
Loop Nest Splitting for WCET-Optimization and Predictability Improvement ∗

Heiko Falk Martin Schwarzer

University of Dortmund, Computer Science 12, D - 44221 Dortmund, Germany
Heiko.Falk| Martin.Schwarzer@udo.edu

Abstract
This paper presents the effect of the loop nest split-

ting source code optimization on worst-case execution time
(WCET). Loop nest splitting minimizes the number of exe-
cuted if-statements in loop nests of multimedia applications.
It identifies iterations where all if-statements are satisfied
and splits the loop nest such that if-statements are not exe-
cuted at all for large parts of the loop nest’s iteration space.

Especially loops and if-statements are an inherent source
of unpredictability and loss of precision for WCET analy-
sis. This is caused by the difficulty to obtain safe and tight
worst-case estimates of an application’s high-level control
flow. In addition, assembly-level control flow redirections
reduce predictability even more due to complex processor
pipelines and branch prediction units.

Loop nest splitting bases on precise mathematical mod-
els combined with genetic algorithms. On the one hand,
these techniques achieve a significantly more homogeneous
control flow structure. On the other hand, the precision of
our analyses enables to generate very accurate high-level
flow facts for loops and if-statements. The application of
our implemented algorithms to three real-life benchmarks
leads to average speed-ups by 25.0% – 30.1%, while WCET
is reduced by 34.0% – 36.3%.

1. Introduction
Embedded systems often have to meet real-time con-

straints. The correctness of such a system depends not only
on the result of the computation, but also on the time at
which the results are produced. Besides safe real-time sys-
tems, the market demands high performance, energy effi-
cient and low cost products. Without knowledge about the
worst-case timing, designers tends to oversize hardware to
guarantee the safeness of the real-time system.

In the past, the real-time behavior of embedded multime-
dia applications with simultaneous consideration of power
efficiency has become a crucial issue. Many of these ap-
plications are data-dominated using large amounts of data
memory. Typically, they consist of deeply nestedfor-loops.
The main algorithm is usually located in the innermost loop.
Often, such an algorithm treats particular parts of its data
specifically, e. g. an image border requires other manipu-

∗Partially funded by the European IST FP6 NoE ARTIST2.

for (x=0; x<36; x++) { x1=4 * x;
for (y=0; y<49; y++) { y1=4 * y; / * y loop * /

for (k=0; k<9; k++) { x2=x1+k-4;
for (l=0; l<9; l++) { y2=y1+l-4;

for (i=0; i<4; i++) { x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (x3<0 || 35<x3 || y3<0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 1. A typical Loop Nest (from MPEG 4)

lations than its center. This boundary checking is imple-
mented usingif-statements in the innermost loop (cf. Fig-
ure 1, an MPEG 4 full search motion estimation [8]).

This code has several properties making it sub-optimal
w. r. t. worst- and average-case execution time(ACET).
First, theif-statements lead to a very irregular control flow.
Any jump instruction in a machine program causes a control
hazard for pipelined processors [11]. This means that the
pipeline needs to be stalled for some instruction cycles, so
as to prevent the execution of incorrectly prefetched instruc-
tions. WCET analysis needs to estimate whether a jump
is taken or not. The worst-case influence of this decision
on pipeline and branch prediction needs to be taken into
account. Since it is difficult to predict these control flow
modifications accurately, resulting WCETs tend to become
imprecise the more irregular the control flow is.

In addition, the way how conditions of anif-statement
are expressed also has a negative impact on WCET. If con-
ditions are connected using the logical and / or operators of
ANSI-C [9], they are evaluated lazily. For example, ex-
pressione2 of the conditione1 || e2 is not evaluated if
e1 already evaluates to true. Hence, each occurrence of
|| and&& implies hidden control flow modifications with
a negative influence on WCET. This unpredictability due to
if-statements becomes even more severe if theif-statements
are located in deeply nested loops (cf. Figure 1). Here,
WCET analysis multiplies the overestimated data of theif-
statements with the possibly also overestimated number of
loop iterations, leading to even more imprecise estimates.

Considering the example shown in Figure 1, loop nest
splitting is able to detect that
• the conditionsx3<0 andy3<0 are never true,
• bothif-statements are true forx ≥ 10 ory ≥ 14.

Information of the first type is used to detect conditions not

for (x=0; x<36; x++) { x1=4 * x;
for (y=0; y<49; y++)

if (x>=10 || y>=14) / * Splitting-If * /
for (; y<49; y++) / * Second y loop * /

for (k=0; k<9; k++)
... / * l- & i-loop omitted * /

for (j=0; j<4; j++) {
then block 1; then block 2; }

else { y1=4 * y;
for (k=0; k<9; k++) { x2=x1+k-4;

... / * l- & i-loop omitted * /
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (0 || 35<x3 || 0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 2. Loop Nest after Splitting

having any influence on the control flow of an application.
This kind of redundant code (which is not typical dead code,
since the results of these conditions are used within theif-
statement) can be removed from the code, thus improving
predictability during WCET analysis of a program.

Using the second information, the loop nest can be
rewritten to minimize the total number of executedif-
statements (cf. Figure 2). Here, a newif-statement (the
splitting-if) is inserted in they loop testing the condition
x≥10 || y ≥14. Theelse-part of this newif-statement is
an exact copy of the body of the originaly loop shown
in Figure 1. Since allif-statements are fulfilled when the
splitting-if is true, thethen-part consists of the body of the
y loop without anyif-statements and associatedelse-blocks.
To minimize executions of the splitting-if for values ofy ≥
14, a secondy loop is inserted in thethen-part counting
from the current value ofy to the upper bound 48.

As shown by this example, our technique generates a
very homogeneous control flow in the hot-spots of an appli-
cation. The algorithms briefly outlined in this paper enable
the generation of precise high-level flow facts for WCET
analysis. This paper evaluates the effect of loop nest split-
ting on the WCET of selected real-life benchmarks. Loop
nest splitting is done by automatically optimizing ANSI-C
source codes. These source codes are then compiled for the
ARM7 processor. WCET analysis of the resulting executa-
bles is finally done using the aiT WCET analyzer.

Section 2 of this paper gives a survey of related work.
Section 3 presents the analyses and optimizations of loop
nest splitting. Section 4 describes the benchmarking results,
and Section 5 summarizes and concludes this paper.

2. Related Work
Loop transformations have been described in literature

on compiler design for many years [2, 11] and are often in-
tegrated into today’s compilers. Classicalloop splittingcre-
ates several loops out of an original one and distributes the
statements of the original loop body among all new loops.
This optimization enables the parallelization of a loop due
to fewer data dependencies [2] and possibly improves I-

cache performance due to smaller loop bodies. The impact
of this optimization on WCET has not yet been studied.

Loop unswitchingis applied to loops containing loop-
invariantif-statements [11]. The loop is then replicated in-
side each branch of theif-statement, reducing the branching
overhead and decreasing code sizes of the loops [2]. Goals
and code transformation of loop unswitching are equivalent
to the topics of Section 1. But sinceif-statements must not
depend on index variables, loop unswitching is unsuitable
for multimedia programs. The fact that only loop-invariant
conditions are considered implies that no valuable flow facts
for WCET analysis are generated during this optimization.

In [10], classical loop splitting is applied together with
function call insertion at the source code level to improve I-
cache performance. After the application of loop splitting, a
large reduction of I-cache misses is reported for one bench-
mark. All other parameters (instruction and data memory
accesses, D-cache misses) are worse after the transforma-
tion. All results are generated with cache simulation soft-
ware which is known to be imprecise, and the WCETs and
ACETs of the benchmark are not considered at all.

This survey of related work shows that loop optimiza-
tions typically aim at improving temporal or spatial locality
of caches and thus focus on ACET reduction. The effect
of loop optimizations on WCET has not yet been studied
thoroughly. Loop nest splitting was originally presented
in [5, 7]. These original publications solely considered the
optimization of ACET and energy dissipation. The impact
of the optimization on WCET was not taken into account.
Furthermore, all control-flow related data computed during
loop nest splitting was discarded and was not used during
subsequent optimization or analysis steps.

3. Analysis and Optimization Algorithm
Figure 3 depicts the workflow of loop nest splitting. As

can be seen, the optimization relies on polyhedral models
representing loop nests andif-statements. Polyhedra and
polytopes are defined as follows:

Definition:
1. P = {x∈ Z

N | Ax= a, Bx≥ b} is called apolyhedron
for A,B∈ Z

m×N anda,b∈ Z
m andm∈ N.

2. A polyhedronP is called apolytope, if |P| < ∞.
Since polyhedra are sets of linear inequations, loop

nest splitting requires loop bounds and conditions ofif-
statements to be affine expressions of the loops’ index
variables. For a given loop nestΛ = {L1, . . . ,LN} where
each loopLl is represented by its index variableil and
lower / upper boundslbl andubl , loop nest splitting com-
putes valueslb ′

l andub′
l for every loopLl ∈ Λ with

• lb ′
l ≥ lbl andub′

l ≤ ubl , i. e. the computed values must
lie within the loop bounds,

• all loop-variantif-statements inΛ are satisfied for all
values of the index variablesil with lb ′

l ≤ il ≤ ub′
l ,

Structural C
Code Analysis

Source Code
Transformation

Relevant Polytopes

Polytopes for Conditions

Condition
Satisfiability

Section 3.1

Global Search Space
Construction

Section 3.3

Optimized Polytopes

Condition
Optimization

Section 3.2

Global Search Space

Result Polytope

Global Search Space
Exploration

Section 3.4

Transformed ANSI-C Program

for(x=0;x<36;x++){

x1=4*x;

for(y=0;y<49;y++)

if(x>=10 || y>=14)

for(;y<49;y++)

for(k=0;k<9;k++)...

else{

y1=4*y;...

}}

for(z=0;z<20;z++)

for(x=0;x<36;x++){

x1=4*x;

for(y=0;y<49;y++){

y1=4*y;

for(k=0;k<9;k++){

x2=x1+k-4;

for(l=0;l<0;l++)...

}}}

Original ANSI-C Program

Figure 3. Design Flow of Loop Nest Splitting

• loop nest splitting by all valueslb ′
l andub′

l leads to the
minimization ofif-statement execution.

lb ′
l andub′

l are used to construct the splittingif-statement.
The substeps of loop nest splitting as shown in Figure 3 are
briefly outlined in Section 3.1 (cf. [6] for a more in-depth
discussion). Section 3.2 deals with the automatic generation
of high-level flow facts during loop nest splitting.

3.1. Workflow of Loop Nest Splitting

During an initial phase (“Structural C Code Analysis” in
Figure 3), only suitable loop nests andif-statements with
affine bounds and conditions are extracted from the source
code. The output is a set of polytopes, each of them repre-
senting a single condition within the source code. The core
optimization algorithm (the shaded region in Figure 3) con-
sists of four sequentially executed tasks. In the beginning,
all conditions in a loop nest are analyzed separately without
considering any inter-dependencies among them.

First, it is checked if conditions are ever true or not
(“Condition Satisfiability”), e. g. conditionsx3<0 andy3<0

are removed from Figure 1, since they are provably false in
each iteration and are thus modeled by empty polytopes.

Second, an optimized search space is built for all satisfi-
able conditions (”Condition Optimization”). Here, a poly-
topeP modeling an original conditionC is replaced by a
polytopeP′ modeling a conditionC′ such thatC′ ⇒C holds.
P′ is generated such thatC′ is significantly simpler than

C. For example, it is detected thatC′ = x >= 10 implies
C = 4* x + k + i >= 40 for Figure 1.

Third, all polytopesP′ obtained by condition optimiza-
tion are combined to form a global search spaceG (“Global
Search Space Construction”). The previous phases only
considered single conditions of entireif-statements in isola-
tion. To determine value ranges of the loop index variables,
for which all if-statements in a loop nest are true, allP′ need
to be combined using intersection and union of polytopes
according to the structure of allif-statements.

Finally, the global search spaceG is explored leading to
the final result of loop nest splitting (“Global Search Space
Exploration”). This phase selects a subset of constraints of
G to build a final polytopeR representing the splittingif-
statement. For the code of Figure 1, the outcome of this
phase is the polytopeR= {x ≥ 10}∪{y ≥ 14}.

The final polytopeR is then used to rewrite a loop nest
(“Source Code Transformation”). The splitting-if is gener-
ated and placed in the loop nest. Itsthen- andelse-parts are
created by copying parts of the original loop nest.

3.2. Flow Fact Generation

Since a program spends most of its time in loops, itera-
tion counts are crucial for WCET estimation. The WCET
analyzer requires precise loop iteration numbers to com-
pute safe and tight WCET bounds. As already stated in
Section 3.1, polytopes model conditions and loops. Since
polytopes base on linear inequations, the bounds of a loop
Ll must be affine expressions of surrounding loops for loop
nest splitting. The boundslb1 andub1 of an outermost loop
L1 have to be constant. This way, all loop’s iterations can be
non-constant but still are fully analyzable at compile time.

During loop nest splitting, polytopes model the loop
currently under analysis by defining affine constraints for
the loops’ lower and upper bounds and for all surrounding
loops. In such a polytope, each integral point represents one
execution of the loop body for one actual assignment of val-
ues to the loops’ index variables. Counting the number of
integral points of these polytopes leads to the exact number
of executions of the loop body. For this purpose, so-called
Ehrhart polynomials[3] are applied to the polytopes.

Example: For the l -loop of Figure 1, a polytope with con-
straints0 <= x < 36 , 0 <= y < 49 , 0 <= k < 9 and0 <= l < 9 is
built. This polytope contains 142,884 points. Hence, the body of
the l -loop is executed 142,884 times within the entire loop nest.

The number of points is used in flow facts for WCET
analysis that exactly specify the executions of a loop com-
pared to code lying outside the outermost loopL1. For the
aiT WCET analyzer [1] used here, annotations likeflow

0x40007c / 0x40002e is exactly 142884; are cre-
ated, where the given addresses represent basic blocks in-
side the current loop and outside the outermost loop, resp.

In addition, annotations for the splitting-if created by

ARM7 ARM-Mode ARM7 THUMB-Mode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WCET ACET WCET ACET

CAVITY ME QSDPCM Average

Figure 4. Relative WCETs and ACETs after Loop Nest Splitting

loop nest splitting are provided to aiT. The final solution
of loop nest splitting (cf. Section 3.1) is a polytopeR that
is used to generate the splitting-if. Computing the size ofR
using Ehrhart polynomials leads to the number of iterations
with a provably true splitting-if. Analogously, the number
of iterations with a false splitting-if is also computed. These
values precisely model the control flow after loop nest split-
ting and are passed to aiT as additionalflow annotations.

4. Evaluation

This section evaluates the impact of loop nest splitting
on WCET. First, the benchmarking workflow is presented in
Section 4.1. Benchmarking results are given in Section 4.2.

4.1. Benchmarking Methodology
The techniques presented in Section 3 are fully imple-

mented using SUIF [13] and Polylib [12]. Our tool was
applied to three multimedia programs: a medical tomogra-
phy image processor (CAVITY), an MPEG 4 full search mo-
tion estimation (ME, cf. Section 1) and the QSDPCM algo-
rithm for scene adaptive coding. Since all polyhedral opera-
tions have exponential worst case complexity [12], loop nest
splitting also has exponential complexity. Nevertheless, the
effective runtimes of our tool are very low (max. 1.58 CPU
seconds for CAVITY on an 1.3 GHz AMD Athlon).

The effect of loop nest splitting on the benchmark’s
WCET was quantified for an ARM7 processor, having a
32-bit wide ARM instruction set and a 16-bit THUMB ISA.
For both instruction sets, the native ARM compilersarmcc
andtcc were used to generate executables from the bench-
mark’s source codes. Compilers are always invoked with all
optimizations enabled to generate highly optimized code.

First, all source codes were compiled for both ISAs with-
out loop nest splitting applied. The resulting binaries were
analyzed with aiT [1] to obtain WCETs before our opti-
mization. In addition to the binaries, specifications of the
exact number of loop iterations are also provided to aiT. In
parallel, the same executables were processed by the cycle-
true native ARM simulator. These simulations used typical
input data, and the resulting cycle counts are considered as
the ACETs of the benchmarks in the following.

Second, loop nest splitting was applied to the bench-
mark’s source codes. The resulting optimized source codes
were processed the same way as described previously, lead-
ing to the corresponding WCETs and ACETs after loop nest
splitting. For WCET analysis of the optimized codes, spec-
ifications containing theflow annotations for loop bodies
and the splitting-if (cf. Section 3.2) are also provided.

4.2. Benchmarking Results

WCET and ACET
Figure 4 shows the effect of loop nest splitting on the bench-
mark’s WCETs and ACETs for both the ARM and THUMB
ISA. It shows the values for the optimized benchmarks as a
percentage of the unoptimized versions denoted as 100%.

Loop nest splitting reduces both ACET and WCET sig-
nificantly. Concerning ACET, improvements of 6.4% (QS-
DPCM) – 54.8% (ME) were measured for the ARM ISA.
Similarly, ACET is reduced by 11.5% (QSDPCM) – 59.4%
(ME) for the THUMB ISA. On average for all benchmarks,
ACET is reduced by 25.0% (ARM) – 30.1% (THUMB).
This clearly shows that generating homogeneous control
flow in loop nests increases average performance since a
large amount of code found in innermost loops before our
optimization is eliminated.

Figure 4 also shows that loop nest splitting reduces
WCETs by a similar order of magnitude. Here, gains reach
from 4.4% (QSDPCM) – 86.5% (ME) for the ARM ISA.
For the THUMB ISA, WCET reductions by 9.6% (QSD-
PCM) – 89.0% (ME) were reported by aiT. On average over
all benchmarks, the WCET reductions after loop nest split-
ting are significantly larger than the corresponding ACET
reductions. In terms of WCET, average improvements by
34.0% (ARM) – 36.3% (THUMB) were measured.

Even though WCET is reduced more than ACET, Fig-
ure 4 does not imply invalid WCET underestimations. This
is due to the presentation of WCETs and ACETs as a per-
centage of the unoptimized values in Figure 4. Thus, it is
legal to reduce WCET by 89% and ACET by just 59%.

These differences in the average WCETs and ACETs are
due to the huge improvements of WCET for the ME bench-

100%

1000%

10000%

100000%

1000000%
CAVITY ME QSDPCM Average

ARM7 ARM-Mode ARM7 THUMB-Mode

Figure 5. Relative WCETs after Loop Nest
Splitting without Flow Annotations

mark. For CAVITY and QSDPCM, WCET reductions scale
with the corresponding ACET improvements. This shows
that the achievable gains in terms of WCET also depend on
the overall structure of the unoptimized benchmark’s code.

E. g., ME and QSDPCM have similar structures (cf. Fig-
ure 1). The varying WCET reductions of both benchmarks
are caused by the structure of thethen- andelse-blocks of
the if-statements. For ME, boththen-blocks just contain
assignments of constants to a variable, whereas bothelse-
blocks contain complex array accesses and address compu-
tations. Since these address computations use division and
modulo operators, calls to runtime libraries are generated.
For QSDPCM, the situation is vice versa – thethen-blocks
are more complex than theelse-blocks.

This difference makes the WCET path contain both
else-parts for the unoptimized ME, whereas it contains the
then-parts for QSDPCM. After loop nest splitting, the new
WCET path contains thethen-part of the splitting-if for both
benchmarks. For ME, thisthen-part now just contains the
assignments of constants. Thus, the optimized WCET path
of ME no longer contains the costly address computations,
leading to the very high gains reported here. For QSDPCM,
thethen-part of the splitting-if still contains the complex ad-
dress computations after optimization. Hence, this complex
code still lies on the WCET path resulting in not as high
WCET reductions as compared to ME.

Impact of Flow Facts on WCET
Figure 5 depicts the benefits of the flow facts gathered dur-
ing loop nest splitting. It shows the results of WCET anal-
ysis of the benchmarks after loop nest splitting, but without
precisely annotating the splitting-if for aiT (cf. Section 3.2).
Results are presented in a relative way such that the 100%
baseline represents the WCETs before loop nest splitting.

Obviously, the flow facts computed during loop nest
splitting are essential for effective WCET reduction. With-
out them, aiT can not compute tight WCETs for the opti-
mized control flows. For all benchmarks, WCETs without
flow facts are worse than WCETs before the optimization.
For ME, WCET degrades between 4% (THUMB) – 231%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%
CAVITY ME QSDPCM Average

ARM7 ARM-Mode ARM7 THUMB-Mode

Figure 6. Relative Code Sizes after Loop Nest
Splitting

(ARM). For QSDPCM, WCETs without flow facts are even
worse: they increase between 743% – 767% compared to
the unoptimized WCETs. For CAVITY, WCETs increase
between 113,031% (ARM) – 113,953% (THUMB) if aiT
does not have any knowledge on the splitting-if.

Code Size
Since code is replicated, loop nest splitting obviously in-
creases code sizes. However, Figure 6 shows that these
increases are limited. To measure code sizes, the size of
the text sections in bytes was extracted from the bench-
mark’s ELF binaries before and after loop nest splitting.
For CAVITY, code sizes increase by 19.9% (ARM) – 15.9%
(THUMB). Although ME is accelerated most, its code en-
larges least by just 5.8% (ARM) – 8.1% (THUMB). Fi-
nally, QSDPCM enlarges between 7.9% (ARM) – 10.5%
(THUMB). On average over all benchmarks, code size in-
crease by just 11.2% (ARM) – 11.5% (THUMB).

For fine tuned embedded systems with hard constraints
on both WCET and code size, such increases might be a se-
vere drawback. However, loop nest splitting offers inherent
opportunities for solving this problem since it is perfectly
suited for trading off WCET with code size increases.

Loop nest splitting places a splitting-if likeif (x >=

10 || y >= 14) in the y-loop (cf. Figure 2), since this
is the innermost loop the splitting-if directly depends on.
Copies of the remainingk-, l -, i - and j -loops are placed
within the splitting-if. Since the splitting-if does not de-
pend on these remaining index variables by definition, it is
always legal to place the splitting-if in any of these loops.
This way, portions of code replicated by loop nest splitting
are reduced on the one hand. On the other hand, smaller
WCET reductions will be achieved since moreif-statements
are executed, leading to the mentioned trade-off.

Figure 7 shows the corresponding Pareto curves for ME
and QSDPCM. The x-axis shows the benchmark’s relative
WCETs, the y-axis shows the corresponding relative code
sizes (100% = unoptimized codes). Each point is labeled
with the loop now holding the splitting-if. The code ver-
sions used to generate all previously presented results are

100%

101%

102%

103%

104%

105%

106%

107%

108%

109%

110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%

Relative WCET

R
e

la
ti

v
e

C
o

d
e

S
iz

e
y

y
vx

l
k y4

x4

vy

ji

Figure 7. Possible WCET / Code Size Trade-Offs for Loop Nest Splitting

marked withy (ME and QSDPCM). As expected, they lead
to the lowest WCETs and largest code sizes. Code versions
j (ME) and y4 (QSDPCM) are the slowest but smallest
ones. In between these two extremal points, other inter-
esting solutions for loop nest splitting can be found.

These experiments show that it is worthwhile to study
possible trade-offs when applying loop nest splitting under
tight code size constraints. A more systematic study than
that presented here resulting in an automated approach to
explore WCET / size trade-offs is part of the future work.

5. Conclusions
This paper puts the previously presented loop nest split-

ting optimization in the context of WCET. The optimization
removes control flow redundancies in multimedia applica-
tions. Using polytopes, conditions without effect on the
control flow are removed. Genetic algorithms identify itera-
tion space ranges where allif-statements are provably satis-
fied. The source code of an application is rewritten such that
the total number of executedif-statements is minimized.

It has turned out that loop nest splitting is highly bene-
ficial for WCET optimization. This is due to the fact that
the quality of WCET analysis inherently depends on a pre-
cise description of the control flow of an application un-
der analysis. On the one hand, precise high-level flow facts
representing e. g. loop iterations have to be provided. On
the other hand, assembly-level jumps modifying the control
flow are hard to analyze since the conditions under which
a jump is taken or not are difficult to analyze resulting in
imprecise worst-case assumptions.

The benefits of loop nest splitting on WCET are twofold.
First, the optimization by itself produces a very linear and
homogeneous control flow in the hot-spots of an appli-
cation. As a consequence, the potential for applying the
imprecise worst-case assumptions mentioned above during
WCET analysis of the time-critical parts of a code is heav-
ily reduced. Second, loop nest splitting inherently computes
execution frequencies of all relevant control flow constructs
during its analyses. These execution frequencies can di-
rectly be used to formulate precise loop and flow annota-
tions for the WCET analyzer.

The results presented in this paper underline the effec-
tiveness of loop nest splitting. In terms of average-case ex-
ecution times, it achieves improvements between 25.0% –
30.1%. However, even larger average gains are reported
in terms of WCET. Here, reductions between 34.0% and
36.3% were measured for an ARM7 based processor.

In the future, we intend to integrate loop nest splitting
into our WCET-aware C compiler [4]. Due to its multi-
objective capabilities, it is perfectly suited to systematically
explore the WCET / size trade-offs of loop nest splitting.

Acknowledgments
The authors would like to thank AbsInt Angewandte In-

formatik GmbH for their support concerning WCET analy-
sis using the aiT framework.

References
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case Execution

Time Analyzers.http://www.absint.com/ait, 2005.
[2] D. F. Bacon, S. L. Graham et al. Compiler Transformations for

High-Performance Computing.ACM Computing Surv., 26(4), 1994.
[3] P. Clauss and V. Loechner. Parametric Analysis of polyhedral Iter-

ation Spaces.Journal of VLSI Signal Processing, 19(2), July 1998.
[4] H. Falk and P. Lokuciejewski. Design of a WCET-Aware C Com-

piler. In Proc. of “6th Intl. Workshop on WCET Analysis” (WCET),
Dresden, July 2006.

[5] H. Falk and P. Marwedel. Control Flow driven Splitting of Loop
Nests at the Source Code Level. InProc. of DATE, Munich, Mar.
2003.

[6] H. Falk and P. Marwedel.Source Code Optimization Techniques
for Data Flow Dominated Embedded Software. Kluwer Academic
Publishers, Boston, Oct. 2004.

[7] H. Falk and M. Verma. Combined Data Partitioning and Loop
Nest Splitting for Energy Consumption Minimization. InProc. of
SCOPES, Amsterdam, Sept. 2004.

[8] S. Gupta, M. Miranda et al. Analysis of High-level Address Code
Transformations for Programmable Processors. InProc. of DATE,
Paris, 2000.

[9] B. W. Kernighan and D. M. Ritchie.The C Programming Language.
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[10] N. Liveris, N. D. Zervas et al. A Code Transformation-Based
Methodology for Improving I-Cache Performance of DSP Appli-
cations. InProc. of DATE, Paris, 2002.

[11] S. S. Muchnick.Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, 1997.

[12] D. K. Wilde. A Library for doing polyhedral Operations. Tech.
Rep. 785, IRISA Rennes, France, 1993.

[13] R. Wilson, R. French et al. An Overview of the SUIF Compiler
System.http://suif.stanford.edu/suif/suif1, 1995.

