
Marwedel, WESE 2005

M

Abstract—In this paper, we propose to introduce a common
introductory course for embedded system education. The course
puts the different areas of embedded system design into
perspective and avoids an early over-specialization. Also, it
motivates the students for attending more advanced theoretical
courses. The content, the structure and the prerequisites of such a
course are outlined. The course requires a basic understanding of
computer hardware and software and can typically be taught in
the second or third year.

Index Terms—Embedded systems, education, introduction,
curriculum

I.INTRODUCTION

CCORDING to many forecasts, the importance of
embedded systems will be growing over the coming
years. It is obvious, that traditional education focusing

either mostly on hardware (as in many EE programs) or mostly
on software (as in many CS programs) will not be sufficient.
According to [1], there is a lack of vision and a lack of
maturity of the domain and many courses do not present a
sufficiently wide perspective. According to the same source,
the result is that industry has difficulty finding adequately
trained engineers, fully aware of design choices.
Consequently, new educational programs have to be designed
to provide graduates with the required knowledge and skills to
design embedded systems. It would be feasible to design a
special program for embedded system design. This was done,
for example, at ALARI (see www.alari.ch). However, due to
the limited resources at most universities and in order to avoid
an inflation of programs, we suggest to incorporate the
required education into existing EE and CS programs. This
allows the efficient use of resources and avoids over-
specialization of students. However, this leaves us with the
problem of identifying the areas to be covered in embedded
system education and also with the problem of properly
integrating embedded system education into existing curricula.
Mutual dependences have to be identified. This paper presents
answers to the above problems.

It is structured as follows: related work will be presented in
section II, and the proposed course will be described in section
III. In section IV, we will discuss our experience with the
course structure. Section V will provide a conclusion.

II.RELATED WORK

To a major extent, course structures are influenced by
available text books. Hence, currently available text books

Manuscript received July 30, 2005.
Peter Marwedel is with the University of Dortmund, 44221 Dortmund,

Germany; phone: +49 231 755 6111; fax: +49 231 755 6116; e-mail:
peter.marwedel@udo.edu.

(together with information about courses on the web) give an
impression on how embedded systems are currently taught.

Traditionally, text books on embedded system design have
focused on the very specific problem of interfacing computers
to physical environments and the programming of these
computers with interrupts and memory maps. There are a
significant number of such books [2]-[6].

However, this view of embedded systems is much too
restricted. The scope of embedded system design has recently
been described in a book by Sifakis et al. [7]. While this book
lists the content that should be covered in research, it does not
present approaches for how embedded system education can
be taken into account by universities.

Other text books that are available cover other specific areas
of embedded system design. For example, the book by Jantsch
[8] focuses on models of computation. A similar remark
applies to the text book by Vahid [9]. There, the focus is on
implementing finite state machines. The book by Wolf [10] is
used for many courses. However, a number of important topics
are not covered in the book. In general, covered areas are
certainly important, but courses based on those books fail to
provide a broad overview over issues in embedded system
design. A broader view is also requested in [1]. It is stated
clearly that “training takes place continuously during
professional life, and it is not easy to distinguish what should
be learned during primary education and during continuous
training. Yet, it seems that fundamental bases are really
difficult to acquire during continuous training if they haven’t
been initially learned, and we can think we must focus on
them.” The proposed course is consistent with this view and
can be seen a key element in the implementation of the
requirements. However, our approach aims at the
undergraduate level, whereas [1] tries to avoid making
proposals for already tightly packed undergraduate curricula.
Reference [1] also introduces the distinction between “a
deductive style of education, where students go from theory to
practice” and “a more inductive approach, which adopts the
reverse order.” Our approach is more of the deductive style,
but does include references to applications. A broad view of
embedded system design is also implemented in the Berkeley
approach to embedded system design [11]. The Berkeley
approach seems to be focussing more on the use of tools. Due
to the differences between the two approaches, some of the
tools used in the Berkeley course are left for more advanced
courses in our approach, the “Dortmund approach”.

III.OUTLINE OF THE PROPOSED COURSE

A.Content of the proposed course
The course proposed in this paper has been designed over a

period of almost ten years. During this period, material has

Towards laying common grounds
for embedded system design education

A

1

Peter Marwedel, Senior Member, IEEE

Marwedel, WESE 2005

been added to and deleted from the course. The selection of
the material for the current version of the course is based on an
analysis of presentations at conferences, reviewed papers,
discussions with industry and other personal talks. Overlaps
with existing courses (e.g. on control theory or digital signal
processing) have been removed.

The resulting scope of the course is the following:
1. Introduction (Definitions, scope, examples, common

properties);
2. Specification techniques: Models of computation,

communication methods, StateCharts, SDL, VHDL,
Petri nets, UML diagrams;

3. Embedded system hardware: hardware in the loop,
discretization, communication, processors, FPGAs,
memory, D/A-converters;

4. Scheduling, operating systems for embedded systems
and other standard software: standard real-time
scheduling algorithms, properties of RTOSes,
fundamentals of middleware;

5. Implementing embedded systems with
hardware/software codesign: high-level
transformations (loop transformations), array folding,
task concurrency management, hardware/software
partitioning, optimizations for power reduction,
specialized compiler techniques for embedded
systems, design flows;

6. Validation: simulation, types of models in formal
verification, introduction to issues in testing.

This course is designed for about 60 hours (at 45 mins) of
lectures and 30 hours of labs.

The order of the presentation is the order used above and is
consistent with the dependencies between design information
(see fig. 1).

Fig. 1: Design information flow

Application knowledge, hardware design and evaluation are
not covered in the course. Application knowledge can only be
taught in more specialized courses and only one or two
examples can be included in a curriculum. Teaching hardware
design is deferred: since many CS students will actually not be
involved in hardware design, it is taught in a more specialized
“EDA” course (see below). It would be nice to include
evaluation in the introductory course. However, we found it
rather difficult to select material that is applicable to a wide
range of situations. Reliability evaluation is a notable
exception, since standard techniques are known for that area.

The course is complemented by a text book [12] and slides
on a web site [13]. The web site also contains links to related
information and to courses referring to the text book.

Obviously, it is not feasible to cover all potential topics that
colleagues might want to teach in the suggested course.
Therefore, the structure of the course has been designed such
that “plug-in's” can be easily added. Such “plug-in's” provide
more detailed information which the presenters might want to
focus on. In fact, we have designed some plug-in's ourselves.
These include the following:

o Detailed description of UML diagrams;
o Computation of invariants of Petri nets;
o Proof of optimality of rate monotonic scheduling;
o D-algorithm for gate-level testing.

These plug-ins are available in “more in-depth” sections on
the slides.

A lab is an indispensable part of the course. Due to the
broad coverage of topics, the lab cannot and should not offer
hands-on experience to tools in all of the above six areas. We
propose to use a mixture of theoretical assignments and a
limited set of tools to be used. The following list includes
examples for each of the above areas:

1. Search for definitions, characterization of
embedded systems, implications of the definition
of reliability and maintainability;

2. Using tools for the hierarchical description of
finite state machines like StateMate or StateFlow
(hands-on experience), proofs concerning the
depth of SDL FIFO buffers (simple examples),
designing and showing properties of Petri nets,
working with UML diagrams;

3. Using LEGO® Mindstorm robots as an example of
hardware in the loop (hands-on experience);

4. Solving scheduling problems, simple proofs in
scheduling theory;

5. Generation of integer programming models for
scratch pad allocation, hardware/software
partitioning and dynamic voltage scaling, using the
SCE system on a chip (SoC) design environment
based on SpecC [14], experimenting with program
optimizations like loop tiling and loop unrolling;

6. Generation of examples of test cases, manual test
compression of test responses, writing self-test
programs for processors.

B.Prerequisites
The proposed course requires the students to have gained

experiences in the following areas (see fig. 2):

Fig. 2: Prerequisites and follow-up courses

o Basic programming skills and the knowledge of
fundamental algorithms like topological sorting.

2

Marwedel, WESE 2005

o A basic understanding of computer arithmetic,
computer structures and computer organization as
well as the implementation of higher level
languages by assembly programs. This requirement
can be met by attending a course based on the
introductory book by Hennessy and Patterson [15].
The fundamentals of finite state machines must be
known.

o Math education, including linear algebra and
probability theory may be required for the
discussion of certain more specialized material.
Integrals should be known as a result of high-
school education.

o A basic understanding of electronic circuits is
necessary for the section on embedded system
hardware. This includes the capability to
understand digital logic (especially CMOS logic),
Kirchhoff's laws and operational amplifiers. It is
assumed that physical terms such as currents,
voltages, power, energy, and electrical fields are
also known (typically, the level reached at good
high-schools is sufficient).

o Basic understanding of operating systems,
including memory maps, the use of interrupts,
system calls, real-time clocks and timers, mutual
exclusion and task synchronisation.

Obviously, the list of prerequisites is not very long.
Typically, the proposed course can be taught rather early in the
curriculum. For CS students, all prerequisites are available in
the fourth term at our University. Due to some other
constraints, the fifth term is the first term in which students can
actually enrol themselves into the course (and a large amount
of students do).

For computer engineering (CE) or information technology
(IT) students, all prerequisites should be available in the fourth
term as well.

For electrical engineering (EE) students, programming
skills, algorithm knowledge and knowledge about operating
systems may be missing. However, it would make sense to add
these courses for EE students who would like to specialize in
embedded systems.

C.Suggested follow-up courses
Due to the rather broad coverage of embedded systems in

the suggested course, it is recommended to extend the students
knowledge in more specialized courses. Such more advanced
courses could include the following topics (see also fig. 2):

o Control theory;
o Digital signal processing and wireless

communication;
o Machine vision;
o Real-time systems, advanced scheduling algorithms,

scheduling theory;
o Robotics;
o Courses on selected application areas (automotive,

telecom, consumer market, industrial control);
o A large application project;
o Presentations by the students on selected advanced

topics;

o Electronic design automation (EDA) and hardware
design, SystemC, using field programmable gate
arrays (FPGAs), hardware synthesis algorithms,
placement, routing;

o Formal verification of embedded systems,
equivalence checking, model checking, theorem
proving.

These courses should include hands-on experiences
wherever possible. It is suggested to include a major project in
the educational program. At Dortmund, such projects are
organized such that students have to work in teams of up to 12
students (so-called project groups). In a typical CS program,
only a certain percentage of the students will select an
embedded systems project. Those who do, benefit from the
described course. Skills resulting from such a project should
be comparable to those resulting from the corresponding
courses at Berkeley [11].

Obviously, some of these courses do already exist at many
universities. Preceding these courses by an embedded systems
course as outlined should improve the motivation of the
students and put the more specialized material into
perspective.

IV.EXPERIENCES

The proposed course has evolved during the past ten years.
During the last two years, the course has been taught from the
published textbook and slides. Two types of classes were
involved:

1. Each winter term, the course is taught in German to
about 100 students. While the majority of the students
are going for a diploma degree in computer science,
the course has also been opened for students going
for a diploma degree in information technology
offered by the department of electrical engineering
and information technology.

2. Each summer term, about 3/4 of the material is
covered in a shortened course that is given in English.
Students in this course are going for a master's degree
in automation and robotics, are guest students from
various other countries or are going for the same
degree as the students in the winter course, but would
like to improve their foreign language skills. This
course is typically attended by about 40 students.

Both courses include a lab, mid-terms and finals. Labs
comprise theoretical and practical work. Theoretical work
consists of solving assignments, e.g. on real-time scheduling.
Practical work involves programming Lego Mindstorm robots
and using hierarchical state diagram specification techniques.

A dominating observation for all the courses following the
structure outlined is the large motivation and enthusiasm with
which the courses were received. Students consistently
reported that the courses opened a new area for them.

While all courses followed the structure, no “plug-in's” were
available in the very first iteration. This resulted in requests for
some more in detailed coverage of certain areas. This is taken
into account by adding special “in-depth” sections to the
course and also to the slides. These sections cover, for
example, proofs for the optimality of rate-monotonic
scheduling. The introduction of these sections clearly
improved the quality of the course, as no such questions

3

Marwedel, WESE 2005

popped up in the second winter term and as they were
appreciated by colleagues. Future improvements will extend
this direction and will cover, for example, the mathematical
notions for reliability evaluation.

Furthermore, it was found that good slides offered by
colleagues could be easily integrated into our own set of slides
as the structure of the course was adequate.

Based on the experiences made so far, it was also decided to
spend additional effort on preparing a set of standard
assignments. Another experience concerns the overlap for CS
students: hierarchical state diagrams and UML are covered in
software engineering courses. Hence, too much emphasis on
these techniques has to be avoided.

The last iteration of the German course was complemented
by a follow-up course on electronic design automation (EDA).
About 40% of the students of the embedded systems courses
enrolled for the EDA course. The EDA course included a more
detailed coverage of SystemC, FPGA programming and EDA
algorithms (each about 1/3 of the course). The section on
FPGA programming brought the students in contact with
hardware circuits (in addition to the ones that are used in the
LEGO® mindstorms). This course included about 60 hours (at
45 minutes) of lectures and 30 hours of labs. During the
course, it was realized that the ES course had laid excellent
foundations for this more advanced course. A number of topics
could be discussed at a more detailed level, since the
fundamentals were already known. The deductive approach
turned out to work well in practice. Based on this experience,
it was decided to offer this sequence of courses on a regular
basis.

More advanced topics are typically also covered in seminars
(presentations by students). Each student has to attend a course
exclusively based on such presentations. For example, we have
offered such “seminar” courses on security in embedded
systems, and on reliability modelling in embedded systems.
Again, the broad knowledge provided in the described
embedded system course laid excellent foundations for the
presentations.

V.CONCLUSION

In the paper, we have proposed the structure of a standard
course on embedded systems that can be taught rather early in
a computer science, computer engineering or electrical
engineering curriculum. The course has been well-received by
a large number of students and the corresponding text book
has been picked-up by a number of departments. It is
suggested to introduce a course following the structure
outlined above into the CS, CE and EE education.

REFERENCES

[1] ARTIST network of excellence: Guidelines for a Graduate Curriculum
on Embedded Software and Systems, http://www.artist-embedded.org /
Education/Education.pdf, 2003

[2] Jack G. Ganssle: Programming Embedded Systems, Academic Press,
1992

[3] Stuart R. Ball: Embedded Microprocessor Systems – Real world
designs, Newnes, 1996

[4] Stuart R. Ball: Debugging Embedded Microprocessor Systems, Newnes,
1998

[5] Michael Barr: Programming Embedded Systems, O’Reilly, 1999

[6] Jack G. Ganssle: The Art of Designing Embedded Systems, Newnes,
2000

[7] Bruno Bouyssounouse and Joseph Sifakis: Embedded Systems Design:
The ARTIST Roadmap for Research and Development, Springer
Lecture Notes in Computer Science, Vol. 3436, 2005

[8] Axel Jantsch: Modeling Embedded Systems and SoCs: Concurrency and
Time in Models of Computation, Morgan Kaufman, 2003

[9] Frank Vahid: Embedded System Design, John Wiley & Sons, 2002
[10] Wayne Wolf: Computers as Components, Morgan Kaufman Publishers,

2001
[11] Alberto L. Sangiovanni-Vincentelli and Alessandro Pinto: An Overview

of Embedded System Design at Berkeley, ACM Transactions on
Embedded Computing Systems (to appear), available at http://www-
cad.eecs. berkeley.edu/~apinto/Data/publications/TECS-Education.pdf

[12] Peter Marwedel: Embedded System Design, Kluwer Academic
Publishers, 2003 and Springer, 2005

[13] Peter Marwedel: Home page for the embedded system design book,
http://ls12-www.cs.uni-dortmund.de/~marwedel/kluwer-es-book.html

[14] Samar Abdi, Junyu Peng, Haobo Yu, Dongwan Shin, Andreas
Gerstlauer, Rainer Doemer, Daniel Gajski: System-on-Chip
Environment, SCE Version 2.2.0 Beta Tutorial, CECS Technical
Report # 03-41, http://www.cecs.uci.edu/~cad/sce.html

[15] John A. Hennessy and David A. Patterson: Computer Organization –
The hardware/software interface, Morgan Kaufman Publishers, 1995

4

