
Control Flow driven Code Hoisting at the Source Code Level

Heiko Falk
University of Dortmund, Computer Science 12, D - 44221 Dortmund, Germany

Heiko.Falk@udo.edu

Abstract
This paper presents a novel source code optimization

technique called advanced code hoisting. It aims at moving
portions of code from inner loops to outer ones. In contrast
to existing code motion techniques, this is done under con-
sideration of control flow aspects. Depending on the con-
ditions of if -statements, moving an expression can lead to
an increased number of executions of this expression. This
paper contains formal descriptions of the polyhedral mod-
els used for control flow analysis so as to suppress a code
motion in such a situation.

Due to the inherent portability of source code transfor-
mations, a very detailed benchmarking using 8 different
processors was performed. The application of our imple-
mented techniques to real-life multimedia benchmarks leads
to average speed-ups of 25.5%–52% and energy savings of
33.4%–74.5%. Furthermore, advanced code hoisting leads
to improved pipeline and cache behavior and smaller code
sizes.

1. Introduction
In recent years, the power efficiency of embedded mul-

timedia applications (e. g. medical image processing, video
compression) with simultaneous consideration of timing
constraints has become a crucial issue driving the need
for the generation of highly optimized embedded software.
Due to the need for very efficient machine code and the
lack of optimizing compilers, assembly-level software de-
velopment for embedded processors was very common in
the past. However, both embedded applications and pro-
cessors are getting more and more complex, and the de-
velopment of highly optimizing compilers allows the re-
placement of assembly level programming. Modern com-
pilers are equipped with a large amount of different opti-
mizations, among whichcommon subexpression elimina-
tion (CSE)and loop-invariant code motion (LICM)have
proven to be highly beneficial [17].

This paper presents a new source code optimization
called advanced code hoisting (ACH). This technique
is an elaborate combination of the already known CSE
and LICM optimizations with a formal mathematical
criterion steering the application of the mentioned opti-
mizations. Studying advanced code hoisting is motivated
by the fact that the application of the conventional

CSE and LICM
techniques might
not be beneficial
if the control
flow is not con-
sidered. This
is illustrated by
means of a source
code fragment
extracted from
the innovative
GSM codebook
search depicted in
Figure 1.

for (j=0; j< l code ; j++)
for (i=0; i< l code ; i++) {

if (i<= c1)
if (i== c1)

rdm = h2[l code -1-i];
else rdm = rr[i*(i-1)/2];

else rdm = rr[j*(j-1)/2];
...mul(rdm, ...);

if (i<= c2)
if (i== c2)

rdm = h2[l code -1-i];
else rdm = rr[j*(j-1)/2];

else rdm = rr[i*(i-1)/2];
...mul(rdm, ...); }

Figure 1. GSM Codebook Search

For this small example, we assume that the sym-
bolic constantsl code , c1 and c2 are equal to 10,000,
9,000 and 1,000, respectively. The structure of the
for-loops andif-statements depicted in Figure 1 has the
effect that the expressionl code -1-i is executed 20,000
times (i*(i-1)/2 : 179,990,000 times, j*(j-1)/2 :
19,990,000 times).

The application of
the conventional CSE
and LICM optimiza-
tions has the effect
that these three ex-
pressions are replaced
by accesses to new
local variables which
are defined in the out-
ermost possible loops.
As a consequence,
both l code -1-i

and i*(i-1)/2 are
moved to the begin-
ning of the i -loop,
whereas j*(j-1)/2

is moved to the be-

for (j=0; j< l code ; j++) {
int tmp1 = j*(j-1)/2;

for (i=0; i< l code ; i++) {
int tmp2 = l code -1-i,

tmp3 = i*(i-1)/2;

if (i<= c1)
if (i== c1)

rdm = h2[tmp2];
else rdm = rr[tmp3];

else rdm = rr[tmp1];
...mul(rdm, ...);

if (i<= c2)
if (i== c2)

rdm = h2[tmp2];
else rdm = rr[tmp1];

else rdm = rr[tmp3];
...mul(rdm, ...); }}

Figure 2: GSM Code after
conventional Code Hoisting

ginning of thej -loop. The resulting code is depicted in
Figure 2.

For the given values ofl code , c1 and c2 , this con-
ventional code hoisting leads to an execution frequency of
100,000,000 forl code -1-i andi*(i-1)/2 (10,000 for

1

for (x=1; x<N-2; x++)

for (y=1; y<M-2; y++) {
for (k=-1; k<1; k++) {

...

A[x][y]+=B[x+k][y];

... }
A[x][y]/=tot; }

→

for (y=0; y<M+2; y++)

for (x=0; x<N+2; x++) {
...

if (x>=0 && x<N && y>0 && y<M-1)

D[x%3]=B[96+(y*N+x%3)%160+

(y*N+x%3)/160*256];

...

if (x>1 && x<N && y>0 && y<=M-2)

for (k=-1; k<=1; k++)

acc+=D[(x-1+k)%3];

acc/=tot; }

Figure 4. A Fragment of the CAVITY Benchmark before and after DTSE

j*(j-1)/2). As can be seen, the execution frequency of
l code -1-i increases by a factor of 5,000.

The reason for the increased execution frequency of
l code -1-i after its motion to the beginning of thei -loop
are the twoif-statements surrounding this expression. In
the original code depicted in Figure 1, the expression is ex-
ecuted for only two iterations of thei -loop. After its motion
out of theif-statements, it is executed for every iteration of
thei -loop resulting in the observed increased execution fre-
quency.

The first main contribution of this paper is the novel
combination of the well-known compiler optimizations
CSE and LICM with a steering criterion. Second, the for-
mulation of this criterion deciding when to apply CSE and
LICM is based on control flow aspects. This paper describes
formal methods modeling large classes of loop nests andif-
statements. Polyhedral techniques are applied for the ex-
act computation of execution frequencies of CSEs. Third,
all compilers involved during benchmarking are called with
their highest levels of optimization enabled. Since they all
include a CSE and LICM, it is an important observation that
still very large savings can be achieved using ACH. This
fact underlines that novel source code optimizations relying
on already existing techniques to some extent are still able
to outperform existing optimizing compilers.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a survey of related work. Section 3 presents the
analytical models for advanced code hoisting. Section 4 de-
scribes the benchmarking results, and Section 5 summarizes
and concludes this paper.

2. Related Work

Since CSE and LICM [1, 17] have been known for
many years and can be found in any optimizing compiler,
the discussion of these simple transformations is omitted
here. However, literature clearly states that both CSE and
LICM are especially beneficial when applied to addressing
code. Since addressing code is generally not written

explicitly by human
programmers but is
generated automati-
cally by a compiler,
the programmer is
often unaware of
the overhead due to
memory accesses.
The DTSE frame-
work [4] of source
code optimizations
aims at the opti-
mized exploitation
of memory hierar-

Glob. Data Flow /
Loop Transform.

Data Reuse

Storage Cycle
Budget Distr.

Memory Allocation
& Assignment

Memory
Data Layout

Optimized
ANSI-C Spec.

ANSI-C
Specification

Task- / Data
Parallelism

Figure 3: DTSE stages causing
Control & Addressing Overhead

chies and thus has the effect of making addressing code
explicit in a program.

Several individual steps of DTSE are responsible for
the generation of complex control flow and addressing code
(see Figure 3). Duringsignal substitution, dependencies on
multi-dimensional arrays are removed and redundant array
accesses are eliminated. Resolving these data dependencies
requires the insertion ofif-statements depending on the
loops’ index variables so as to access the appropriate
memory locations at every point in time. The main idea of
data reuse exploration[22] is to insert copies of the most
frequently accessed parts of arrays in order to improve
temporal locality. This also leads to a degraded control
flow due to the insertion ofif-statements so as to select all
relevant non-contiguous parts of an array that will be held
in a copy.

In-place mapping[9] aims at reusing physical memory
by mapping different array elements that are not alive at the
same time to the same memory location. This optimization
requires the generation of complex addressing code reflect-
ing the mapping of data elements to positions within an ar-
ray. The effect of these parts of the DTSE methodology on
a source code taken from [2] is illustrated in Figure 4.

Since many different data elements are stored at the same

2

addresses after in-place mapping, the same kind of address
computations is performed several times at various loca-
tions in a DTSE optimized code. This is already acknowl-
edged by the address optimization (ADOPT) phase. Dur-
ing regularity improvement[13], given address expressions
A = {a1, . . . ,an} are transformed toA′ = {a′1, . . . ,a

′
n}. Ev-

ery expressiona′i computes the same value asai , but A′ is
generated such that a maximal reuse of computations using
CSEs is achieved. As a consequence, these algebraic trans-
formations open up opportunities for CSE as stated in [11].
For the ADOPT transformations, experiments involving the
manual application of a CSE combined with conventional
LICM are reported. It is the contribution of this paper that
a formal problem definition for ACH is provided for the
first time in conjunction with suitable polyhedral algorithms
considering control flow issues.

Polyhedral models are frequently used in order to rep-
resent memory accesses or iteration spaces of loop nests.
An approach for simultaneous generation of optimized data
layouts and temporal locality improvement is presented
in [16]. In this article, geometric models and algorithms
are used to minimize TLB misses. Loop nest splitting as
presented in [7, 8] uses polyhedral models in order to rep-
resentif-statements nested in loops. A complex analysis
is performed in order to detect ranges of iterations of the
loops such that allif-statements are satisfied. Using these
iterations ranges, a loop nest is split in order to minimize
if-statement executions.

Partial Redundancy Elimination (PRE)[12, 10, 3] moves
conditionally executed expressions outside their conditional
scopes to enable the elimination of partial redundancies
along frequently executed paths in a program. The most
important disadvantage of all PRE approaches is the lack
of a detailed analysis of the control flow. PRE is unable to
determine exactly when given conditions evaluate to true or
false. Instead, PRE bases on profiling techniques in order
to determine the execution frequencies of paths within an
application.

Since PRE does not definitely know whether it is safe to
move an expression out of a conditional scope, it must in-
sert copies of an expression in all less frequently executed
paths. In contrast, the ACH techniques presented in this pa-
per rely on a analytical model of the control flow so that
ACH is able to guarantee that it is safe to move an expres-
sion out of a conditional scope or not. Hence, ACH does
not need to insert extra copies of an expression, leading to
significant code size reductions as shown in the results sec-
tion of this paper. Another disadvantage of PRE is the fact
that it can only be applied to certain expressions not caus-
ing side-effects. Finally the speed-ups after PRE [3] varying
between 0.33% and 4.16% are very small compared to the
gains achieved by ACH. It can be concluded that ACH and
PRE are complementary techniques.

3. Control Flow Analysis for ACH

As can be seen from the example given in Section 1, the
conventional application of CSE and LICM can lead to an
increased number of executions of an expression. The goal
of advanced code hoisting (ACH) presented in this paper
is to avoid such situations by only moving code from inner
loops to outer ones as long as this leads to a reduced number
of executions of the code. More precisely,common subex-
pressions (CSEs)are considered as candidates for ACH:

Definition 1 An occurrence of an expression in a program
is a common subexpression if there exists another occur-
rence of the same expression whose evaluation always pre-
cedes this one in execution order and if the operands of
the expression remain unchanged between the two evalu-
ations. [17]

ACH performs its optimization in a three-step approach:

1. Common subexpressions present in a source code are
detected. For all occurrences of a CSE, their total num-
ber of executions (also calledexecution frequency) is
computed.

2. For every CSE detected in step 1, the outermost loop
which can legally contain it is identified. The execu-
tion frequency of this loop is also computed.

3. If the execution frequency computed in step 2 is
smaller than that of step 1, all occurrences of a CSE
are replaced by a new local variable storing the value
of the CSE.

The key idea of
ACH is the com-
parison of execution
frequencies during
step 3 of the optimiza-
tion. For the GSM
codebook search,
only the motion of
CSEs i*(i-1)/2

and j*(j-1)/2 leads
to reduced execution
frequencies. Hence,
only these expressions
are eliminated and
hoisted. In contrast,
l code -1-i is not
changed at all. The

for (j=0; j< l code ; j++) {
int ach 1 = j*(j-1)/2;

for (i=0; i< l code ; i++) {
int ach 2 = i*(i-1)/2;

if (i<= c1)
if (i== c1)

rdm = h2[l code -1-i];
else rdm = rr[ach 2];

else rdm = rr[ach 1];
...mul(rdm, ...);

if (i<= c2)
if (i== c2)

rdm = h2[l code -1-i];
else rdm = rr[ach 1];

else rdm = rr[ach 2];
...mul(rdm, ...); }}

Figure 5: GSM Code after
Advanced Code Hoisting

source code resulting from ACH is shown in Figure 5.

Since the details of the conventional CSE and LICM op-
timizations are well-known and can be found in literature
on compiler design [17], large parts of the first two steps
of the ACH optimization approach are not explained here.

3

We thus present the polyhedral model required for comput-
ing the execution frequencies of expressions during ACH in
this section.

3.1. Supported Model of Control Flow

The code examples given in Section 1 show how control
flow issues, namely loops andif-statements, influence the
execution frequency of an expression. In order to compute
execution frequencies, it is thus necessary to formally de-
fine the model of control flow supported by advanced code
hoisting. For this purpose, definition 2 first specifies which
kinds of loops are considered:

Definition 2 A for-loop Ll must fulfill the following re-
quirements:

1. The range of the index variable il of Ll always lies be-
tween the loop’s lower and upper bounds lbl and ubl
resp.: lbl ≤ il ≤ ubl (il ∈ Z).

2. If Ll is nested in otherfor-loops L1, . . . ,Ll−1, its
bounds are affine expressions of the surrounding in-
dex variables i1, . . . , il−1. Hence, il iterates between

lbl =
l−1
∑
j=1

(c′j ∗ i j)+c′ ≤ il ≤
l−1
∑
j=1

(c′′j ∗ i j)+c′′ = ubl for

constants c′j ,c′,c′′j ,c′′ ∈ Z.

3. After every iteration of Ll , il is incremented by a con-
stant integer stride sl ∈ Z with sl 6= 0.

Definition 2 is mainly based on the fact that advanced
code hoisting uses a polytope model representing the con-
trol flow. Since polytopes are represented by linear inequa-
tions, the loop bounds are required to be affine expressions.
An outermost loopL1 is not not surrounded by any other
loop so that definition 2.2 implicitly requireslb1 andub1 to
be constant. This way, it is ensured that the loop’s iterations
are not data dependent and that they are fully analyzable
at compile time. Definition 3 determines the shape ofif-
statements:

Definition 3 Let L1, . . . ,Ll denote a nest offor-loops com-
plying with definition 2 which surrounds anif -statement.

1. An if -statement has the formatif(C1 ⊕C2 ⊕ . . .) . . .
else . . . where Cx are affine loop-variant condi-
tions that are combined with logical operators⊕ ∈
{&&,|| }.

2. Loop-variant conditions Cx are affine expressions of
the index variables i1, . . . , il of the surrounding loops.
For constants cj ,c ∈ Z, Cx can be written as Cx =

l
∑
j=1

(cj ∗ i j) ≥ c.

The choice of the logicalAND andORoperators in def-
inition 3.1 is not a limitation since de Morgan’s rules al-
low to model all boolean combinations of affine condi-
tions this way. For example, theif-statementif(!(C1 &&

C2)) is equivalent toif(! C1 || ! C2) . The negation! Cx

of a single condition can be modeled as follows:! Cx =

!
(l

∑
j=1

(cj ∗ i j) ≥ c
)

=
l
∑
j=1

(cj ∗ i j) < c =
l
∑
j=1

(-cj ∗ i j) ≥ c+ 1.

As can be seen, all situations are captured by definition 3.
An ex-

pressionexpr
being an
occurrence
of a CSE
can now be
arbitrarily
enclosed by
control flow
constructs
according to
definitions 2

for (i1=c1; i1 ≤ c2; i1+=s1)
if (C1,1⊕C1,2⊕ . . .)
. . .

if (Cm,1⊕Cm,2⊕ . . .)
for (i2=lb2; i2 ≤ ub2; i2+=s2)

if (Cm+1,1⊕Cm+1,2⊕ . . .)
. . .

if (Cm+n,1⊕Cm+n,2⊕ . . .)
for (iN=lbN; iN ≤ ubN; iN+=sN)

if (Cm+n+1,1⊕Cm+n+1,2⊕ . . .)
. . .

if (Cm+n+o,1⊕Cm+n+o,2⊕ . . .)
expr;

Figure 6. Structure of Control Flow

and 3. An example source code structure is depicted in
Figure 6. As can be seen,if-statements are allowed to be
nested infor-loops or in otherif-statements. Within each
for-loops, an arbitrary number ofif-statements is allowed
to occur. This is denoted by the valuesm, n and o in
Figure 6. Since each loop may contain a different number
of if-statements, three valuesm, n ando are shown in this
figure. If e. g. thei1-loop does not contain anyif-statement,
m is assumed to be 0.

Whenever code is executed conditionally by virtue of an
if-statement, it does not make a difference whether this code
is located in itsthen- or else-part since both cases are treated
by the techniques presented in the following. Hence, all de-
tailed information aboutthen- or else-parts are omitted in
Figure 6 for the sake of simplicity. This structure of con-
trol flow supported by advanced code hoisting is formally
captured by the following definition:

Definition 4 Let Λ = {L1, . . . ,LN} be a nest offor-loops
according to definition 2 andϒ = {IF1, . . . , IFO} be a set of
if -statements in accordance with definition 3. All loops and
if -statements surround an expression expr.

A sequenceΓ = (γ1, . . . ,γM,γM+1) is said to be a nest of
control flow structures supported by advanced code hoisting
if

1. the first element ofΓ is the outermost loop:γ1 = L1,

2. the last element ofΓ is the expression whose execution
frequency is to be determined:γM+1 = expr,

3. γm either is afor-loop ofΛ or an if -statement ofϒ for
2≤ m≤ M, and

4

4. anif -statementγm ∈ ϒ only depends on the index vari-
ables il of surrounding loops Ll ∈ {γ1, . . . ,γm−1}∩Λ.

For an if -statementγm ∈ Γ, TPγm denotes itsthen-part and
EPγm its else-part, respectively.

3.2. Polyhedral Representation
In order to compute how many times an expressionexpr

is executed under consideration of the code structure shown
in Figure 6, a polytopePΓ is generated iteratively during a
first phase.PΓ is built such that it reflects the control flow
given by the nestedfor-loops andif-statements. The con-
straints ofPΓ accurately model all loop bounds and con-
ditions of if-statements as will be shown in the following.
Polytopes are defined as follows:

Definition 5

1. P= {x∈ Z
N | Ax= a,Bx≥ b} is called a polyhedron

for A,B∈ Z
m×N, a,b∈ Z

m and m∈ N.

2. A polyhedron P is called polytope if|P| < ∞

Since the only variables having influence on the control
flow shown in Figure 6 are the index variables of the loops
Λ = {L1, . . . ,LN}, PΓ is basically a subset ofZN:

Definition 6 Let Γ = (γ1, . . . ,γM,γM+1) be a nest of control
flow structures according to definition 4. The polytope PΓ

modelingΓ is defined by PΓ = (
T

γm∈Λ
PFOR

m) ∩ (
T

γm∈ϒ
PIF

m)

As can be seen from the following definitions, intersec-
tion and union operators for polytopes are used in order
to constructPFOR

m and PIF
m . Unfortunately, polytopes are

not closed under the union operator. Instead, we use finite
unions of polyhedra as proposed in [20] for which the union
operator is closed. Hence,PΓ formally is not a polytope, but
a finite union of polytopes. For the sake of simplicity, we
keep on using the notion of polytopes instead of their finite
unions.

In order to constructPΓ, polytopes associated with the
individual elementsγm of Γ need to be intersected. Depend-
ing on whetherγm is a for-loop or anif-statement,PFOR

m or
PIF

m has to be taken. After its construction,PΓ contains ex-
actly all those values of the index variablesi1, . . . , iN of Λ
leading to the execution of expressionγM+1. For a given
loopγm ∈ Λ, the following polyhedronPFOR

m is generated:

Definition 7 Let Γ = (γ1, . . . ,γM,γM+1) be a nest of control
flow structures withΛ denoting its nested loops.

For a loop γm ∈ Λ, a polyhedron PFOR
m is created using

the following constraints:

1. im ≥
m−1
∑
j=1

(c′j ∗ i j)+c′ for lbm

2. im ≤
m−1
∑
j=1

(c′′j ∗ i j)+c′′ for ubm

3. im =

{ m−1
∑
j=1

(c′j ∗ i j)+c′+(i′m∗ sm) if sm > 1,

m−1
∑
j=1

(c′′j ∗ i j)+c′′+(i′m∗ sm) if sm < −1

Obviously, the constraints of definition 7.1 and 7.2 en-
sure thatγm only contains points within the loop boundslbm

andubm. im can take every integer value betweenlbm and
ubm so that a loop with stride 1 or−1 is modeled. For loops
with a stridesm other than 1 or−1, it is necessary to add a
constraint restrictingim to only those integer values between
lbm andubm that can be reached usingsm. For sm > 1, the
constraintim = lbm+(i′m∗ sm) is added toPFOR

m . Here,i′m
is an auxiliary integer variable for loopγm. This constraint
ensures thatim can take any value being a multiple of stride
sm which is added to the lower boundlbm. Starting with
lbm itself, only everysm-th integer value is assigned toim
(analogously forsm < −1).

EXAMPLE 1

The application of definition 7 to the loopfor (i=3;
i<19; i+=4) leads to the polytope

PFOR
i = { i ∈ Z | (i≥ 3) ∧ (i≤ 18) ∧ (i = 3+(i′ ∗4)) }

i is only allowed to take those values which are a multiple of 4
added to the lower bound of 3, and which lie between 3 and 18.
By means of this example, it can be seen that constraints fori ′
are not necessary.i ′ is unable to hold a negative value since
the third constraint would lead to the situation thati is as-
signed a value resulting from the addition of a negative number
to the lower bound. This violates the first constraint ensuring
that i is greater than or equal to the lower loop bound. On the
other hand,i ′ can not be greater than 3 since this would result
in the assignment of a value greater than or equal to 19 toi
violating the second constrainti≤ 18.

In their combination, the constraints of PFOR
i ensure thati

can only take the values 3, 7, 11 and 15 which represents ex-
actly the iterations of the abovefor-loop. Assuming that the
stride of the above loop is changed to a negative valuefor
(j=18; j>=3; j-=4) the associated polytope PFOR

j dif-

fers from PFOR
i only with regard to the third constraint:

PFOR
j = { j ∈ Z | (j≥ 3) ∧ (j≤ 18) ∧ (j = 18+(j′ ∗ -4)) }

Here also, PFOR
j only consists of those values assigned toj by

the loop, namely 18, 14, 10 and 6.

Theorem 1 For a given nestΓ of control flow structures,
let γm∈ Λ be afor-loop in compliance with definition 2. Let
PFOR

m be the corresponding polyhedron according to defini-
tion 7.

5

PFOR
m contains exactly those values of the index variable

im for whichγm+1 is executed.

Using complete induction, theorem 1 can be proven. Due
to the lack of space, the proof – as well as the ones for the
following theorems – is not given in this paper. Instead,
they can be found in [6]. For a givenif-statementγm ∈ ϒ,
the following polytopePIF

m is generated:

Definition 8 Let Γ = (γ1, . . . ,γM,γM+1) be a nest of control
flow structures composed of a loop nestΛ and a set ofif -
statementsϒ.

For an if -statementγm = (C1 ⊕C2 ⊕ . . .⊕Cn) ∈ ϒ sur-
rounded by loops L1, . . . ,Ll , π denotes the permutation of
{1, . . . ,n} representing the natural execution order of the
conditions Cx, i. e. the right order to evaluate all Cx which
is defined by the precedence rules of the the logical opera-
tors (&&, ||) and by possible brackets.

1. For an affine condition Cx =
l
∑
j=1

(cj ∗ i j) ≥ c of γm, the

following polyhedra Px andPx are required:

Px = { (i1, . . . , il) ∈ Z
l | c1∗ i1+ . . . +cl ∗ il ≥ c }

Px = { (i1, . . . , il) ∈ Z
l | -c1 ∗ i1- . . . -cl ∗ il ≥ -c+1 }

2. In order to represent the first condition Cπ(1) of γm, the
polyhedron Px is used if the next elementγm+1 of Γ
is located in thethen-part of γm (Px for theelse-part,

respectively): PIFm,1 =

{
Pπ(1) for γm+1 ∈ TPγm

Pπ(1) for γm+1 ∈ EPγm

3. For the remaining conditions Cπ(x) (2 ≤ x ≤ n), the
corresponding polytope PIFm,x on the one hand depends
on the logical operator used to combine Cπ(x) with
Cπ(x−1). On the other hand, the position ofγm+1 in
thethen- or else-part of γm has to be considered, too:

PIF
m,x =




PIF
m,x−1∩Pπ(x) if γm+1 ∈ TPγm, Cπ(x−1)&&Cπ(x)

PIF
m,x−1∪Pπ(x) if γm+1 ∈ TPγm, Cπ(x−1)|| Cπ(x)

PIF
m,x−1∪Pπ(x) if γm+1 ∈ EPγm, Cπ(x−1)&&Cπ(x)

PIF
m,x−1∩Pπ(x) if γm+1 ∈ EPγm, Cπ(x−1)|| Cπ(x)

4. The polytope PIFm representing the entireif -statement
γm is defined as PIFm = PIF

m,n

As can be seen from definition 8,PIF
m is generated itera-

tively. In order to buildPIF
m , the polyhedral representation

of every conditionCx is required (cf. definition 8.1). For
every condition ofγm, the polyhedraPx andPx representing
Cx and its inverseCx are needed.

Definition 8.2 shows thatPIF
m,1 is equal to the polytope

representing the first condition ofγm according to the execu-
tion orderπ. Here, the position of the next elementγm+1 ∈Γ
in relation to theif-statementγm has to be considered. If

γm+1 is located in thethen-part ofγm, it is executed only if
γm is satisfied so thatPπ(1) has to be taken (Pπ(1) for γm+1 in
theelse-part, resp.).

After this, all remaining conditionsCx of γm are exam-
ined using the ordering given byπ. For Cx, the polytope
PIF

m,x-1 generated so far is connected with the appropriate
polytope representingCx. In analogy to the previous para-
graph,Pπ(x) is used ifγm+1 is located in thethen-part ofγm

(first two cases of definition 8.3), orPπ(x) for γm+1 ∈ EPγm

(last two cases), resp.
If Pπ(x) is taken, the intersection of polyhedra is applied

whenever conditionsCπ(x) andCπ(x-1) are connected using
the logicalAND. For the logicalOR, the union of polyhedra
is used. Forγm+1 being located in theelse-part of γm, the
negation of the conditions combined with de Morgan’s rules
has the effect that the union is used for the logicalANDand
vice versa.

EXAMPLE 2

Let C1 denote the condition4*i + j >= 12 and C2
represent the conditioni + 5*j <= 28 for some index
variablesi and j . The application of definition 8.1 to C1 leads
to the polyhedra

P1 = { (i , j) ∈ Z
2 | 4∗ i + j ≥ 12 }

P1 = { (i , j) ∈ Z
2 | -4∗ i − j ≥ -11}

where P1 obviously represents C1 and P1 denotes the negated
conditionC1. Analogously, the following polyhedra are defined
for condition C2:

P2 = { (i , j) ∈ Z
2 | -i −5∗ j ≥ -28}

P2 = { (i , j) ∈ Z
2 | i +5∗ j ≥ 29 }

When assuming theif -statement if (C1 && C2) expr;
definition 8 leads to the generation of

PIF = P1 ∩ P2

= { (i , j) ∈ Z
2 | (4∗ i + j ≥ 12)∧

(-i −5∗ j ≥ -28) }
which is the straightforward case since the polyhedra repre-
senting the conditions simply need to be intersected in order
to model the logicalAND. Similarly, the union operator has
to be used forif (C1 || C2) expr; since in this case, all
values ofi and j have to be captured by PIF which belong
either to P1 or P2:

PIF = P1 ∪ P2

= { (i , j) ∈ Z
2 | 4∗ i + j ≥ 12} ∪

{ (i , j) ∈ Z
2 | -i −5∗ j ≥ -28 }

Obviously, the if -statementif (C1 && C2) ... else
expr; is equivalent to if !(C1 && C2) expr; else
... De Morgan’s rule applied to the conditions of theif -
statement thus leads toif (! C1 || ! C2) expr; else
...

As a consequence, it is obvious that PIF consists of the negated
polyhedra P1 and P2. Furthermore, the use of the union

6

0%

20%

40%

60%

80%

100%

120%

140%

Pipe Stalls

L1 I-F
etch

L1 I-M
iss

L1 D-Fetch

L1 D-M
iss

L2 Requests

L2 Miss

Pipe Stalls

L1 I-F
etch

L1 I-M
iss

L1 D-Fetch

L1 D-M
iss

L2 Requests

L2 Miss

L1 I-F
etch

L1 I-M
iss

L1 D-Fetch

L1 D-M
iss

L2 Requests

L2 Miss

CAVITY QSDPCM

MIPS R10000Intel Pentium III Sun UltraSPARC III

Figure 7. Relative Cache and Pipeline Behavior after Advanced Code Hoisting

operator for polyhedra in this situation can be explained with
the switching of the logical operator fromAND to OR due
to de Morgan’s rule. All in all, the following polyhedron
corresponds to the aboveif -statement:

PIF = P1 ∪ P2

= { (i , j) ∈ Z
2 | -4∗ i − j ≥ -11 } ∪

{ (i , j) ∈ Z
2 | i +5∗ j ≥ 29 }

Analogously, theif -statementif (C1 || C2) ... else
expr; is represented correctly by

PIF = P1 ∩ P2

= { (i , j) ∈ Z
2 | (-4∗ i − j ≥ -11)∧

(i +5∗ j ≥ 29) }

Theorem 2 For a given nestΓ of control flow structures, let
γm = (C1 ⊕ . . .⊕Cn) ∈ ϒ be anif -statement in compliance
with definition 3. Let PIFm be the corresponding polyhedron
according to definition 8.

PIF
m contains exactly those values of the index variables

of Λ for whichγm+1 is executed.

Using theorems 1 and 2 expressing the correctness of the
polytopes forfor-loops andif-statements, it can be proven
that the polytopePΓ (cf. definition 6) reflectsΓ accurately.

Theorem 3 Let Γ = (γ1, . . . ,γM,γM+1) be a sequence of
control flow structures composed of a loop nestΛ and a set
of if -statementsϒ (see definition 4). Furthermore, let PΓ be
the polytope associated toΓ according to definition 6.

PΓ contains exactly those values of the index variables
of Λ for which the expression expr= γM+1 is executed.

Theorem 3 is helpful for the computation of the execu-
tion frequency of an expressionexprsince it states thatPΓ

contains exactly one pointi ∈ Z
N for every timeexpr is ex-

ecuted. As a consequence, the execution frequency ofexpr
is equal to the size ofPΓ:

Corollary 1 Let Γ = (γ1, . . . ,γM,γM+1) be a sequence of
control flow structures complying with definition 4 and PΓ

be the corresponding polytope according to definition 6.
The execution frequency of the expression expr= γM+1

is equal to the size of PΓ: #expr= |PΓ|
The computation of the number of points included in

a polytope is#P-complete [14] in terms of its number of
linear (in-) equations and their dimensions. In order to de-
termine the execution frequency of an expressionexpr, the
techniques described in [5] for the computation of a poly-
tope’s size are applied toPΓ. A detailed description of these
techniques is omitted here since it is beyond the scope of
this paper. In short, the parametric vertices are computed
based on the linear constraints ofPΓ in a first step. Us-
ing these vertices, the so called Ehrhart polynomial is deter-
mined which is a parametric representation of the number of
integer points ofPΓ. For more details, the interested reader
is referred to [5].

Due to the#P-completeness of the techniques mentioned
above, the computation of the execution frequency of an
expressionexpr does not have a polynomial complexity.
Instead, the worst-case complexity of the techniques de-
scribed in this section is exponential. However, as will be
shown in the following Section 4, the use of this methodol-
ogy for real-life applications leads to feasibly short runtimes
of only a few CPU seconds.

4. Benchmarking Results
The techniques presented in the previous section are

fully automated using the SUIF intermediate format [21]
and the polyhedral library Polylib [15]. ACH is applied to
the source codes of two representative benchmarks having
passed the DTSE transformations (cf. Section 2). The CAV-
ITY benchmark is a medical tomography image proces-
sor [2], and the QSDPCM application [19] performs scene
adaptive coding. The efficiency of the polyhedral analysis
employed for ACH is apparent by virtue of the low runtimes
required for the optimization of these benchmarks. Using a
Pentium 4 based host machine (2.6 GHz), ACH applied to

7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Sun

Pentiu
m HP

MIPS

TriM
edia

TI C6x

ARM7 thmb

ARM7 arm

Average

CAVITY QSDPCM

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%

Sun

Pentiu
m HP

MIPS

TriM
edia

TI C6x

ARM7 thmb

ARM7 arm

Average

CAVITY (CSE) CAVITY (ACH) QSDPCM (CSE) QSDPCM (ACH)

Figure 8. a) Execution Times b) Runtime Comparison ACH / CSE

CAVITY requires only 0.44 CPU seconds. In the case of
QSDPCM, 29.9 seconds are necessary. For obtaining the
results presented in the following, the benchmarks are com-
piled and executed before and after ACH. Compilers are al-
ways invoked with all optimizations enabled so that highly
optimized code is generated. Table 1 lists the compilers
used for machine code generation for all processors consid-
ered in this paper.

Processor Compiler Version

Sun UltraSPARC III Sun WorkShop 9.0
Intel Pentium III GNU gcc 2.95.3

HP-PA 9000 HP Softbench A.01.18
MIPS R10000 MIPSpro 7.2.1

TriMedia-1000 Philips SDE V5.7.1
TI TMS320C62 TI CCS 3.01

ARM7TDMI thumb ARM SDT 2.50
ARM7TDMI arm ARM SDT 2.50

Table 1. Compilers used for Code Generation

4.1. Cache and Pipeline Behavior
Figure 7 shows the effects of advanced code hoisting on

the caches and pipelines of an Intel Pentium III, Sun Ultra-
SPARC III and a MIPS R10000 processor. To obtain these
results, the benchmarks were compiled and executed on the
processors while monitoring performance-measuring coun-
ters available in the CPU hardware. This way, reliable val-
ues can be generated without using erroneous cache simu-
lation software. The figure shows the performance values
for the optimized benchmarks as a percentage of the unop-
timized versions denoted as 100%.

As can be seen from this figure, ACH is very benefi-
cial for the Pentium. The increased reuse of computed re-
sults leads to improved behavior of pipeline and all caches.
The measured reductions of instruction fetches (L1 I-Fetch)
by 32.8%–49.1% implies reduced pipeline stalls (24.7%–
42.5% improvement) and significantly less I-cache misses
(28.5%–49.1% reduction). These factors imply an im-
proved behavior of both the L1 D-cache and the unified L2
cache as can be seen from Figure 7. For these caches, im-
provements in the order of magnitude of 22%–38.5% were
measured.

The results for the Sun CPU also show a significantly im-
proved locality of instruction fetches after ACH. Columns
L1 I-Fetch indicate reductions of instruction executions by
22.7%–30.3%. As a consequence, the amount of pipeline
stalls decreases by 10.6%–48.9%. For QSDPCM, I-cache
misses remain constant after the optimization, but an im-
provement of 30.7% was achieved for CAVITY. ColumnL1
D-Fetch shows for CAVITY that ACH increases the num-
ber of data fetches by 47.9%. This is due to the insertion
of spill code by the Sun compiler for the 27 new local vari-
ables holding CSEs after the optimization. In contrast, ACH
leads to reductions of D-fetches by 28.4% for QSDPCM.
ColumnL1 D-Miss shows reductions of L1 D-cache misses
by 24.8% for CAVITY, whereas a growth by 20.7% was
measured for QSDPCM. Due to the worse data locality of
CAVITY, the amount of pipeline stalls increases by 55.6%.
Concerning the L2 cache, an increase of cache accesses by
30.6% for CAVITY was measured, whereas this parame-
ter remains unchanged for QSDPCM. L2 cache misses are
slightly reduced by 3.1%–4.8%.

Figure 7 shows that ACH applied to the benchmarks
leads to improvements for almost all caches of the MIPS
CPU. These improvements range from 13.6% (L1 D-fetch
for CAVITY) up to 48.6% (L2 Miss for QSDPCM). For
CAVITY, L2 cache misses increase by 17.7% which is the
only category where a degradation of performance was ob-
served.

4.2. Execution Times and Code Sizes
Figure 8 shows the impact of advanced code hoisting on

the runtimes of the benchmarks using a large set of differ-
ent processors. Amongst the three processors considered
in the previous section, runtimes were also measured for a
HP-9000, TriMedia TM-1000, TI C6x and an ARM7TDMI
processor, the latter both in 16-bit thumb- and 32-bit arm-
mode. Figure 8a) shows that all processors benefit from
ACH. For CAVITY, overall speed-ups ranging from 33.4%
(MIPS) up to 69.6% (ARM thumb) were measured. For QS-
DPCM, a maximum acceleration of 36.9% was observed
(TriMedia). In contrast, ACH only leads to a marginal
speed-up of 2.3% for the TI DSP. On average over all eight
processors, the source code optimization presented in this
paper leads to a high gains between 25.5%–52%.

As can be seen from this figure, ACH also leads to large

8

speed-ups for the Sun UltraSPARC processor even though
its L1 data cache is affected adversely by ACH (see previous
section). The actual runtime savings reported here are due
to the fact that ACH eliminated dozens of modulo computa-
tions and integer divisions. These operations are extremely
costly for the Sun CPU so that the elimination of a mod-
ulo / division still leads to speed-ups even if the new local
variable needs to be spilled to and from the main memory.

In order to highlight the benefits achieved by the compu-
tation of execution frequencies during ACH, a direct com-
parison of runtimes after a conventional CSE applied when-
ever possible and after ACH is depicted in Figure 8b). This
diagram clearly shows that the application of a CSE to the
benchmarks’ source codes does not have a significant im-
pact on the runtimes. In some situations, CSE leads to
speed-ups of up to 11.3% (CAVITY / Sun), whereas run-
time degradations of up to 7.3% (CAVITY / TriMedia) were
measured in other situations. On average for all considered
CPUs, a maximum improvement of 2.8% was observed af-
ter CSE. Figure 8b) leads to the conclusion that the im-
provements achieved by ACH clearly originate from the
novel steering criterion based on the global computation
of execution frequencies which is used to control CSE and
LICM.

In addition to the runtime savings, ACH also leads to
significant code size reductions (cf. Figure 9). This is due
to the fact that
the elimination
and reuse of
frequently used
CSEs explicitly
removes code
from an applica-
tion. Implicitly,
some code can
be added by the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Sun

Pentiu
m HP

MIPS

TriM
edia

TI C6x

ARM7 thmb

ARM7 arm

Average

CAVITY QSDPCM

Figure 9. Code Sizes after ACH

compiler since ACH augments register pressure and might
lead to the generation of spill code. As can be seen from
the figure, the average code size reductions after ACH for
all processors amount to 10.5%–20%.

4.3. Energy Consumption
Figure 10

shows the ef-
fects of ACH
on memory
accesses and
energy con-
sumption using
an instruction-
level energy

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

Instr Read

Data
Read

Data
Write

Mem
Accesses

Mem
Energ

y

CPU
Energ

y

Total Energ
y

CAVITY QSDPCM

Figure 10. Energy Consumption
model [18] for the ARM7 core considering bit-toggles and
offchip-memories and having an accuracy of 1.7%. The
first four columns of Figure 10 depict the relative number

of various kinds of memory accesses, whereas the last
three columns show the changes in energy consumption.
As usual, the 100% base line denotes the values of the
unoptimized benchmarks.

ColumnInstr Read of Figure 10 shows that ACH is able
to reduce the number of instructions fetched by the ARM7
significantly from 33.1% up to 78.5%. The simultaneous
elimination and hoisting of code performed by ACH re-
duces the number of read accesses to the data memory
(Data Read) by 33.3%–35.2%. The large reductions of
writing memory accesses by 26.4%–59.9% – cf. column
Data Write – originate from a better register allocation af-
ter ACH. Overall, a diminution of total memory accesses
between 32.8%–76.4% was achieved.

The measured savings in terms of energy consumption of
both the memory and the ARM7 core are of the same order
of magnitude as the total reductions of memory accesses.
As can be seen, the energy consumption of both compo-
nents drops between 33.4% and 75.1%. These factors lead
to total energy savings of 33.4%–74.5% for the combina-
tion of memory and processor (see columnTotal Energy of
Figure 10).

5. Summary and Conclusions
This paper presented a new source code optimization

called advanced code hoisting (ACH). This technique is an
elaborate combination of already known compiler optimiza-
tions (CSE and LICM) with a formal mathematical criterion
steering the application of the mentioned optimizations.

It turned out that the elimination of CSEs might not be
beneficial if the control flow surrounding an expression is
not considered. As a consequence, ACH is based on a for-
mal model in order to compute the execution frequencies
of a CSE. The control flow given by nestedfor-loops and
if-statements is represented by a polytope model which is
then used to compute how many times a CSE surrounded
by all these loops andif-statements is executed.

The results provided in this paper demonstrate that this
new optimization is highly beneficial. First, significant
speed-ups of the studied benchmark applications by 25.5%–
52% were achieved. These accelerations are mainly due to
the reduced number of instruction executions because of the
high reuse of already computed results. Second, the fact that
complex expressions are eliminated has the effect that the
code sizes of the benchmarks decrease by 10.5%–20% after
ACH. Third, considerable energy savings by 33.4%–74.5%
were measured which are due to the reduced amounts of
main memory accesses for fetching instructions and data.

Classical literature on compiler construction suggests
not to perform a CSE without considering compiler and pro-
cessor internal information about register pressure and the
size of the register file since this may degrade a program’s
performance under particular circumstances. In the context
of ACH, an obvious runtime degradation was not observed

9

for any processor. In every case, large speed-ups and energy
savings were measured, justifying the approach presented in
this paper which only focuses on a program’s structure in-
stead of actual processor architectures. However, for one
actual processor, ACH causes a significant degradation of
D-cache performance. This observation leads to the con-
clusion that a more sophisticated mechanism taking register
pressure and spill code generation into account can proba-
bly achieve even higher gains due to a better D-cache be-
havior. This is part of our future work.

References
[1] D. F. Bacon, S. L. Graham et al. Compiler Transformations for

High-Performance Computing.ACM Computing Surv., 26(4), 1994.
[2] M. Bister, Y. Taeymans et al. Automatic Segmentation of Cardiac

MR Images.IEEE Journ. on Computers in Cardiology, 1989.
[3] Q. Cai and J. Xue. Optimal and Efficient Speculation-Based Partial

Redundancy Elimination. InProc. of CGO, San Francisco, 2003.
[4] F. Catthoor, K. Danckaert et al.Data Access and Storage Man-

agement for embedded programmable Processors. Kluwer, Boston,
2002.

[5] P. Clauss and V. Loechner. Parametric Analysis of polyhedral Iter-
ation Spaces.Journ. of VLSI Signal Processing, 19(2), 1998.

[6] H. Falk and P. Marwedel.Source Code Optimization Techniques for
Data Flow Dominated Embedded Software. Kluwer, Boston, 2004.

[7] H. Falk, P. Marwedel and F. Catthoor.Control Flow driven Split-
ting of Loop Nests at the Source Code Level, volume Embedded
Software for SOC. Kluwer, Boston, 2003.

[8] H. Falk and M. Verma. Combined Data Partitioning and Loop
Nest Splitting for Energy Consumption Minimization. InProc. of
SCOPES, Amsterdam, 2004.

[9] E. d. Greef, F. Catthoor et al. Memory Size Reduction through
Storage Order Optimization for embedded parallel Multimedia Ap-
plications.Parallel Computing, 23(12), 1997.

[10] R. Gupta, D. A. Berson et al. Path Profile Guided Partial Redun-
dancy Elimination Using Speculation. InProc. of ICCL, Chicago,
1998.

[11] S. Gupta, M. Miranda et al. Analysis of high-level Address Code
Transformations for programmable Processors. InProc. of DATE,
Paris, 2000.

[12] R. N. Horspool and H. C. Ho. Partial Redundancy Elimination
Driven by a Cost-Benefit Analysis. InProc. of ICCSSE, Herzliya,
1997.

[13] M. Janssen.Word-level Algebraic Optimisation Techniques for Ac-
celerator Data-Paths and custom Address Generators. PhD thesis,
Katholieke Universiteit Leuven, Leuven, Jan. 2000.

[14] V. Kaibel and M. E. Pfetsch.Some algorithmic Problems in Poly-
tope Theory, volume Algebra, Geometry and Software Systems.
Springer, Berlin, 2003.

[15] V. Loechner. PolyLib: A Library for manipulating parameterized
Polyhedra.http://icps.u-strasbg.fr/polylib/, 1999.

[16] V. Loechner, B. Meister et al. Precise Data Locality Optimization
of nested Loops.The Journal of Supercomputing, 21, 2002.

[17] S. S. Muchnick.Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, 1997.

[18] S. Steinke, M. Knauer et al. An accurate and fine grain instruction-
level energy model supporting software optimizations. InProc. of
PATMOS, Yverdon-Les-Bains, 2001.

[19] P. Strobach. A new technique in scene adaptive coding. InProc. of
EUSIPCO, Grenoble, 1988.

[20] D. K. Wilde. A Library for doing polyhedral Operations. Technical
Report 785, IRISA Rennes, France, Dec. 1993.

[21] R. Wilson, R. French et al. An Overview of the SUIF Compiler
System.http://suif.stanford.edu/suif/suif1, 1995.

[22] S. Wuytack, J.-P. Diguet et al. Formalized Methodology for Data
Reuse Exploration for Low-Power hierarchical Memory Mappings.
IEEE Trans. VLSI, 6(4), 1998.

10

