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Abstract. Memory hierarchies are known to be the energy bottleneck of portable
embedded devices. Numerous memory aware energy optimizations have been
proposed. However, both the optimization and the validation is performed in an
ad-hoc manner as a coherent compilation and simulation framework does not
exist as yet. In this paper, we present such a framework for performing memory
hierarchy aware energy optimization. Both the compiler and the simulator are
configured from a single memory hierarchy description. Significant savings of
upto 50% in the total energy dissipation are reported.

1 Introduction

Contemporary portable devices are experiencing an ever-increasing spiral of feature en-
hancement and device convergence. Today’s mobile devices, besides acting as phones,
also serve as PDA, MP3 player, digital camera and also as a video game console. Fast
processors, large memories and aggressive energy optimization techniques are required
to support all the aforementioned features in a portable device. It is expected that fu-
ture devices will have even faster processors and larger memories, both of which are
extremely power hungry. As a consequence, a lot of research effort is being directed
towards energy optimizations.

The memory subsystem has been identified as the energy and performance bottle-
neck of the entire system. This problem is expected to aggravate in the future as the
performance gap between the processor and the memory is growing. This phenomenon
is also known as the “Memory Wall Problem” [1]. Memory hierarchies are constructed
to improve the energy dissipation and the performance of the memory subsystem. In
addition, the application is optimized to efficiently utilize the memory subsystem.

In order to perform a fast and efficient design space exploration, a coherent frame-
work for code-optimization and system simulation is required: A framework which
can optimize the application code for a given memory hierarchy and also evaluate the
optimization by simulating the optimized executable on the same memory hierarchy.
Unfortunately, most contemporary memory optimizations are performed at the source-
level with a complete disregard to the compiler generating the executable. Often, the
simulation framework is also a stopgap solution such that every new memory hierarchy
requires manual intervention and recompilation of the entire simulation framework.
In this paper, we present a coherent framework called Memory Aware C Compilation
(MACC) framework.

Figure 1 presents the workflow of the MACC framework. The MACC framework is
partitioned into the compilation and the simulation framework, both of which share the
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Fig. 1: Workflow of MACC Framework

memory hierarchy description and the energy database. The compilation framework,
depending upon the memory hierarchy, optimizes the application code and generates
the executable binary. This binary is then simulated and profiled by the simulation
framework and the system statistics are reported. These statistics are used to evalu-
ate the system and the optimizations. The main advantages of the MACC framework
are that it includes the only energy optimizing compilation framework known to the re-
search community and a highly configurable processor independent memory hierarchy
simulator. We start by explaining the compilation framework of the MACC framework.

2 Compilation Framework
The compilation framework shown in the upper half of Figure 1 provides the user with a
rich set of memory optimizations. It optimizes the energy consumption of the system by
efficiently utilizing the memory hierarchy. Besides the application source file, it requires
the memory hierarchy description file, an XML representation of the memory hierar-
chy, as input. The memory hierarchy can also be designed by the user with the help of
a GUI (cf. Section 4.1 for additional details). In addition, the compilation framework
has access to the energy database which contains the instruction-level energy model of
the processor as well as the energy and timing models of various memories. The com-
pilation framework supports the ARM7 processor and includes numerous memory op-
timizations supporting memoriesviz., SRAM/Scratchpad, Cache, Loop Cache, DRAM
and Flash. The framework is being extended to support an ARM based Multi-processor
SoC [2]. The compilation framework is divided into the following tools:

1. Source-Level Memory Optimizers:performs memory related optimization at the
source code level.

2. Front-End:converts the application source code into an intermediate representation
(IR) and performs several traditional optimizations (e.g.dead code elimination)

3. Code Selector:converts the IR into the assembly code of the application and per-
forms several low-level optimizations (e.g.peephole optimization).

4. Memory Optimizer:performs most of the memory optimizations in cooperation
with the linker to generate the executable binary of the application.
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The memory aware compilation framework started as a research endeavor and has ma-
tured into a fairly stable framework. It is based upon ICD-C [4] and Lance [5] com-
pilation frameworks. It supports all ANSI-C data types and can compile and optimize
applications from Mediabench, MiBench, DSPStone and UTDSP benchmark suites.
The framework includes the a large number of standard compiler optimization, some of
them are: Dead Code Elimination (DCE),Common Subexpression Elimination (CSE),
Copy Propagation (CP), Constant Folding (CF), etc.

The objective of the compilation framework is to generate energy efficient code.
Therefore, the compiler generates 16-bit Thumb mode code for ARM processor. Au-
thors in [6] demonstrated that the 16-bit Thumb assembly code is 30% more energy
efficient than the usual 32-bit mode code. The framework provides a rich selection of
memory aware energy optimizations. All optimizations are performed on the set of
memory objects (MO). A memory object is a part of the application program (e.g.vari-
able, array tile, function, basic block etc.) whose mapping onto the memory hierarchy
enables various memory optimizations. Subsections 2.1 and 2.2 describe the source-
level and the backend memory optimizations, respectively.

2.1 Source-Level Memory Optimizer

The source-level memory optimizer is the highest level optimization phase of the com-
pilation framework. It includes several optimizations also present in the backend mem-
ory optimizer, albeit at a coarser granularity level. The main benefit of the source-level
optimizer is its inherent retargetability. The optimized application can be compiled for
any other processor resulting in similar gains. Besides scratchpad allocation strategies,
two new optimizations included in the optimizer arearray partitioningandarray tiling.
The array partitioning approach partitions the large arrays found applications into two
smaller arrays such that one of them allocated to the scratchpad. The array tiling ap-
proach generatestiles (sub-arrays of equal size) and overlays them onto the scratchpad.

The source-level memory optimizer is based primarily on the ICD-C framework.
It features a lossless object oriented intermediate representation for C programs. Most
important for our optimizer is the capability to write out the IR to a file conforming to
the C standard. The set of memory objects considered by the optimizations consists of
global variables and functions. The memory optimizer includes the following optimiza-
tions:

1. Non-Overlayed Scratchpad Allocation [7]
2. Scratchpad Overlay (with support for DMA) [8]
3. Array Partitioning [9]
4. Array Tiling

The first two approaches are also present in the backend memory optimizer and will be
presented in detail in the following section. The focus ofarray partitioningapproach
are applications containing large arrays which are accessed through irregular index
functions. These arrays cannot be allocated onto small and energy efficient scratch-
pad memories. Consequently, thearray partitioning approach divides the large array
into two smaller partitions such that the allocation of one of the two partitions to the
scratchpad memory is guaranteed. Additionally, the application source code is modi-
fied such that the irregular index functions correctly access the two array partitions. If
the application under consideration contains only arrays with affine index functions,
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thearray tiling optimization can be used. It generates several equal sized partitions or
tiles of the arrays. These tiles are then swapped in and out of the scratchpad memory at
runtime, based upon their live-ranges.

2.2 Backend Memory Optimizer

The backend memory optimizer includes numerous optimizations for various memo-
ries. Unlike most of the current approaches, the optimizations consider both the data
and instructions for optimization. The memory optimizer includes optimizations for
scratchpad, instruction cache, loop-cache, DRAM and Flash memory. Scratchpad allo-
cation approaches reduces the energy dissipation of the system through the improved
utilization of the scratchpad memory. Trace generation based instruction cache opti-
mization is used to improve the spatial locality of the application.

The backend memory optimizer is the last optimization step of the compilation
framework. It works in conjunction with the assembler and the linker and produces the
optimized executable by mapping all the memory objects to the assigned memories. The
optimizations are performed at a finer level than in the source level memory optimizer
as the set of memory objects is composed of global variables, basic blocks and the stack.
Some of the important memory optimizations are enumerated below:

1. Non-Overlayed Scratchpad Allocation [7]
2. Partitioned Scratchpad Allocation [10]
3. Scratchpad Overlay (with DMA support) [8]
4. Instruction Cache Optimization [11]
5. Pre-loaded loop cache Optimization [11]
6. DRAM memory optimization [12]
7. XIP Flash Memory Optimization [12]

Non-overlayed scratchpad allocation [7] maps the best set of memory objects onto
the scratchpad memory which remain allocated onto the scratchpad for the entire execu-
tion time of the application. Each memory objectmohas two parameters: (a)Epro f it(mo)
quantifies the energy reduction that can be achieved by assigning the memory object on
the scratchpad memory and (b)size(mo) returns the size of the memory object. The best
set of memory objects is chosen such that the total energy benefit is maximized and the
aggregate size of the memory objects in the best set is less than the scratchpad size. The
allocation problem can be formulated as the following:

Maximize: ETotal
pro f it = ∑moEpro f it(mo)∗ xmo

xmo∗ size(mo) ≤ ScratchpadSize∀mo∈ MO xmo∈ {0,1}
It can be easily seen that the non-overlayed scratchpad allocation is the well-known
knapsack problem. If a number of partitioned scratchpad memories are being used in-
stead of one single scratchpad, additional savings are possible since smaller memories
are faster and consume less energy per access. The above equations have to be reformu-
lated to take into account the increased freedom of allocating the memory objects to a
number of scratchpad memory partitions. Additionally, the leakage energy dissipation
of a large number of scratchpad memories was also studied in our experiments to let the
compiler choose those memory partitions that are most profitable in order to minimize
the overall system energy dissipation.
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Thescratchpad overlayoptimization uses the fact that a memory object is not re-
quired by the application for its entire execution time. In other words, memory objects
also havelive-ranges. Therefore, memory objects with non-conflicting live-ranges can
be assigned to the same location onto the scratchpad. The approach also takes into ac-
count the spilling of memory objects to the main memory in order to maximize the total
energy reduction. The overlay approach [8] was found be similar to theglobal register
allocationapproach and both optimal and near-optimal solutions were presented

The memory optimizations [11] for a cache based architecture are also present in
the backend memory optimizer. The included approaches improve the spatial locality
of the application code by generatingtraces. Additionally, scratchpad and loop cache
allocation approaches are also included. These approaches utilize a scratchpad or a
loop-cache as an instruction buffer and map the instruction sequences to minimize the
number of cache misses and the total energy dissipation of the system.

If a DRAM main memory is used in the system, considering per-access costs for
memory accesses is insufficient due to the state-dependent behavior of a dynamic RAM.
A corresponding energy model is integrated into our evaluation framework. It also sup-
ports the power management features commonly found in DRAM chips today. This can
be exploited in an optimization that allocates memory objects to a scratchpad memory
in order to maximize the time that the main DRAM memory can be kept in the power
down state.

Most embedded systems today carry Flash memories to permanently store configu-
ration information or the application’s binary code. In contrast to the prevailing “Store-
and-Download” approach, where code and data is first copied and then accessed from
the faster main memory, the “eXecute-In-Place” (XIP) feature allows the memory ob-
jects to be accessed directly from the Flash memory. The corresponding optimization
determines a trade-off between the copy costs and the slower Flash memory access
times. The main benefit of this optimization is that it significantly reduces the main
memory requirements of the system.

3 Energy Database

A fine-grained, accurate and exhaustive energy database is an essential component
of the entire MACC framework. An evaluation board (AT91EB01) [13] featuring an
ARM7 processor was chosen to generate an accurate energy database. Current mea-
surements were performed on the board to determine an instruction level energy model
for the ARM7 processor. A measurement based energy model was also determined for
the SRAM main memory of the board. The energy model for the processor and the
memory was found to be 98% accurate [14]. Behavioral energy models for memories
have also been found to be very accurate. Consequently, we used behavioral models for
the memories whose current consumption could not be measured. The accurate energy
model for the MPSoC, accounting for the processors, memories and the interconnect,
was obtained from ST Microelectronics.

4 Simulation Framework

The presented simulation framework allows simulation of a system consisting of an
ARM7 processor attached to a customizable memory hierarchy. The processor simula-
tor provided by ARM Ltd. is used to generate the instruction trace. The instruction trace



6

Fig. 2: Example MEMSIM memory hierarchy configuration

is fed into the memory simulator which simulates the specified memory hierarchy. The
profiler accesses the instruction trace, the memory simulator and the energy database to
compute the system statistics (e.g. execution time in CPU cycles and energy dissipated
by the processor and the memory hierarchy). In addition, it computes the application
statistics (e.g. number and type of accesses to each global variable). Currently, we are
integrating the ARM-based MPSoC [2] into the simulation framework.

4.1 Memory Simulator

In order to efficiently simulate different memory hierarchy configurations, a flexible
memory hierarchy simulator (MEMSIM) was developed. Memory regions with dif-
ferent access characteristics, a number of different cache parameters, loop caches and
scratchpad memories are currently supported. MEMSIM reads the XML description of
the memory hierarchy and a memory access trace of a program. The development of
MEMSIM enabled us to overcome limitations of pure instruction set simulation and
also of the currently available cache and memory simulation frameworks. The technical
requirements for MEMSIM, e.g. cycle true simulation, flexibility and configurability
were achieved by using object oriented design principles in the design and implemen-
tation phase. All components of the memory hierarchy are derived from one uniform
base class, which enables the easy and seamless integration of memory models into the
simulation framework.

While a variety of cache simulators are available, none of them seemed suitable for
an in-depth exploration of the design space of a memory hierarchy. In addition, scratch-
pad memories, loop caches and DRAM memories should also be considered. This flex-
ibility is missing in previously published memory simulation frameworks which tend
to focus on one particular component of the memory hierarchy. Therefore, the develop-
ment of a new memory simulator, called MEMSIM, was necessary. To avoid the high
complexity of implementing a cycle-true instruction set simulator for a particular pro-
cessor, MEMSIM runs as a post-pass to processor simulation. The sequence of executed
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instructions and memory accesses is fed into MEMSIM and the accesses to each mem-
ory is computed accordingly. By encapsulating the trace reader functions in classes of
their own with a defined interface, it is possible to use a variety of available processor
simulators by only adjusting the internal implementation of the trace reader functions.

All components of the simulated memory hierarchy are implemented as abstract
components. All instantiated components inherit from this virtual base class and im-
plement the functionality required to perform as a part of the memory hierarchy. To
connect the different components to each other, the concept of so-called hubs is used.
Using hubs, it is only necessary to consider the connection of each memory component
to its neighboring hub, which in turn connects to other memory components. An ex-
ample memory hierarchy is shown in Figure 2. A graphical user interface is provided
so that the user can comfortably select the components that should be simulated in the
memory hierarchy. The GUI generates a description of the memory hierarchy in the
form of an XML file which is then processed by MEMSIM in order to instantiate the
memory components, connect and simulate them.

4.2 MPSoC Simulator

The MPSoC simulation framework, presented in Figure 3, is a SystemC based cycle
true simulator. It is capable of simulating a runtime configurable number of processing
units, which are connected through a single bus to memories and I/O devices. The most
common setup is to use a simulation of an ARM7 core for the processing unit, and an
AMBA bus simulation for the interconnection. There are also other combinations of
buses (i.e. STbus) and processing units available.

As shown in the figure, each ARM-based processing unit has its own private mem-
ory, which can be a unified cache or separate caches for data and instructions. A wide
range of parameters may be configured, including the size, associativity and the num-
ber of wait states. Beside the cache, a scratchpad memory of configurable size can
be attached to each processing unit. The recent development of the simulator targets
the hardware requirements in streaming media applications, therefore offering “smart
memories” which are basically scratchpad memories accompanied by DMA units.

The MPSoC simulator does not support a configurable multilevel memory hierar-
chy. The memory hierarchy consists of caches, scratchpads and the shared main mem-
ory. Currently, an effort is being made to integrate MEMSIM into the simulator. Finally,
it provides a number of semaphores which may be used to synchronize inter-processor
communications.

The simulator offers various reporting and tracing facilities. At the lowest level it
may report waveform diagrams of the performed bus actions. It is further able to report
memory access traces. This feature is most important for the integration into the MACC
simulation framework. Beside the simple access based trace files, sophisticated statistic
may be generated, including precise information about the amount of cycles spent in
bus actions, processing and waitstates.

4.3 Profiler

The profiler uses trace file, memory hierarchy simulator and computes the access to
each memory in the memory hierarchy. These accesses are then mapped to timing and
energy models of the processor and the memories to compute the execution time and the
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Fig. 5: SPM overlay vs. Cache based system

energy dissipation of entire system during the execution a given application. The pro-
filer also contains a mapping of the memory objects present in the application source
code and their addresses in the application executable. Therefore, the profiler is able to
back-annotate each fetched or executed address within the system to the corresponding
memory object. This enables the profiler to gain in-depth knowledge about the applica-
tion and the system under simulation. This extensive information as a tabulated report
file is then presented back to the users. Some of the contents of the report file are enu-
merated below:

1. Energy consumption, number of accesses and size of every function and basic block
2. Energy consumption, number of accesses and size of every variable
3. Execution order of the basic blocks
4. Energy Consumption and number of accesses to each memory
5. Energy Consumption of the processor
6. Number of executed instruction and execution time (CPU Cycles)

5 Experimental Results

In this section, we first compare the scratchpad overlay and the non-overlayed scratch-
pad allocation approaches. The values shown in Figure 4 are average values over vary-
ing scratchpad size in the range of 128 to 1024 bytes. According to the figure, applying
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a more sophisticated allocation strategy, which takes into account the temporal distri-
bution of memory object usages, results in a significant reduction in energy consump-
tion and execution time. Average reductions of more than 40% and 20% in the energy
dissipation and the execution time, respectively, of theedge detectionbenchmark are
reported.

Furthermore a comparison of the scratchpad overlay memory optimization tech-
nique included in the MACC against a cache based system is presented in Figure 5.
Similar to the previous figure, these are average values for each benchmark obtained by
varying scratchpad and cache sizes in the range of 128 to 1024 bytes. In this case as
well, the scratchpad overlay approach demonstrates energy savings of over 30% for the
adpcmbenchmark. Average performance improvement of about 20% is also reported
for the same benchmark.

The memory optimization using the scratchpad as an instructions buffer achieves
significant energy and runtime savings compared to the preload loop cache optimiza-
tion. The memory optimizations reduces the number of conflict cache misses while the
loop cache optimization buffers frequently executed instructions. In this particular case,
we achieve energy savings of about 50% and execution time reductions of close to 20%
for thempegbenchmark. The results are illustrated in Figure 6.

Exploiting the reduced energy dissipation of a DRAM memory in the power down
state leads to significant energy savings. By allocating memory objects to a scratch-
pad memory in such a way as to maximize the power down periods of the DRAM main
memory, substantial energy savings of up to 80% compared to a system without scratch-
pad memory and no power down times for the used DRAM were achieved. Since both
allocation results and obtainable savings are similar to the static scratchpad allocation
scheme that uses energy per access as the cost function (in contrast to maximizing the
power down time of the main memory), no specific results are given for the sake of
brevity.

Figure 7 shows the obtained results when the Flash memory used in an embedded
system is capable of executing code using the XIP technique. An intrapage access time
of 20ns is assumed for the used Flash memory. The leftmost bar shows the percentual
amount of DRAM main memory that is still required despite also using Flash memory
to execute instructions: for thempegbenchmark, 65% of the previously used DRAM
main memory is not required when XIP is being used. The gains concerning energy and
performance of XIP compared to an execution from the faster DRAM are marginal, as
shown by the second and third bars in the figure. For thempegbenchmark, both the
energy dissipation and the number of executed cycles are reduced by a maximum of
about 2%. This shows that the large savings with respect to the required main memory
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capacity do not incur any overhead concerning energy or performance for the consid-
ered setup. Taking into account that the amount of main memory is an important cost
factor for embedded systems, the exploitation of XIP functionality should be considered
during the design and optimization of embedded systems.

6 Conclusions & Future Work

In this paper, we presented the MACC framework, a coherent compilation and simu-
lation framework for performing and evaluating memory aware energy optimizations.
The framework features an energy optimizing compilation framework for the Uni- or
Multi-process ARM SoCs and a highly configurable simulation framework. In addition
to optimization of the application for a given memory hierarchy, the framework enables
fast and efficient memory hierarchy design space exploration. In the future, we would
like to extend the MACC framework for homogeneous and heterogeneous MPSoCs.

Additional information and a complete list of publications concerning MACC can
be found at [3].
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