
Use of a Bit-true Data Flow Analysis for
Processor-Specific Source Code Optimization

Heiko Falk Jens Wagner Andr´e Schaefer

Computer Science 12 Embedded Systems Group Product Development
University of Dortmund Informatik Centrum Dortmund e. V. ACCESS Systems Europe GmbH

D-44221 Dortmund D-44227 Dortmund D-46047 Oberhausen
Heiko.Falk@udo.edu wagner@icd.de schaefer@access-sys-eu.com

Abstract
Nowadays, key characteristics of a processor’s instruc-

tion set are only exploited in high-level languages by using
inline assembly or compiler intrinsics. Inserting intrinsics
into the source code is up to the programmer, since only few
automatic approaches exist. Additionally, these approaches
base on simple code pattern matching strategies.

This paper presents techniques for processor-specific
code analysis and optimization at the source-level. It is
shown how a bit-true data flow analysis is made applicable
for source code analysis for the TI C6x DSPs for the very
first time. Based on this bit-true analysis, fully automated
optimizations superior to conventional pattern matching
techniques are presented which optimize saturated arith-
metic, reduce bitwidths of variables and exploit SIMD data
processing within source codes. The application of our im-
plemented algorithms to complex real-life codes leads to
speed-ups between 33% – 48% for the optimization of satu-
rated arithmetic, and up to 16% after SIMD optimization.

1. Introduction
Due to the lack of compilers generating efficient code,

assembly-level software development for embedded proces-
sors was common in the past. However, both embedded ap-
plications and embedded processors are getting more and
more complex, and the evolution of optimizing compilers
allowed the replacement of assembly-level programming.

However, modern compilers often fail to generate highly
efficient machine code even though they include many stan-
dard optimizations like e. g. dead code elimination or loop-
invariant code motion. This is due to instruction set exten-
sions of modern processors like e. g. digital signal proces-
sors(DSPs)that can not be exploited directly in program-
ming languages like ANSI-C [4]. Examples for such exten-
sions are saturated arithmetic or multimedia SIMD instruc-
tions (Singe Instruction, Multiple Data), where no analog
constructs exist in programming languages.

To exploit such instruction sets within programming lan-
guages, inline-assembly was used in the past: small assem-
bly snippets written and manually optimized by the pro-

sum = a + b;

if (!((a ∧b) & 0x80000000))

if ((sum ∧a) & 0x80000000) sum = _sadd(a, b);

sum = a<0 ? 0x80000000:

0x7FFFFFFF;

Figure 1. TI C6x sadd Intrinsic

grammer were embedded in the high-level source codes.
The use of inline-assembly is disadvantageous because
maintenance and portability of such source codes are poor.

Nowadays, almost each compiler for DSPs offerscom-
piler known functionsor intrinsics. Using intrinsics, par-
ticular features of a processor can be exploited by the pro-
grammer. The compiler maps a call to an intrinsic not to
a regular function call, but to a fixed sequence of machine
instructions. For example, the complex code shown on the
left hand side of Figure 1 implementing a saturating addi-
tion in ANSI-C can be replaced by an intrinsic using the TI
C6x CCS compiler [11].

Using intrinsics, the resulting optimized source code
is highly efficient since the compiler replaces the intrin-
sic by an extremely fast sequence of assembly instruc-
tions. But since intrinsics are non-standardized program-
ming language extensions, source codes using intrinsics are
no longer portable at all. Currently, only poor tool support
exists to aid the programmer in replacing suitable source
code fragments by efficient intrinsics.

This paper combines a bit-true data flow analysis (DFA)
with source code optimizations exploiting intrinsics for the
TI C6x DSP [10]. Using this DFA, we analyze ANSI-C
programs and find complex code structures feasible for op-
timization. Our optimizations replace these complex code
fragments by intrinsics for the TI C6x CCS compiler lead-
ing to highly optimized non-ANSI-C programs afterwards.
In this paper, we present three different optimizations: First,
saturated arithmetic common to many audio / video codec
standards is detected and optimized. Second, SIMD instruc-
tions for parallel packed arithmetic on e. g. halfwords are
exploited. Since SIMD instructions rely on data types with
small bitwidths like e. g.short or char , we present a third



transformation detecting unused bits of source-level vari-
ables and reducing them to the smallest required data type.

Results show that the proposed optimizations lead to sig-
nificant speed-ups of up to 48%. In addition, the error-prone
task of inserting intrinsics into the source code is fully auto-
mated now. The source codes the programmer operates on
remain fully portable, because the optimizations introduc-
ing machine dependencies are applied as post-processing
step.

Related work is given in Section 2, Section 3 presents our
bit-true source-level DFA. Section 4 presents the intrinsic-
based optimizations, followed by Section 5 containing re-
sults. Finally, Section 6 concludes this paper.

2. Related Work
[2, 3, 12] are typical examples for code optimizations

using intrinsics. They all quantify the effect of various opti-
mizations on the performance of selected benchmarks run-
ning on a given processor. In [3], a G.723.1 speech coder is
optimized for a TI C6x processor, using intermixed ANSI-C
and assembly code to implement the speech coder. Assem-
bly codes are hand optimized in a not described manner,
C fragments are replaced by intrinsics wherever possible.
In [2], not only intrinsics for the same TI processor are stud-
ied, but also other optimizations like e. g. loop unrolling or
software pipelining. Some small DSPstone kernels are used
to benchmark the applied optimizations. Finally, [12] re-
places floating point by fixed point numbers and applies in-
trinsics and software pipelining to an image reconstruction
algorithm for the Philips TriMedia processor.

In all these papers, all optimizations were done manu-
ally, no tool support was used. The effect of the used intrin-
sics on the reported speed-ups is unclear, because results
are often presented for all optimizations together, and not
just for single substeps. Where results just for intrinsics are
given, speed-ups between 30 % – 50 % were reported.

[8] uses loop distribution, unrolling and pattern match-
ing to exploit SIMD instructions for the TriMedia processor.
After that, pattern matching is used to find code fragments
in the transformed loops that can be replaced by intrinsics.
In contrast to [2, 3, 12], the entire transformation process
is automated, but results are only presented for three very
small loop kernels. In addition, just simple pattern match-
ing techniques are used to optimize the code. No advanced
analyses are presented.

[5] exploits SIMD instructions during code selection of
a compiler. It extends traditional tree-pattern matching to
cope with the fact that SIMD code patterns form data flow
graphs and nut just data flow trees(DFTs). This is done
by introducing alternatives for code selection into the tree-
pattern matcher. For all DFTs, the best alternatives max-
imizing the usage of SIMD instructions are selected using
integer linear programming(ILP). This approach is cumber-
some in that sense that it applies tree-based techniques to a

X

0 1

L N

U

Figure 2. Lattice of Multi Valued Logic
graph-based optimization problem. The use of graph-based
analyses as proposed in this paper is better suited.

[9] demonstrates that code selection for SIMD instruc-
tions can be performed without using tree-based techniques
by completely modeling code selection as an ILP.

Traditional DFA [6] is usually tied to a processor’s
wordlength, i. e. information on definitions and uses(DEF /
USE)of data only relates to blocks of e. g. 32 bits. Pro-
tocol processing applications and network processors op-
erate on bit-packets which typically are not aligned to the
wordlength. Bit-packets may start and end at arbitrary posi-
tions within a register; they may even cross register bound-
aries. To generate efficient code for such systems, bit-
level DFAs are required computing data flow information
for each individual data bit. The bit-level DFA of [1] deter-
mines for each bit, if it is unknown but relevant, the constant
0, the constant 1 or a don’t care. [7, 13] extend this DFA by
the information if the location of a bit in memory is known
but its value is not. This extended bit-true DFA is adapted
in this paper and is explained in more detail in Section 3.

3. Bit-true Source-Level Data Flow Analysis
This section presents the bit-true DFA used by the pro-

cessor-specific source code optimizations described in Sec-
tion 4. Section 3.1 briefly resumes the basic concepts of this
DFA [7, 13]. Section 3.2 describes the connection between
the DFA and SUIF [14] to analyze ANSI-C source codes.

3.1. Concepts for Bit-true Data Flow Analysis
The bit-level DFA used in this paper is based on a multi

valued logic representing the information known about a
single bit within the data flow graph(DFG). The multi val-
ued logic can be modeled by the lattice depicted in Fig-
ure 2. The lattice’s elements encode the following infor-
mation: X: the bit’s value is irrelevant for the result of the
program (don’t care),0 and1: the value is constant,L: the
bit’s value is copied from a given location, but its contents is
unknown,N: the value is copied from a given location and
negated,U: the bit is entirely unknown. This lattice forms a
partial order according to the edges shown in Figure 2.

The DFA attaches information about the bits on the
edges of the DFG which represent operands of an operation.
The operations themselves are represented by the DFG’s
nodes. The DFA operates in two phases.



&

a 0x33

0011 0011
0011 0011

00LL 00LL
00LL 00LL

LLLL LLLL
XXLL XXLL

Figure 3. Bit-true DFA of an AND operation

In the beginning, all bits of all edges are set toU. First,
the DFA traverses the DFG in direction of the edges (top-
down analysis), starting from the source nodes. During
top-down analysis, the bit-true effect of an operation (DFG
node) on the operation’s result (outgoing edge) is computed,
based on the operation’s inputs (incoming edges). The re-
sult of the top-down phase is attached to the outgoing edge
as so-calleddown-value. This down-value is a string of lat-
tice elements, where each item of the down-value represents
the information gathered for the belonging operand’s bit.

After that, a bottom-up phase is applied in opposite edge
direction, starting from the DFG’s sink nodes. Using the
pre-computed down-values, bottom-up analysis calculates
whether a bit’s value dominates the current operation or not.
If a bit’s value is irrelevant (don’t care), its belonging data
flow information is set toX. The results of the bottom-up
phase are attached to the DFG edges as so-calledup-values.

The course of this DFA is shown using the ANSI-C as-
signmentd = a & 0x33; a is a non-analyzable function
argument, and thus its value is unknown (cf. Figure 3).
However,a is a known location for the first operand of the
AND operation so that all bits of the edge are set toL during
top-down analysis (marked with⇓ in the figure). Since the
second operand is a constant, its down-value only consists
of 0s and1s. The down-value of the output of the AND op-
eration contains four0s due to the zeroes of the down-value
of 0x33 . All other bit positions are set toL since the bitwise
AND of an arbitrary value with1 results in that value.

During bottom-up analysis, it is detected that four bits of
the down-value of operanda don’t have any influence on
the resultd, because they are overridden by the zero-bits of
the constant0x33 . Accordingly, these bit positions are set
to X for the up-value ofa.

This example shows that the top-down phase “simulates”
an operation’s behavior at the bit level. In this stage, simu-
lation functions are required for all possible operations. Us-
ing bitwise truth tables on the lattice shown in Figure 2,
down-values of input parameters are connected to compute
a resulting down-value. For bottom-up analysis, other sim-
ulation functions are needed insertingXs in the up-values of
an operation’s incoming edges. Section 3.2 describes how
down and up simulation functions for the operations of the
SUIF compiler system and the TI C6x DSP are set up.

3.2. Adaption for Source-Level Analysis

This paper uses SUIF [14] to analyze and optimize
ANSI-C source codes. Our optimizations (cf. Section 4)
insert intrinsics for the TI C6x DSP into the source codes
using SUIF. For these reasons, the bit-true DFA described
in Section 3.1 needs to be tailored to this environment. The
DFA must be able to do top-down and bottom-up analysis of
all operations of SUIF, and all simulation functions need to
model the behavior of these operations on the TI C6x plat-
form. For the sake of brevity, the operations of SUIF are not
described here, even though they are fully implemented.

Source nodes are either function arguments or constants.
Sink nodes are final store operations to either memory loca-
tions or variables. Needed data flow information are fully
supported by SUIF and used by the DFA.

4. Intrinsic-Based Source Code Optimizations
This section presents the source-level optimizations and

transformations using the bit-true DFA for the TI C6x DSP.
Section 4.1 describes the insertion of intrinsics for saturated
arithmetic. The use of the bit-true DFA to reduce bitwidths
of variables is shown in Section 4.2. Section 4.3 presents
the exploitation of SIMD intrinsics at the source code level.

4.1. Optimization of Saturated Arithmetic

Saturated arithmetic is a typical DSP feature ensuring
that no wrap-around occurs after an arithmetic operation.
As already shown in Figure 1, saturated arithmetic is ex-
pressed most intuitively in a two-phase approach in ANSI-
C: First, the two operands are connected using the opera-
tor of choice (here: addition). Then, bit-masking operators
are used to check and compare the sign-bits of result and
operands. If an over- / underflow is found, the result is as-
signed the largest / smallest value of its data type.

In order to find ANSI-C code fragments which are can-
didates for being replaced by an intrinsic, the DFG gener-
ated from the C source code is analyzed using the bit-true
DFA presented in the previous section. After that, particular
subgraphs of the analyzed and annotated DFG are searched
representing feasible C code fragments.

In the case of a saturated addition, all occurrences of an
add operation in the DFG are checked first. For each occur-
rence, it is verified if the two operands of the addition are
XORed and are ANDed with the minimum constant value
of the actual data type, and if a comparison with 0 is done.
If this is the case, it is checked if the addition’s result is
XORed with the first operand of the addition, and the out-
come needs to be ANDed with the minimum constant again.
Finally, an assignment of either the minimum or the max-
imum constant to the addition’s result needs to be present
in the DFG. If a subgraph of the DFG is found fulfilling
all these criteria, it can be completely removed and can be
replaced by a call to the_sadd intrinsic.



+

Subword 1 Subword 0

+

Subword 1 Subword 0

Destination 1 Destination 0

Operand m

Operand n

Operation

Result

Figure 4. SIMD Halfword Addition

This approach of data flow graph search is much more
flexible compared to pure pattern matching techniques [8].
In contrast to a pure source code pattern matching, our DFG
search allows that the individual parts of such a feasible
source code fragment are scattered – they need not occur
line by line in the source code in the exact shape as shown
in Figure 1. This is due to the fact that we only consider
DFG nodes, edges and their relationships plus the data flow
information gathered by the bit-true DFA in order to check
the occurrence of the constants required for saturation. The
DFG does not make any assumption of where and how the
belonging operations reside in the source code.

In addition to the exploitation of saturated additions
sketched above, we are able to identify source code frag-
ments representing saturated subtractions, multiplications
and left-shifts. For such code fragments, the TI C6x intrin-
sics_ssub , _smpy and_sshl are inserted, respectively.

4.2. Bitwidth Reduction

The bitwidth reduction transformation assigns data types
of smaller bitwidths to variables wherever possible in the
source code. This bitwidth reduction by itself is not an op-
timization that should have a significant impact on the run-
time of an application. Instead, it is meant to be a prepara-
tory step potentially enabling the exploitation of SIMD in-
structions presented in Section 4.3, that relies on the pres-
ence of variables of small data types.

In order to reduce bitwidths of variables, the up-values of
the DFG edges representing the variable need to be checked.
A reduction of a larger data type to a smaller one can only
be performed if enough of the most significant bits (MSBs)
of the variables are redundant (X’s in the up-values). When-
ever all of the MSBs of the up-value of a variable are set to
X, this variable is a potential candidate for bitwidth reduc-
tion. For the TI C6x DSP, the data typeint is 32 bits wide,
short 16 bits, andchar 8 bits. For a variable of typeint

or unsigned int , a reduction to e. g.char or unsigned

char can be done if at least 24 leadingX’s are detected.
A variable can also be reduced to a smaller data type if it

contains enough leading0’s. However, care must be taken
if the original variable is signed. Then, a reduction is only
legal if the MSB of the reduced variable is also0.

short o1, o2, int SIMDr;

r3, r4; short r1, r2;

short r1, r2; SIMDr = _add2(_pack2(o1, o3),

_pack2(o2, o4));

r1 = o1 + o2; r1 = (short) (SIMDr >> 16);

r2 = o3 + o4; r2 = (short) SIMDr;

Figure 5. TI C6x add2 and pack2 Intrinsics

4.3. Exploitation of SIMD Instructions

SIMD instructions partition a 32-bit word into several
identical objects which can then be fetched, stored and op-
erated on in parallel (cf. Figure 4). These instructions allow
the full exploitation of the processor’s wordlength in signal
and data processing applications.

To exploit SIMD instructions, two sequential arithmetic
operations (in the example shown in Figure 5:short addi-
tions) on variables of smaller data type need to be found in
the DFG. Under certain conditions, these operations can be
replaced by a SIMD intrinsic. In general, SIMD processing
consists of three steps (cf. Figure 4): packing, the SIMD
operation itself and unpacking of the result. These steps are
supported by intrinsics. Corresponding C statements will
be automatically replaced by intrinsics.

The above insertion of SIMD intrinsics is only applied
if some rules are satisfied: First, the operations to be paral-
lelized have to be data flow independent, i. e. there must not
be any flow dependence or anti dependence. Second, the
execution of the first sequential arithmetic operation must
always be followed by exactly one execution of the second
operation. This prevents two operations from being opti-
mized that lie in different levels of the control flow hierar-
chy.

Finally, care must be taken if the operands or the vari-
ables holding the results of the original sequential arith-
metic operations are redefined between the two operations
to be optimized. There exist several constellations of redef-
initions of these variables preventing the SIMD optimiza-
tion. Using the DFG of the source code to be optimized
and the DEF / USE relationships between the sequential op-
erations, a SIMD optimization only takes place if all DEFs
of the operands or result variables can be moved before the
very first sequential operation legally. Since this is exactly
the data flow obtained when using SIMD intrinsics, this re-
striction guarantees the correctness of the optimization.

Obviously, our DFA-based analysis and optimization ap-
proach is superior to pattern matching [8]. Using pattern
matching, it is hard or even impossible to check complex
data and control flow dependencies between operations to
be parallelized. Additionally, our bit-level DFA approach
potentially outperforms other techniques since using the bit-
level DFA, we are able to generate variables of data types
suitable for SIMD processing. Currently, only the SIMD in-
trinsics_add2 and_sub2 for halfword arithmetic are gen-



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

G.7
23

.1
- d

tx
63

G.7
23

.1
- t

am
ec

63
h

G.7
23

.1
- o

ve
rc

63

G.7
23

.1
- i

neq
c5

3

G.7
23

.1
- o

ve
rc

53
h

G.7
23

.1
- d

tx
53

m
ix

G
S
M

A
ve

ra
ge

Figure 6. Rel. Runtimes for Saturation Intrin-
sics

erated by our tool. Even though other TI processors (C64x)
support bytewise SIMD instructions, we consider only in-
trinsics common to all TI C6x processors in this work.

5. Results
This section presents the impact of the optimizations pre-

sented in Section 4 on the runtimes of benchmarks for the
TI C6x DSP running at 133 MHz. To compute runtimes,
the source codes of an application were compiled with the
native TI CCS compiler at the highest optimization level.
The resulting binary was simulated with the cycle true in-
struction set simulator of TI, resulting in the runtime of
the original unoptimized application. After that, the source
codes are fed into our optimization tools generating opti-
mized source codes. These codes were compiled and simu-
lated the same way as was done for the unoptimized source
codes, yielding the runtimes of the optimized applications.

Two complex applications served as benchmarks. First,
a G.723.1 codec of more than 13,000 lines of C code was
used. For this codec, six input files for coding and decoding
were available. We benchmarked G.723.1 for all these input
frames and present the gathered results. Second, a full im-
plementation of the ANT GSM Codec (4,500 lines of code)
and one input sample was considered. Section 5.1 presents
the results after optimization of saturated arithmetic. Sec-
tion 5.2 gives an overview about the amount of redundant
bits detected and reduced by our bit-level DFA. Finally, Sec-
tion 5.3 shows the results for SIMD optimization.

5.1. Optimization of Saturated Arithmetic

Figure 6 shows the effect of the inserted intrinsics for sat-
urated arithmetic on the runtime of the benchmarks for the
indicated input frames. The figure shows the corresponding
values for the optimized benchmarks as a percentage of the
runtimes of the unoptimized versions denoted as 100%.

As can be seen from this figure, the automated insertion
of the_sadd , _ssub , _smpy and_sshl intrinsics reduces
the runtimes significantly. For the G.723.1 application,
the runtimes of the optimized code vary between 67% and

Category G.723.1 GSM
Totally Unused Bits 24.2% 79.5%

Unused Bits in leading bytes 4.4% 12.6%
Reduced Bits 2.2% 9.2%

Table 1. Detection and Classification of Re-
dundant Bits

down to 58% of the runtime of the unoptimized application.
Hence, our optimization is able to achieve savings between
33% up to 42%. For the GSM benchmark, the improve-
ments are even higher. Here, the runtimes drop to a level
of 52% of the original GSM runtime, implying an improve-
ment of 48%. On average over all simulations depicted in
Figure 6, total improvements of 40% were achieved by our
optimization.

It is interesting to note that even though the relative im-
provements for the G.723.1 codec are close to each other for
all input frames (approx. 40%), the absolute runtimes are
very heterogeneous. For example, input frameoverc53h

requires an absolute amount 1.8 billions of cycles, whereas
dtx63 consumes 82 billions. Since the input frames are de-
signed to cover different coding/decoding parameters and
styles of the G.723.1 application, the measured improve-
ments are essentially independent of the input patterns.
Hence, the presented results are stable and clearly demon-
strate the overall performance of our optimization on real-
life benchmarks and input data.

5.2. Bitwidth Reduction

Table 1 gives an overview of the percentages of bits clas-
sified as redundant and optimized by our bitwidth reduction
transformation. It can be observed that the benchmarks con-
tain a significant total amount of redundant bits not having
any influence on the benchmark’s behavior. For G.723.1,
24.2% of the bits of all variables are marked as don’t care by
our bit-level DFA. For the GSM application, an even higher
rate of 79.5% of bits was detected. However, a bitwidth
reduction can only take place if enough redundant bits are
found at the most significant positions of a variable. For the
G.723.1 application, a total of 4.4% of all bits was found
to be redundant and occupying the contiguous most signifi-
cant complete bytes of their belonging variables. For GSM,
the amount of such bits being candidates for bitwidth reduc-
tion is around 12.6%. However, a bitwidth reduction finally
led to total savings of 2.2% of all bits for G.723.1 and of
9.2% for GSM. As can be seen, the amount of effectively
saved bits is much smaller than the number of unused bits
in most significant bytes of variables. In both benchmarks,
there exist several variables with redundant uppermost bytes
that can not be reduced in bitwidth, because these variables
serve as function arguments or return values. Since we cur-
rently do not apply inter-procedural analysis and optimiza-
tion, such variables can not be optimized.



50%

60%

70%

80%

90%

100%

G.7
23

.1
- d

tx
63

G.7
23

.1
- t

am
ec

63
h

G.7
23

.1
- o

ve
rc

63

G.7
23

.1
- i

neq
c5

3

G.7
23

.1
- o

ve
rc

53
h

G.7
23

.1
- d

tx
53

m
ix

G
S
M

A
ve

ra
ge

Figure 7. Rel. Runtimes for SIMD Intrinsics

5.3. Exploitation of SIMD Instructions

Figure 7 shows the achieved speed-ups of the bench-
marks after insertion of SIMD intrinsics. Again, the fig-
ure shows all simulated runtimes after SIMD optimiza-
tion as percentage of the runtimes before the optimiza-
tion. For the G.723.1 application, the relative runtimes af-
ter SIMD optimization vary between 97% (dtx53mix ) and
86% (overc53h ) of that before, leading to savings from 3%
up to 14% achieved by our optimization. For GSM, a rel-
ative runtime of 84% was measured when using SIMD in-
trinsics, so that we achieved 16% improvement in this case.

On average over all experiments depicted in Figure 7,
savings of 8.9% were achieved. These savings are not as
high as one would possibly expect which is due to two rea-
sons. First, our bit-true DFA and our optimizations exclu-
sively consider scalar variables in a source code. In con-
trast, SIMD instructions are intended to serve for number-
crunching when processing large arrays of data. As a con-
sequence, our techniques do not insert SIMD intrinsics for
arithmetic on array elements since we currently are unable
to verify that the array accesses are data flow independent of
each other. Second, we do not apply loop transformations
like e. g. loop unrolling or loop distribution prior to our
optimizations to make parallelism present in loops explicit.
Concluding, it can be stated that the current use of SIMD
instructions by our optimization does not yet fully exploit
the entire optimization potential present in the benchmarks.
However, the circumstance that we still achieve significant
runtime savings of up to 16% justifies our concepts.

6. Summary and Future Work
In this paper, novel approaches for processor-specific

source code optimization were presented. The key contri-
butions of this work are firstly that we adapted a bit-true
data flow analysis for source-level optimization for a TI C6x
signal processor. Secondly, three optimizations making use
of this bit-true DFA are presented. They base on the auto-
matic insertion of compiler intrinsics into the source code
in order to exploit specific features of the TI instruction set.
In detail, we successfully exploit instructions for saturated

arithmetic and for SIMD processing at the source-level. In
addition, techniques for detecting and removing unused bits
present in source codes are presented.

The results presented in this paper underline the effec-
tiveness of our approaches. The insertion of intrinsics for
saturated arithmetic leads to reductions of runtimes between
33% and up to 48%. Furthermore, our techniques are able
to detect that between 24.2% and 79.5% of all bits present
in the benchmarks were redundant. Bitwidth reduction was
able to eliminate up to 9.2% of all bits. Finally, the exploita-
tion of SIMD instructions at the source code level yields
speed-ups by up to 16%.

In the future, we intend to exploit more of the optimiza-
tion potential present in real-life benchmarks than we cur-
rently do. In detail, we plan to make our analyses and op-
timizations inter-procedural in order to perform global op-
timizations. Additionally, the bit-true DFA will have to be
capable of analyzing array accesses in order to use SIMD
instructions for array processing. Finally, pre-processing
transformations like e. g. loop unrolling or function inlin-
ing can be added to our optimization framework in order to
make SIMD parallelism more explicit.

References
[1] M. Budiu and S. C. Goldstein. Bit Value Interference: Detecting

and Exploiting Narrow Bitwidth Computations. InProceedings of
6th International Euro-Par Conference, Aug. 2000.

[2] M. Coors, O. Wahlen, H. Keding, O. L¨uthje and H. Meyr. TI C62x
Performance Code Optimization. InDSP Deutschland ’99 - Grund-
lagen, Architekturen, Tools, Applikationen, Sept. 1999.

[3] T. J. Dillon Jr. Texas Instruments Application Report: G.723.1
Dual-Rate Speech Coder: Multichannel TMS320C62x Implemen-
tation. Electronic Engineering Times, Feb. 2000.

[4] B. W. Kernighan and D. M. Ritchie.The C Programming Language.
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[5] R. Leupers. Code Selection for Media Processors with SIMD In-
structions. InProceedings of DATE, Paris, Mar. 2000.

[6] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, 1997.

[7] X. Nie and J. Wagner. High Performance Network Protocol Proces-
sor - Architecture and Tools. InProceedings of “Euro DesignCon”,
Munich, 2004.

[8] G. Pokam, S. Bihan, J. Simonnet and F. Bodin. SWARP: A Retar-
getable Preprocessor for Multimedia Instructions. InProceedings
of CPC, Edinburgh, 2001.

[9] H. Tanaka, S. Kobayashi, Y. Takeuchi, S. Keishi and M. Imai. A
Code Selection Method for SIMD Processors with PACK Instruc-
tions. InProceedings of SCOPES, Vienna, Sept. 2003.

[10] TMS320C6000 CPU and Instruction Set Reference Guide. Texas
Instruments Inc., Literature Number SPRU189D, Mar. 1999.

[11] TMS320C6000 Optimizing Compiler User’s Guide. Texas Instru-
ments Inc., Literature Number SPRU187G, Mar. 2000.

[12] T. Vander Aa, R. Lauwereins and G. Deconinck. Optimizing a
3D image reconstruction algorithm: Analyzing the capabilities of a
modern compiler. InProceedings of SIPS, San Diego, Oct. 2002.

[13] J. Wagner. Retargetable Optimizations for Program Codes in In-
termediate Representations based on a Bit-True Bidirectional Data
Flow Analysis (in german). Patent No. 10361972, German Patent
Office, Nov. Munich, 2004.

[14] R. Wilson, R. French, C. Wilson et al. An Overview of the SUIF
Compiler System.http://suif.stanford.edu/suif/suif1, 1995.


