than the main memory,
the processor does not execute as much energy consuming wait states as before data
partitioning. For the entire system (columnSystem Energy), the techniques described
in section 4 lead to total energy savings between 5.7% (FIR) and 34.7% (ME) with an
average improvement of 21.3%.

The right diagram of figure 5 illustrates the relative energy consumption of the
benchmarks after combined data partitioning and loop nest splitting. As can be seen
by comparing the columnsMemory Energy of both charts of figure 5, loop nest splitting
conserves the energy savings for the memory system achieved by data partitioning. In
the case of the FIR benchmark, additional savings of memory energy by 9.9% were
measured. The notably lessif-statement executions for this benchmark imply less in-
struction fetches from the memories leading to this result. ColumnProcessor Energy of
figure 5 clearly shows that the techniques presented in chapter 5 are able to eliminate
the penalties introduced by data partitioning completely. After loop nest splitting, the
energy consumption of the ARM7 for the FIR and SELS benchmarks is better than the
original unoptimized code. In the case of the INS benchmark, the ARM7 consumes only
5.8% more energy than before any optimization. But also in this case, loop nest split-
ting has proven to be highly effective, since it reduces the energy dissipation by 25%.
For the ME benchmark, loop nest splitting leads to an energy reduction for the ARM7
processor of 22.3% compared to the measurements immediately after data partitioning.
ColumnSystem Energy illustrates the total savings achieved by the methodology pro-
posed in this paper. It can be seen that the combined energy dissipation of the ARM7
and its memories drops between 20.3% (FIR) and 43.3% (ME) with an average saving
of 32.3% compared to the unoptimized benchmarks.

With respect to the runtimes of the benchmarks, the combination of data parti-

13

tioning and loop nest splitting also is quite beneficial. Figure 6 illustrates the rela-
tive runtimes of the benchmarks after each optimization step. Again, the 100% base
line denotes the runtime of the original benchmark versions before any optimization.
Due to the fact thatif-statements are inserted in the code of the benchmarks during
data partitioning (compare section 4), the execution
times of almost all benchmarks increase by 8.7%
(SELS) up to 36.7% (INS). Only in the case of the
data-intensive ME benchmark, a speed-up of 28.2%
was measured which is due to the reduction of wait
states as explained above. Loop nest splitting is able
to eliminate the negative effects of data partitioning
nearly totally. Compared to the runtimes after data
partitioning, speed-ups between 9.3% (SELS) and
31.1% (ME) were measured. In total, we are able
to improve the runtimes of two benchmarks slightly

0%

20%

40%

60%

80%

100%

120%

140%

Data Partitioning Data Partitioning +

Loop Nest Splitting

FIR INS ME SELS

Fig. 6. Relative runtimes after data
partitioning and loop nest splitting

(FIR: 2.5%, SELS: 1.5%) after the application of both optimizations while simultane-
ously achieving high gains w. r. t. energy dissipation. For the INS benchmark, a mod-
erate total runtime degradation of 9.7% was still measured after loop nest splitting,
whereas the ME benchmark was accelerated by 50.6%.

Finally, the influence of varying scratchpad sizes on energy consumption and run-
times is depicted in figure 7. The left diagram of this figure illustrates the total energy
consumption of all code versions of the SELS benchmark for eleven different scratch-
pad sizes. It is not surprising that the original unoptimized benchmark consumes the
same high amount of energy for all scratchpad sizes. This is due to the fact that no
data can be placed onto the scratchpad memory at all due to the large size of the oc-
curring arrays. In contrast, data partitioning is effective in energy consumption mini-
mization already for very small memory sizes. In the case of a 256 bytes memory, only
negligible improvements were measured which are not visible due to the resolution of
figure 7. But already for 512 bytes, visible improvements were observed. With larger
scratchpad sizes, data partitioning achieves higher gains due to the fact that less costly
accesses to the main memory are performed. This way, a monotonically decreasing
curve has been obtained. The same holds for loop nest splitting applied after data parti-
tioning. Here, loop nest splitting is able to reduce the energy consumption considerably
for scratchpads larger than 600 bytes. Again, a monotonic regression can be observed
clearly demonstrating the stability of our combined optimization methodology.

With respect to the runtimes of the SELS benchmark (cf. right diagram of figure 7),
a similar behavior of combined data partitioning and loop nest splitting for various
scratchpad sizes has been measured. Again, the unoptimized benchmark requires con-
stant execution times for all scratchpad sizes. Starting from considerably increased run-
times for small scratchpads, the overhead of data partitioning gets smaller the larger
the on-chip memory becomes. This behavior is due to the high latencies imposed by
main memory accesses which are minimized most effectively by data partitioning for
larger scratchpads. In contrast, the benefits of loop nest splitting are already visible
for scratchpad sizes starting from 512 bytes. From this point on, the impact of loop
nest splitting on the performance of the benchmark becomes larger as the speed-ups

14

5.000

5.500

6.000

6.500

7.000

7.500

8.000

8.500

9.000

256 512 600 700 800 900 1024 1100 1200 1300 1400

Scratchpad Size

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n

Original SELS

DP

DP + LS

1.100

1.150

1.200

1.250

1.300

1.350

1.400

1.450

1.500

1.550

1.600

256 512 600 700 800 900 1024 1100 1200 1300 1400

Scratchpad Size

C
P

U
C

y
c
le

s
(x

1
0
0
0
)

Original SELS

DP

DP + LS

Fig. 7. Energy and performance comparison (Selection Sort)

increase. For a scratchpad size of 1,024 bytes, a runtime nearly equal to the one of the
original code has been obtained. For 1,200 bytes, the code generated by the proposed
optimization methodology is faster than the original code so that loop nest splitting is
able to over-compensate the overheads of data partitioning.

7 Conclusions

This paper presents a new approach for energy dissipation minimization of embedded
software forming a homogeneous framework for low power code generation. In a first
step, a data layout optimization is performed by partitioning large arrays into smaller
pieces which can be put on low-energy scratchpad memories. Motivated by the intro-
duction of a severe control flow overhead during this step, we propose to apply a control
flow optimization step afterwards. Loop nest splitting has proven to be highly effective
in generating a very regular control flow in the hot-spots of applications making it suit-
able to eliminate the negative effects of array partitioning.

Besides this entirely new combination of optimizations, the second major contri-
bution of this paper is a significant extension of the analysis algorithms for loop nest
splitting. Using these extended techniques, tight restrictions of the original algorithms
can be relaxed so that more general classes of applications are transformed. Without
these extensions, the optimization of three benchmarks analyzed in this work would
have been impossible justifying the efforts spent on the loop nest splitting algorithms.

The results presented in this paper demonstrate that our combined optimization
methodology is highly beneficial. The partitioning of arrays and placement of data onto
a scratchpad leads to average reductions of energy dissipation of 21.3% for an actual
ARM7 based system. In contrast, the runtimes of the benchmarks increase in almost all
cases due to the control flow overhead. Loop nest splitting removes this overhead lead-
ing to improved runtimes for all benchmarks. Furthermore, loop nest splitting achieves
an additional reduction of energy consumption. In total, the successive application of
data partitioning and loop nest splitting as proposed in this paper leads to energy savings
of up to 43.3% with an average gain of 32.3%.

Since all techniques presented in this paper are implemented such that the optimiza-
tions are performed at the level of C source codes before any assembly code generation
for the ARM7 processor, our framework is inherently portable to other embedded pro-
cessors. For this purpose, basically only an accurate energy model needs to be provided.

15

References

1. Wahlström, J.: Energy Storage Technology for Electric and Hybrid Vehicles – Matching
Technology to Design Requirements. KFB Kommunikationsforskningsberedningen, Stock-
holm, Sweden (1999)

2. Stan, M.R., Burleson, W.P.: Bus-invert coding for low-power i/o. IEEE Transactions on
VLSI Systems3 (1995)

3. Wuytack, S., Catthoor, F., Nachtergaele, L., et al.: Power exploration for data dominated
video applications. In: Proc. of ISLPED, Monterey (1996)

4. Marwedel, P., Wehmeyer, L., Verma, M., Steinke, S., Helmig, U.: Fast, predictable and low
energy memory references through architecture-aware compilation. In: Proc. of ASP-DAC,
Yokohama (2004)

5. Kandemir, M., Ramanujam, J., Irwin, M.J., Vijaykrishnan, N., Kadayif, I., Parikh, A.: Dy-
namic management of scratch-pad memory space. In: Proc. of DAC, Las Vegas (2001)

6. Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M., Marwedel, P.: Scratchpad memory:
A design alternative for cache on-chip memory in embedded systems. In: Proc. of CODES,
Estes Park (2002)

7. Verma, M., Steinke, S., Marwedel, P.: Data partitioning for maximal scratchpad usage. In:
Proc. of ASP-DAC, Kitakyushu (2003)

8. Falk, H., Marwedel, P.: Control flow driven splitting of loop nests at the source code level.
In: Proc. of DATE, Munich (2003)

9. Falk, H., Marwedel, P., Catthoor, F.: Chapter 17. In: Control Flow driven Splitting of Loop
Nests at the Source Code Level. Volume Embedded Software for SOC. Kluwer Academic
Publishers, Boston (2003) 215–229

10. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance
computing. ACM Computing Surveys26 (1994)

11. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann, San
Francisco (1997)

12. Fraboulet, A., Huard, G., Mignotte, A.: Loop alignment for memory accesses optimization.
In: Proc. of ISSS, San Jose (1999)

13. Kandemir, M.: A compiler-based approach for improving intra-iteration data reuse. In: Proc.
of DATE, Paris (2002)

14. Loechner, V., Meister, B., Clauss, P.: Precise data locality optimization of nested loops. The
Journal of Supercomputing21 (2002) 37–76

15. Panda, P.R., Dutt, N., Nicolau, A.: Memory Issues in Embedded Systems-On-Chip. Kluwer
Academic Publishers, Massachusetts (1999)

16. Steinke, S., Wehmeyer, L., Lee, B.S., Marwedel, P.: Assigning program and data objects to
scratchpad for energy reduction. In: Proc. of DATE, Paris (2002)

17. Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.G., van Achteren, T.,
Omnes, T.: Data Access and Storage Management for Embedded Programmable Processors.
Kluwer Academic Publishers, Massachusetts (2002)

18. Wilde, D.K.: A library for doing polyhedral operations. Technical Report 785, IRISA
Rennes, France (1993)

19. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press (1996)
20. Steinke, S., Wehmeyer, L., et al.: Theenccenergy aware c compiler homepage.

http://ls12-www.cs.uni-dortmund.de/research/encc/ (2002)
21. Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An accurate and fine grain instruction-

level energy model supporting software optimizations. In: Proc. of PATMOS, Yverdon-Les-
Bains (2001)

