
Scratchpad Sharing Strategies for Multiprocess
Embedded Systems: A First Approach

Manish Verma, Klaus Petzold, Lars Wehmeyer, Heiko Falk, Peter Marwedel
Department of Computer Science XII

University of Dortmund, 44225 Dortmund, Germany{
Manish.Verma,Klaus.Petzold,Lars.Wehmeyer,Heiko.Falk,Peter.Marwedel

}
@udo.edu

Abstract
Portable embedded systems require diligence in manag-

ing their energy consumption. Thus, power efficient proces-
sors coupled with onchip memories (e.g. caches, scratch-
pads) are the base of today’s portable devices. Scratchpads
are more energy efficient than caches but require software
support for their utilization. Portable devices’ applications
consist of multiple processes for different tasks. However,
all the previous scratchpad allocation approaches only con-
sider single process applications. In this paper, we pro-
pose a set of optimal strategies to reduce the energy con-
sumption of applications by sharing the scratchpad among
multiple processes. The strategies assign both code and
data elements to the scratchpad and result in average to-
tal energy reductions of 9%-20% against a published sin-
gle process approach. Furthermore, the strategies generate
Pareto-optimal curves for the applications allowing design
time exploration of energy/scratchpad size tradeoffs.

1. Introduction
Today’s portable devices undergo an increasing conver-

gence and feature enhancement, e.g. a mobile phone featur-
ing Bluetooth and a color display. It can take digital pictures
and videos, play MP3 files and act as a PDA. Besides faster
processors and larger memories, energy optimization plays
a major role in making these devices possible, since beside
the aforementioned features, consumers expect their mobile
phones to have an extended battery life. A lot of research
effort is thus being directed towards energy optimizations.

The memory subsystem has been identified as an energy
bottleneck of entire systems [5, 6]. Memory hierarchies are
used to reduce the memory subsystem’s energy dissipation.
Caches and scratchpads represent two contrasting memory
architectures. Caches improve performance by exploiting
the temporal and spatial locality in a program. However, for
embedded systems, the overheads associated with caches
often negate their benefits. Moreover, caches are notorious
for their unpredictable behavior.

On the other hand, a scratchpad memory (SPM) con-
sists of just a memory array and address decoders. There-
fore, scratchpads are both area and power efficient than
caches [3]. However, they require complex program anal-
ysis and explicit support from the compiler for managing

their contents. This in-turn makes scratchpads predictable,
as their contents are 100% known during the execution time.

The convergence phenomenon for portable devices has
resulted in complex multiprocess applications with each
process being responsible for a particular task. Neverthe-
less, all the current scratchpad assignment techniques fo-
cus on single process applications. Applying the current
techniques to a multiprocess application will result in non-
optimal energy savings. This paper presents our first at-
tempt at minimizing the energy consumption of multipro-
cess applications by utilizing a set of compiler based op-
timal scratchpad sharing techniques which are predictable
and analyzable at design time. In that respect, this is the first
work on fully-analyzable scratchpad sharing techniques for
multiprocess systems.

The rest of the paper is structured as follows: After the
presentation of related work, the multiprocess scratchpad
allocation techniques are presented. This is followed by
Section 4 presents the experimental workflow and Section 5
discussing the experimental results. The paper ends with a
conclusion and future work.

2. Related Work
The research on scratchpad utilization for single process

applications can be classified into two broad categoriesviz.
non-overlay and overlay based allocation techniques. In the
former, the scratchpad is loaded once at the start and its
contents remain invariant during the entire execution of the
application. In contrast, overlay based allocation techniques
partition the application into overlays which are copied on
and off the scratchpad during the execution to reflect the
dynamic behavior of the application.

Non-overlay based allocation techniques [6, 8, 9] can be
classified into techniques which allocate only data or only
instructions or both instructions and data. The allocation
approach proposed in [6] allocates only data, while [9] allo-
cates only instructions onto the scratchpad. Authors in [8]
assigned both aggregate variables and instruction segments
onto the scratchpad.

Similarly, overlay based allocation techniques [1, 5, 10]
can be classified into techniques which cover only data el-
ements or only instructions or a combination of both. Au-
thors in [5] proposed techniques to dynamically copy over-
lays of data elements onto the scratchpad. Authors in [1]

Process P1
(disjoint region 1)

Process P2
(disjoint region 2)

Process P3
(disjoint region 3)

(a)

Process P1
Process P2
Process P3

(overlapping region)

(b)

Process P1
(disjoint region 1)

Process P2
(disjoint region 2)

Process P3
(disjoint region 3)

Process P1
Process P2
Process P3

(overlapping region)

(c)
Figure 1: Scratchpad Allocation Strategies: (a) Non-Saving

(b) Saving and (c) Hybrid

proposed an approach to assign instruction overlays onto
the scratchpad. A recent approach [10] considers both in-
structions and data.

Scratchpad allocation for multiprocess systems is still in
an early research stage. Only one approach [4] to share the
scratchpad among processes is known. However, it is not
automated and the programmer needs to insert API calls
at appropriate locations to utilize the scratchpad. Our ap-
proaches are complementary to [4] as they automate the
sharing of the scratchpad among the processes.

3. Scratchpad Sharing Strategies
The multiprocess scratchpad sharing approaches pro-

posed in this paper enable sharing of the scratchpad mem-
ory by the processes of an application, under the objective to
minimize the energy consumption of the entire application.
We propose 3 scratchpad sharing approachesviz. Scratch-
pad Non-Saving/Restoring Context Switch (Non-Saving),
Scratchpad Saving/Restoring Context Switch (Saving) and
Hybrid Scratchpad Saving/Restoring Context Switch (Hy-
brid). The proposed approaches use a non-overlayed
scratchpad allocation strategy [8] to select and map the en-
ergy optimal set of memory objects (instruction segments
and variables) for each process onto the scratchpad. In ad-
dition, the Saving and the Hybrid approaches require run-
time support from the dispatcher for saving and restoring
the scratchpad contents. The Non-Saving approach parti-
tions the scratchpad into disjoint regions and each process
is exclusively allocated at most one region. As a conse-
quence, the contents of the disjoint regions never need to be
updated at context switch time. Figure 1(a) shows the dis-
tribution of scratchpad memory into 3 disjoint regions. This
approach is beneficial for large scratchpads, as they can be
adequately distributed among the processes.

In contrast to the previous approach, the Saving approach
shares the scratchpad (cf. Figure 1(b)) as a common over-
lapping region among all the processes. Memory objects
belonging to a process are copied to the scratchpad when
the process is scheduled to execute on the processor. They
are copied back to the main memory when the process is
scheduled off the processor. This leads to reduced energy
consumption when the copy overhead is less than the en-
ergy reduction achieved by the increased scratchpad utiliza-
tion. For small scratchpads, the Saving approach is better

Variables Definition

n Number of processes.

M Maximum scratchpad size.

P1 . . .Pn Set of processes.

sk Schedule count for processPk.

f N
k (x) Energy function for processPk with x bytes disjoint SPM

region f N
k : [0,M] → R.

f S
k (x) Energy function for processPk with x bytes overlapping

SPM regionf S
k : [0,M] → R.

f H
k (x,y) Energy function for processPk with x andy bytes disjoint

and overlapping SPM regionsf S
k : [0,M]× [0,M] → R.

CESP(x) Copy Energy function, copyingx bytes from main mem-
ory to SPMCESP: [0,M] → R.

CEMM(x) Copy Energy function, copyingx bytes from SPM to
main memoryCEMM : [0,M] → R.

Table 1: Definition of variables

than the Non-Saving approach while the opposite is true
for large scratchpads. Consequently, the Hybrid approach
is proposed as a combination of the two approaches. As
shown in Figure 1(c), a portion of the scratchpad is dis-
tributed as disjoint regions while the remaining portion is
commonly utilized by the processes. Only this common
region needs to be updated at every context switch. The
hybrid approach minimizes the energy consumption of the
application for all sizes, as it can partition the scratchpad
into both disjoint and overlapping regions.

For this work, we assumed a statically scheduled system
with n processes such that the execution profile (i.e. ex-
ecution time and energy consumption) of each process is
known or can be estimated a priori. Let us define a few
variables (cf. Table 1) prior to presenting the allocation al-
gorithms. Assume that the multiprocess application con-
sists ofn equal priority processesP1 . . .Pn running on a sin-
gle processor system with anM byte scratchpad memory
and that the non-savingf N

k (x), the savingf S
k (x) and the hy-

brid f H
k (x,y) energy functions are known for each process

Pk. The non-saving (saving) energy functionf N
k (x) (f S

k (x))
computes the energy consumed by processPk when it is as-
signed a disjoint (overlapping) scratchpad region ofx bytes.
Similarly, f H

k (x,y) is the hybrid energy function of a pro-
cessPk utilizing both disjoint and overlapping scratchpad
regions ofx andy bytes, respectively. Furthermore, sched-
ule countsk is the number of times a processPk is scheduled
to execute on the processor.

We now introduce a motivating example of a mobile ap-
plication consisting of three simultaneously running pro-
cesses (viz. mpegdec, receive, ui). The processreceivere-
ceives packets of MPEG video over the network. They are
decoded by the processmpegdecto produce video frames
which are then displayed on the screen by processui. Ta-
ble 2 presents the non-saving energy functions of the pro-
cesses. All energy values related to the example application
are in abstract units. Energy functionf N

mpegdece.g. denotes
that processmpegdecconsumes 84 units of energy when it
utilizes a 1kB disjoint scratchpad region. Assume that a 4kB
scratchpad is present in the system that can be assigned to a

Process Energy fn. 0kB 1kB 2kB 3kB 4kB

mpegdec f N
mpegdec 100 84 60 60 57

receive f N
recieve 40 25 20 18 18

ui f N
ui 20 9 8 8 8

Table 2: Non-Saving Energy functions (abstract units) for
Mobile application

Algorithm 1 BinMin
Require: Energy functionsf (x) andg(x) st. f ,g : [0,M] → R

Ensure: h : [0,M] → R, whereh(xi) = min{ f (l j)+g(mk)|l j +mk ≤ xi}
1: min= ∞
2: for xi = 0 toM do
3: for tmp= 0 toxi do
4: l j = tmp
5: mk = xi − tmp
6: if f (l j)+g(mk) < min then
7: min= f (l j)+g(mk)
8: h(xi) = min
9: return h(x)

single process. Under these assumptions, processmpegdec
is assigned the entire 4kB scratchpad, as it results in the
maximum energy reduction of the application: It is com-
puted to be 57+ 40+ 20= 117 units whenmpegdecis as-
signed a 4kB scratchpad region. The approaches presented
in this paper will reduce the energy consumption further by
sharing the scratchpad.

3.1. Notation
Several notations to represent functions are commonly

used. The rigorous notation [11]f :x→ f (x) specifies that
f is a function acting upon a single numberx and returns a
value f (x). In addition, the notationf (x) is used to refer to
the function f . In this text, unless indicated otherwise, the
notation f (x) refers to the rigorous notationf :x→ f (x) and
the notationf (xi) with a subscripted argumentxi refers to
the value of the functionf at numberxi .

3.2. Non-Saving Approach
The Non-Saving approach partitions the scratchpad into

disjoint regions such that each process is allocated a maxi-
mum of one scratchpad region, the objective being to min-
imize the energy consumption of the application by assign-
ing appropriate scratchpad regions to each of the processes.
Given the non-saving energy functionf N

1 (x) . . . f N
n (x) of

each process, the non-saving energy functionhN
n (x) of the

application is computed as the following:

hN
n (x) = min{ f N

1 (x1)+ . . .+ f N
n (xn)|x1 + . . .+xn ≤ x} (1)

The value of the functionhN
n (x) atx= M denotes the energy

consumption of the application utilizing anM bytes scratch-
pad. Computing the energy functionhN

n (x) using the above
equation requiresO((x+1)n) summation operations. Thus,
a full-exhaustive search algorithm would require an expo-
nentialO(Mn) running time. An efficient algorithm can uti-
lize the following distributive property of themin operator:

hN
3 (x) = min{ f N

1 (x1)+ f N
2 (x2)+ f N

3 (x3)|x1 +x2 +x3 ≤ x}
= binmin(binmin(f N

1 , f N
2), f N

3) (2)

Algorithm 2 NonSaving
Require: Process Energy functionsf N

1 (x), . . . , f N
n (x)

Ensure: hN
n : [0,M] → R, where

hN
n (x) = min{ f N

1 (x1)+ . . .+ f N
n (xn) | x1 + . . .+xn ≤ x}

1: if n > 1 then
2: hN

n−1(x) = NonSaving(f N
1 (x), . . . , f N

n−1(x))
3: hN

n (x) = BinMin(hN
n−1(x), f N

n (x))
4: else
5: hN

n (x) = BinMin(f N
1 (x),Z(x)) * Z(x) = 0∀x *\

6: return hN
n (x)

Energy fn. (Soln. Set) 0kB 1kB 2kB 3kB 4kB

hN
2 (x) = 140 124 100 85 80

binmin(f N
mpegdec, f N

receive) (0,0) (1,0) (2,0) (2,1) (2,2)

hN
3 (x) = 160 144 120 105 94

binmin
(
hN

2 , f N
ui

)
(0,0) (1,0) (2,0) (3,0) (3,1)

Table 3: Non-Saving Approach for Mobile Application
The binary minimum functionbinmin is defined below:

h(x) = binmin(f ,g) (3)

= min
{

f (l j)+g(mk)|l j +mk ≤ x
}

The binary minimum function takes two functions as input
and returns another function. The returned functionh(x)
represents the minimum sum of the input functionsf andg
such that the sum of the argumentsl j andmk is less thanx.
Equations 2 are 3 used to convert the energy function (cf.
equation 1) into the following recurrence equation.

hN
1 (x) = binmin(f N

1 (x),Z(x))

hN
n (x) = binmin(hN

n−1(x), f N
n (x)) (4)

whereZ(x) = 0 is a zero function which returns zero for all
values ofx. The correctness proof of the recurrence equa-
tion is presented in [2]. Algorithm 1 presents the pseudo-
code for computing the binary minimum functionbinmin
for two energy functions, requiringO(M2) runtime. The
recurrence equation (cf. equation 4) is implemented using
algorithm 2. The recursive algorithm takes energy func-
tions f N

1 (x), . . . , f N
n (x) each corresponding to one of then

processes and returns the energy functionhN
n (x) of the ap-

plication which describes the optimal energy values for the
Non-Saving approach. The application of the algorithm to
the energy functions (cf. Table 2) of the mobile application
is shown in Table 3. The table also presents the scratch-
pad regions assigned to each process and the saving energy
functionhN

3 (x) of the application. The overall runtime of al-
gorithm 2 isO(nM2). The solution set S contains the size of
the scratchpad region allocated to each process. Only min-
imal extensions are required in algorithms 1 and 2 to also
determine the solution set.

3.3. Saving Approach
The Saving approach assumes that the entire scratchpad

is a single overlapping region shared by all processes con-
stituting the application. The dispatcher copies a process’
memory objects from the main memory to the scratchpad
every time it is scheduled to run on the processor and back
to the main memory when the process is taken off the pro-
cessor. The saving energy functionf S

k (x) of processPk uti-

Process Energy fn. 0kB 1kB 2kB 3kB 4kB

mpegdec f S
mpegdec 100 89 70 75 77

receive f S
receive 40 30 30 33 38

ui f S
ui 20 14 18 23 28

Mobile hS
3(x) = Saving(f S

ui, 160 133 114 114 114

Application f S
mpegdec, f S

receive)

Table 4: Saving Energy functions (abstract units) for Mobile
Application
Algorithm 3 Saving
Require: Process Energy functionsf N

1 (x), . . . , f N
n (x)

Require: Copy Energy functionsCESP(x) andCEMM(x)
Require: Schedule counts1, . . . ,sn

Ensure: hS
n : [0,M] → R, wherehS

n(xi) = ∑n
k=1

{
min[f S

k (l j)|l j ≤ xi]
}

1: for k = 1 ton do
2: prev min[k] = ∞
3: for xi = 0 toM do
4: for k = 1 ton do
5: l j = xi

6: f S
k (l j) = f N

k (l j)+sk ∗ (CESP(l j)+CEMM(l j))
7: if f S

k (l j) < prev min[k] then
8: min[k] = f S

k (l j)
9: else

10: min[k] = prev min[k]
11: Emin = 0
12: for k = 1 ton do
13: Emin = Emin+min[k], prev min[k] = min[k]
14: hS

n(xi) = Emin
15: return hS

n(x)

lizing x bytes overlapping scratchpad region is derived as:

f S
k (x) = f N

k (x)+sk ∗ [CESP(x)+CEMM(x)] (5)

where f N
k (x) andsk represent the non-saving energy func-

tion and the schedule count of processPk, respectively. The
copy energy functionsCESP(x) andCEMM(x) return the en-
ergy consumed in copyingx bytes to/from the scratchpad
from/to the main memory, respectively. Table 4 presents
the saving energy functions for the processes of the mobile
application computed using equation 5 as well as the saving
energy function of the entire application. The non-saving
energy function values were taken from Table 2, while the
aggregate copy energy overhead was assumed to contribute
5 abstract units of energy for every 1kB of scratchpad in this
simplified example.

The minimum energy consumptionhS
n(x) of the applica-

tion for x bytes of scratchpad is the sum of the minimum
value of the energy functionf S

k (x) over the range of[0,x]
bytes for each processPk. The saving energy function of
the application allocated using the Saving approach is writ-
ten as:

hS
n(x) = ∑n

k=1min[f S
k (l j)|l j ≤ x] (6)

Algorithm 3 presents the algorithm for the computation of
hS

n(x) for the application. The algorithm computes the sav-
ing energy functionf S

k (x) for each processPk using equa-
tion 5, requiringO(nM) time to compute the optimal energy
functionhS

n(x) for the multiprocess application. The energy
functionhS

3(x) for the mobile application is presented in the
last row of Table 4. The following subsection proposes a

Algorithm 4 HybBinMin
Require: Energy functionsf andg st. f ,g : [0,M]× [0,M] → R

Ensure: h : [0,M]× [0,M] → R, whereh(xi ,yi) =
min

{
f (l j ,mj)+g(nk,ok) | l j +nk ≤ xi ∧mj ≤ yi ∧ok ≤ yi

}

1: for yi = 0 toM do
2: min= ∞
3: for xi = 0 toM−yi do
4: for tmp= 0 toxi do
5: l j = tmp, mj = yi
6: nk = xi − tmp, ok = yi
7: if f (l j ,mj)+g(nk,ok) < min then
8: min= f (l j ,mj)+g(nk,ok)
9: h(xi ,yi) = min

10: return h(x,y)

Algorithm 5 Hybrid
Require: Energy functionsf H

1 (x,y), . . . , f H
n (x,y)

Ensure: hH
n : [0,M]× [0,M] → R, where

hH
n (x,y) = min{∑n

k=1 f H
k (xk,yk) | ∑n

k=1[xk] ≤ x∧∀k : yk ≤ y}
1: if n > 1 then
2: hH

n−1(x,y) = Hybrid(f H
1 (x,y), . . . , f H

n−1(x,y))
3: hH

n (x,y) = HybBinMin(hH
n−1(x,y), f H

n (x,y))
4: else
5: hH

n (x,y) = HybBinMin(f H
1 (x,y),Z(x,y)) *Z(x,y) = 0∀x,y *\

6: return hH
n (x,y)

hybrid approach to share the scratchpad.

3.4. Hybrid Approach
The Hybrid approach combines the presented scratchpad

allocation approaches. It partitions the scratchpad into dis-
joint regions each allocated to one process, and one overlap-
ping region which is commonly used by all processes. The
most frequently accessed memory objects of a process as-
signed to the disjoint region cause no copy overhead, while
the other important memory objects assigned to the over-
lapping region cause a tolerable copy overhead.

The Hybrid approach assumes that the hybrid energy
function f H

k (x,y) for each processPk is known. These en-
ergy functions are used to compute the hybrid energy con-
sumption of the applicationhH

n (x,y):

hH
n (x,y) = min{∑n

k=1[f
H
k (xk,yk)|∑n

k=1xk ≤ x∧∀k : yk ≤ y]} (7)

hH
n (x,y) is the minimum sum of the hybrid energy func-

tion f H
k (xk,yk) for all processesPk, respecting the dis-

joint and the overlapping region constraints. Similar to the
Non-Saving approach, the hybrid binary minimum function
hybbinminis defined as:

h(x,y) = hybbinmin(f ,g) = (8)

min{ f (l j ,mj)+g(nk,ok)|l j +nk ≤ x∧mj ≤ y∧nk ≤ y}
hybbinminis used to convert the energy functionhH

n (x,y)
to the following recurrence equation:

hH
1 (x,y) = hybbinmin(f H

1 (x,y),Z(x,y))

hH
n (x,y) = hybbinmin(hH

n−1(x,y), f H
n (x,y)) (9)

whereZ(x,y) is the zero function. Algorithms for the
Hybrid approach are similar to the respective algorithms for
the Non-Saving approach. Algorithm 4 presents the pseudo-
code for implementing the hybrid binary minimum func-

Energy
Function f1(x)

Energy
Function fn(x)

Allocation
Algorithms
(

)
Non-Saving/

Saving/Hybrid

C
Compiler

Processor
Simulator

Energy
Profiler

Energy
Report

Simulation
Trace

Executable
Binary

ASM-Code
Scheduler

C-Code
Process Pn

C-Code
Process P1

SPM
Regions

..
.

...

Figure 2: Experimental Workflow

tion. Algorithm 5 implements the above recurrence equa-
tion, requiringO(nM3) time to compute the hybrid energy
functionhH

n (x,y) of the application.

4. Experimental Setup
Our experimental setup consists of an ARM7 proces-

sor core with a 4kB onchip scratchpad and an offchip main
memory. A custom operating system was created to manage
the application on the processor. It provides system calls
for managing the contents of the scratchpad. The energy
function f N

k (x) for a processPk is determined by comput-
ing the energy consumption values of the process for each
scratchpad size. An energy optimal non-overlay based al-
location algorithm [8] is used to allocate memory objects
(i.e. instruction segments and variables) onto the scratch-
pad. Accurate energy models [7, 3] are used to compute
the energy consumption of the application. The Hybrid en-
ergy function f H

k (x,y) of the application is computed in a
similar manner. For our benchmarks, computing the energy
functions over the range of [0, 4096] bytes at a granularity
of 16 bytes required a maximum of 130 CPU seconds and
1000 CPU seconds on a Sun Sparc 1300MHz machine for
f N
k (x) and f H

k (x,y), respectively. The computation of en-
ergy functions takes ample computation time, however, the
database of the process energy functions can later be reused
for many applications. We evaluated the proposed alloca-
tion techniques for statically scheduled multiprocess sys-
tems. All processes have equal priority and are scheduled
in a round-robin manner. Additionally, we assumed that the
execution time and energy consumption of each process can
be computed. A time slice of 33000 CPU cycles (or 1 ms
on the 33Mhz ARM7 processor) is provided to each process
for execution on the processor.

The main workflow shown in figure 2 assumes that the
energy functions for all processes are known. The energy
functions are passed to the presented allocation algorithms.
The output consists of the assignment of scratchpad re-
gion(s) to each process. The source code of each process
is then compiled and the optimal set of memory objects are
marked for allocation onto the assigned scratchpad regions.
The assembly codes of the process and that of the operat-
ing system are assembled and linked to create a single ex-
ecutable binary. The executable is executed on ARMulator
(the simulator from ARM Ltd.) to generate the instruction
trace which is then passed as input to the energy profiler.

Application Size (kB) Processes

Name (benchmarks)

Media 77 adpcm, g721, mpeg4, edge-detection

Mobile 80 gsm, mpeg4

DSP 26 fast-idct, lattice-init, lattice-small, fft, fir,

Table 5: Multiprocess applications

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096
Scratchpad Size (bytes)

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
(m

J
)

Energy (SPA) Energy (Non-Saving)

Energy (Saving) CopyEnergy (Saving)

Energy (Hybrid) CopyEnergy (Hybrid)

Figure 3: Energy consumption of Media application for
SPA, Non-Saving, Saving and Hybrid Approach

The energy profiler utilizes accurate energy models [7, 3] to
compute the total energy consumed by the application.

5. Results
The proposed allocation approaches are evaluated for an

assorted set of multiprocess applications presented in Ta-
ble 5. Lacking a benchmark suite consisting of multipro-
cess applications, we assembled well-known benchmarks
as processes to construct representative multiprocess appli-
cations. ApplicationsMedia andMobile comprise bench-
marks from Mediabench, whileDSPcomprises benchmarks
from the UTDSP benchmark suite. The benefits of sharing
the scratchpad among multiple processes are evaluated by
comparing them against a single process allocation (SPA)
approach. The SPA approach utilizes the Non-Saving ap-
proach for that process which leads to the maximum reduc-
tion in the energy consumption of the application.

Comparing the allocation approaches (Non-Saving, Sav-
ing and Hybrid) and the SPA approach against each other,
the energy overhead due to the copy routines for Saving and
Hybrid approaches is demarcated from the corresponding
aggregate energy values of the approaches in Figure 3. The
energy consumption values for the proposed approaches are
always better than those for the SPA approach. This jus-
tifies the use of the multiprocess allocation approaches for
minimizing the energy consumption of the multiprocess ap-
plications. Also, the energy consumption of the system for
Non-Saving and Hybrid approaches decreases monotoni-
cally with the increase in the scratchpad size. However,
the energy values for the Saving approach first decrease
and then remain constant for all scratchpads larger than 512
bytes since it does not always utilize the entire scratchpad,
as high energy overhead is incurred due to the copy rou-
tines for large scratchpads. Finally, for small scratchpad
sizes (64-512 bytes) the energy values for the Saving ap-
proach are smaller than those for the Non-Saving approach,
while the opposite is true for larger scratchpads. For small
scratchpads, the improved utilization of the scratchpad due
to the Saving approach and the small copy energy overhead

(a) Media application

50%

60%

70%

80%

90%

100%

110%

64 128 256 512 1024 2048 4096 avg.

Scratchpad Size (bytes)

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
(%

)

Energy (SPA) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(b) DSP application

50%

60%

70%

80%

90%

100%

110%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
(%

)

Energy (SPA) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

(c) Mobile application

75%

80%

85%

90%

95%

100%

105%

64 128 256 512 1024 2048 4096 avg.
Scratchpad Size (bytes)

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
(%

)

Energy (SPA) Energy (Non-Saving) Energy (Saving)

CopyEnergy (Saving) Energy (Hybrid) CopyEnergy (Hybrid)

Figure 4: Relative energy consumption of applications for Non-Saving, Saving and Hybrid Approach vs. SPA

80

100

120

140

160

180

200

5 6 7 8 9 10 11 12 13
Scratchpad Size [2^x] (bytes)

E
n

e
rg

y
C

o
n

s
u

m
p

ti
o

n
(m

J
)

l Energy (Hybrid)

Figure 5: Pareto curve for Media application
minimizes the energy consumption of the system. The Hy-
brid approach distributes the scratchpad into disjoint and
overlapping regions and therefore achieves the minimum
energy consumption values for all scratchpad sizes.

Next, we compare the multiprocess allocation ap-
proaches against the SPA approach for Media, DSP and Mo-
bile applications. Figure 4 presents the energy values for the
proposed approaches relative to those of the SPA approach
(presented as the 100% bars). From Figure 4(a) and 4(b),
we observe that the Hybrid approach is able to reduce en-
ergy consumption up to 27% and 35% against the SPA ap-
proach, respectively. For the Media application, we report
average energy reductions of 14%, 13% and 17% due to
Non-Saving, Saving and Hybrid approaches, respectively.
Even higher average energy reductions of 18%, 19% and
20% due to Non-Saving, Saving and Hybrid approaches,
respectively, are observed for the DSP application. For
the Mobile application, average energy reductions (cf. Fig-
ure 4(c)) of 9%, 11% and 12% are reported.

Finally, we would like to discuss the generation of
Pareto-optimal curves for the multiprocess application by
the proposed approaches. In addition to the optimal alloca-
tion of the application onto anM bytes scratchpad, the en-
ergy functions (hN

n (x), hS
n(x) andhH

n (x,y)) defined over the
range[0,M] bytes of scratchpad sizes are also determined.
These energy functions represent the Pareto-optimal curves
for the application. Figure 5 presents the curve of the hybrid
energy functionhH

n (x) for the Media application. The re-
maining points represent the energy consumption values for
promising allocations of scratchpad to the processes. How-
ever, they represent non-optimal allocations, as they con-
sume more energy than those using the Hybrid approach.
The Pareto-optimal curve aids the system designer in per-
forming design-time scratchpad size vs. energy consump-
tion tradeoffs. For example, a system with a 4kB scratch-
pad consumes just 10% less energy than a system with 2kB
scratchpad. A system designer can thus tradeoff 10% en-
ergy consumption for half of the onchip scratchpad size.

6. Conclusion and Future Work
In this paper, a set of strategies (viz.Non-Saving, Saving

and Hybrid) were proposed for sharing the scratchpad by
the processes of the multiprocess applications. In addition,
the Pareto-optimal curves allowing design-time exploration
were generated. The Hybrid approach provided the maxi-
mum energy reductions for all scratchpad sizes, though it
required the longest computational time for preprocessign
step. The Saving approach was demonstrated to be better
than the Non-Saving approach for small scratchpads and
vice-versa for large scratchpads. The proposed approaches
report average energy reductions of 9%-20% against a sin-
gle process approach. In future, we intend to extend the
approaches for processes with priorities and deadlines.

References
[1] F. Angiolini, M. Francesco, F. Alberto, L. Benini, and

M. Olivieri. A Post-Compiler Approach to Scratchpad Map-
ping of Code. InProc. of CASES’04, Sept. 2004.

[2] Appendix. . http://ls12.cs.uni-dortmund.de/
˜verma/ESTIMedia2005/appendix .

[3] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad Memory: A Design Alternative for
Cache On-chip Memory in Embedded Systems. InProc. of
Intl. Sym. on CODES, Col., USA, May 2002.

[4] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor,
and M. Mendias. An Integrated Hardware/Software Ap-
proach for Run-Time Scratchpad Management. InProc. of
DAC, San Deigo, CA, USA, June 2004. DAC.

[5] M. Kandemir and A. Choudhary. Compiler-Directed Scratch
Pad Memory Hierarchy Design and Management. InProc. of
DAC, New Orleans, USA, June 2002.

[6] P. R. Panda, N. Dutt, and A. Nicolau.Memory Issues in
Embedded Systems-On-Chip. Kluwer Academic Publishers,
MA, 1999.

[7] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An
Accurate and Fine Grain Instruction-Level Energy Model
Supporting Software Optimizations. InProc. of PATMOS,
Switzerland, Sep. 2001.

[8] S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel. As-
signing program and data objects to scratchpad for energy
reduction. InProc. of DATE, Paris, France, Mar. 2002.

[9] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware
Scratchpad Allocation Algorihm. InProc. of DATE, Paris,
France, Feb, 2004.

[10] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic Over-
lay of Scratchpad Memory for Energy Minimization. InProc.
of CODES+ISSS, Stockholm, Sweden, Sep. 2004.

[11] E. W. Weisstein. ”Function”: MathWorld-A Wolfram Web
Resource. http://mathworld.wolfram.com/Function.html.

