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Abstract—In the context of mobile embedded devices, reducing
energy is one of the prime objectives. Memories are responsible
for a significant percentage of a system’s aggregate energy con-
sumption. Consequently, novel memories as well as novel-memory
architectures are being designed to reduce the energy consump-
tion. Caches and scratchpads are two contrasting memory archi-
tectures. The former relies on hardware logic while the latter relies
on software for its utilization. To meet different requirements,
most contemporary high-end embedded microprocessors include
on-chip instruction and data caches along with a scratchpad.
Previous approaches for utilizing scratchpad did not consider
caches and hence fail for the contemporary high-end systems.
Instructions are allocated onto the scratchpad, while taking into
account the behavior of the instruction cache present in the
system. The problem of scratchpad allocation is solved using a
heuristic and also optimally using an integer linear programming
formulation. An average reduction of 7% and 23% in processor
cycles and instruction-memory energy, respectively, is reported
when compared against a previously published technique. The
average deviation between optimal and nonoptimal solutions was
found to be less than 6% both in terms of processor cycles and
energy. The scratchpad in the presented architecture is similar to
a preloaded loop cache. Comparing the energy consumption of
the presented approach against that of a preloaded loop cache,
an average reduction of 9% and 29% in processor cycles and
instruction-memory energy, respectively, is reported.

Index Terms—Memory hierarchy, memory management,
optimizing compilers, SRAM chips.

I. INTRODUCTION

OVER THE PAST decade, the popularity of mobile em-
bedded devices such as mobile phones, digital cameras,

MP3 players, etc., has been the one of the major forces driving
the technology. The computing power of early computers is
now available in a handheld device, exemplifying the progress
made by silicon technology. Unfortunately, in comparison, the
advances made in battery technology are diminutive. As a
result, contemporary mobile embedded systems suffer from
limited battery capacity. Rather than increasing the battery
capacity, it is preferable to reduce the energy consumption,
since it translates to reduced dimensions, weight, and cost of
the device. In such a competitive market, these reductions might
be sufficient to provide the product an edge over competing
products.
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Fig. 1. Energy consumption and access time as function of memory size.

Several researchers [4], [17] have identified the memory
subsystem as the energy bottleneck of the entire system. In fact,
fetches to the instruction memory typically account for much
of a system’s power consumption [10]. The larger the memory,
the larger the access times and the energy consumed per access.
Fig. 1 displays the energy consumption and the access times of
a static RAM (SRAM) memory as a function of its size. Note
that the energy consumption per access shown in Fig. 1 differs
by a factor of up to α = 24, whereas the access times differ
by a factor of up to β = 2.7. Consequently, memory hierar-
chies are being constructed to reduce the memory subsystem’s
energy dissipation. Caches and scratchpad memories (SPMs)
represent two contrasting memory architectures. Caches im-
prove performance by exploiting temporal and spatial locality
present in the program. As a consequence, energy consumption
is also reduced. However, caches are not an optimal choice
for energy-constrained embedded systems, since they consist
of two additional components besides the data memory [23].
The first component is the tag memory required for storing
information regarding the valid addresses. The second compo-
nent is the hardware comparison logic for determining cache
hits and cache misses. These additional components consume
a significant amount of energy per access to the cache irre-
spective of whether the access translates to a hit or a miss.
Moreover, caches are known for their notoriously unpredictable
behavior [11].

On the other end of the spectrum are the scratchpad mem-
ories, consisting of just data memory and address decoding
circuitry. Due to the absence of the tag memory and the com-
parison hardware, scratchpad memories require considerably
less energy than a cache [3]. Fig. 2 compares the energy
consumption per access of scratchpads and caches of varying
associativity. It is obvious that the scratchpad consumes the
least energy per access. Moreover, a 2-kB scratchpad consumes
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Fig. 2. Energy consumption of caches and scratchpad memories (SPMs).

Fig. 3. System architecture: (a) scratchpad and (b) loop cache.

about one quarter (1/4) energy per access than a four-way
set-associative cache of the same size. In addition, scratchpad
memories require less on-chip area and allow tighter bounds on
worst case execution time (WCET) prediction of the system.
However, unlike caches, scratchpads require complex program
analysis and explicit support from the compiler. In order to
strike a balance between these contrasting approaches, most
of the high-end embedded microprocessors (e.g., ARM11 [1],
ColdFire MCF5 [16]) include both on-chip caches and a
scratchpad.

Many contemporary embedded systems are also real-time
systems. For such systems, it is necessary to guarantee meeting
real-time constraints. As a consequence, WCET information
must be derived to prove that the real-time system possesses
the required properties. In some cases, it is possible to prove
that caches improve the WCET. However, formal methods
employed to determine whether the current access to the cache
results in a hit or a miss have been found to be fairly restrictive
and imprecise. To make matters worse, caches with random re-
placement policy are being used in embedded systems, making
it necessary to assume a cache miss on every access. Modeling
conflict relationships between instruction and data in a unified
cache is also difficult. On the other hand, scratchpads, unlike
caches, are completely predictable. Due to fact that the contents
of the scratchpad are controlled by the software, it is possible
to compute tighter bounds on the WCET.

We assume a memory hierarchy as shown in Fig. 3(a) and
utilize the scratchpad for storing instructions. The decision
to store only instructions is motivated by the fact that the
instruction memory is accessed on every instruction fetch
and the size of programs for mobile embedded devices is
smaller compared to their data size requirements. This implies
that small scratchpad memories can achieve greater energy
savings when they are filled with instructions rather than

with data. Moreover, contemporary high-end microprocessors
(e.g., ARM11 [1]) feature separate dedicated scratchpad mem-
ories for data and instructions. In this paper, we model the
cache behavior as a conflict graph and allocate objects onto the
scratchpad considering their effect on the I-cache. As shown
later, the problem of finding the best set of objects to be
allocated on the scratchpad can be formulated as a nonlinear
optimization problem. Under simplifying conditions, it can be
reduced to either a weighted vertex cover [9] or a knapsack
[9] problem, both of which are known to be NP-complete
problems. An optimal solution is obtained by formulating the
scratchpad-allocation problem as an integer linear program-
ming (ILP) problem, while a near-optimum solution is also
obtained by using a heuristic. We compare our approach against
a published technique [20]. Due to the presence of an I-cache in
our architecture, the previous technique fails to produce optimal
results. In the following section, we demonstrate, with the aid
of an example, that the previous technique may even lead to the
problem of cache thrashing [11]. This argument is strengthened
by observing (cf., Section VII) a similar behavior for a real-life
benchmark.

We also compare our approach to that of preloaded loop
caches [10], as the utilization of the scratchpad in the current
setup (see Fig. 3) is similar to a loop cache. Preloaded loop
caches are architecturally more complex than scratchpads, but
are less flexible as they can be preloaded with only a limited
number of loops/functions. We demonstrate that using our al-
location algorithms, scratchpad memories can outperform their
complex counterparts.

In the next section, we mention related work, and in
Section III, with the help of an example, describe the short-
comings of previous approaches. Section IV provides the infor-
mation regarding memory objects (MOs), cache behavior, and
the energy model. Section V presents the scratchpad-allocation
problem in detail, followed by a description of the proposed
heuristic and the ILP formulation. The experimental setup is
explained in Section VI. In Section VII, we present the results
for an ARM-based system and end the paper with a conclusion
and future work.

II. RELATED WORK

Analytical energy models for memories [12] have been found
to be fairly accurate. We use cacti [24] to determine the energy
per access for caches and preloaded loop caches. A recent paper
[25] found that cacti accurately models the energy consumption
of an 0.18-µm cache. The energy per access for scratchpad
memories was determined using the model presented in [3].

Application-code-placement techniques [18], [21] were de-
veloped to improve the cycles per instruction (CPI) by reducing
the number of I-cache misses. Those basic blocks that are fre-
quently executed in a contiguous way are combined to form so-
called traces. The authors in [18] placed traces within functions,
whereas those in [21] placed them across function boundaries
to reduce the number of I-cache misses.

Most of the research on scratchpad utilization [2], [6], [13],
[17] has focused on allocating data elements onto the scratch-
pad. The authors in [2] and [17] statically allocated global/local
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variables on the scratchpad, whereas the authors in [6] and
[13] looked at the possibility of dynamically copying the data
elements from the main memory onto the scratchpad.

Steinke et al. [20] demonstrated the obvious benefits that
can be achieved by allocating both program and data ele-
ments memory objects to the scratchpad memory. They as-
sumed a memory hierarchy composed of only scratchpad and
main memory. Profit values were assigned to program and
data elements according to their execution and access counts,
respectively. They then formulated a knapsack problem to
determine the best set of memory objects to be allocated to the
scratchpad memory.

Though this approach is sufficiently accurate for the used
memory hierarchy, it is not suitable for the current setup.
The assumption that execution (access) counts are sufficient to
represent energy consumption by a MO fails in the presence
of a cache, where execution (access) counts have to be de-
composed into cache hits and misses. The energy consumption
of a cache miss is significantly larger than that of a cache
hit. Consequently, two memory objects can have the same
execution (access) counts, yet have substantially different cache
hit/miss ratio, and hence energy consumption. This discussion
stresses the need for a more detailed model taking these effects
into account. In addition, maintaining the conflict relationships
between memory objects is not considered during code place-
ment using the previous approach. Memory objects are moved
instead of copying them from main memory to the scratchpad.
As a result, the layout of the entire program is changed, which
may cause a completely different cache access pattern, and thus
lead to erratic results.

The authors in [14] proposed an instruction buffer to act
as an alternative location for fetching instructions in order to
improve the energy consumption of a system. Loops identified
by the short backward branch at the end of the first iteration
are copied to the instruction buffer during the second iteration.
From the third iteration onwards, instructions are fetched
from the instruction buffer instead of the L1 I-cache, given
that no change-of-flow (e.g., branch) statements are contained
within the loop. To overcome this limitation, Gordon-Ross
and Vahid [10] proposed a preloaded loop cache that can
be statically loaded with preidentified memory objects. Start
and end addresses of the memory objects are stored in the
controller, which on every instruction fetch determines whether
to access the loop cache or the L1 I-cache. Consequently, the
preloaded loop cache can be allocated with complex loops as
well as functions. However, to keep the energy consumption
of the controller low, only a small number of memory objects
(typically 2–6) can be preloaded. The property of being able to
store only a fixed number of memory objects in the loop cache
leads to problems for large programs with several hot spots. As
in [20], memory objects are greedily selected only on the basis
of their execution-time density (execution time per unit size).

In the wake of the above discussion, we enumerate the
contributions of this paper.

1) It studies for the first time the combined effect of a
scratchpad and an I-cache on the memory system’s en-
ergy consumption.

2) It stresses the need for a sophisticated allocation al-
gorithm by demonstrating the inefficiency of previous
algorithms when applied to the present architecture.

3) It presents a novel scratchpad-allocation algorithm that
can be easily applied to a host of complex memory
hierarchies.

4) It demonstrates that scratchpads along with an allocation
algorithm can replace loop caches.

Please note that in the rest of this paper, energy consumption
refers to the energy consumption of the instruction-memory
subsystem. In the following section, we describe some prelimi-
nary information required for understanding our approach.

III. MOTIVATION

We assume a system consisting of an I-cache and a main
memory as the only memories comprising of the instruction-
memory subsystem. Given a weighted control flow graph
(CFG), a layout of CFG nodes in the main memory, and
an execution trace, we analyze the behavior of the I-cache
and compute the energy consumed by the instruction-memory
subsystem. Later, we add a scratchpad into the instruction-
memory subsystem and statically allocate the scratchpad using
a previous approach [20]. Due to the fact that this approach does
not model an I-cache present in the system, it leads to erratic
results. This demonstrates the negative implications of using an
allocation that does not model caches present in the system and
serves as a motivation for the techniques presented in this paper.

Before we start, we make a few assumptions. Firstly, for
the sake of simplicity, the size of each basic block, as well as
of each cache line, is assumed to be one word. However, the
algorithm is general enough to handle basic blocks and cache
lines of all sizes. Secondly, moving a basic block within the
memory hierarchy does not modify the size of any other basic
block. Lastly, we assume that a cache hit and a cache miss
consumes 1 and 10 units of energy, respectively. Moreover, both
the accesses to the loop cache and to the scratchpad cost 0.5
energy units. We would like to state that these assumptions are
added for the sake of the clarity and that they apply only to the
motivating example.

A. Motivating Example

Fig. 4 shows a weighted CFG, main memory layout, an
instruction cache, and an execution trace for the program. The
nodes of the CFG represent the corresponding basic blocks
present in the application code. The edges connecting nodes
represent possible flow of control during the execution of the
program. The nodes and edges of the CFG are weighted accord-
ing to the corresponding execution frequencies during a typical
execution of the program. The main memory layout shows the
relative location as well as the absolute addresses of each basic
block in the main memory. The instruction cache is a direct-
mapped cache of size four words. Hypothetical energy values
for a cache hit (ECache_Hit) and a cache miss (ECache_Miss)
are also given. These energy values are representative of a typ-
ical miss–hit energy ratio (ECache_Miss/ECache_Hit) found in
embedded systems. The execution trace represents an example
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Fig. 4. Motivating example.

TABLE I
ENERGY VALUES

execution of the program at the granularity of the basic blocks.
The execution trace reveals that the right arm (i.e., B2, B5,
B6, B7) of the loop is executed nine times before the left
arm (i.e., B2, B3, B4, B7) is executed once. The execution of
the right arm followed by that of the left arm is repeated for
ten times before the end of the execution. According to the
main memory layout and the modulo addressing (2 mod 4 ≡
6 mod 4 ≡ 2) employed by caches, we observe that nodes B3
and B5 will share the same cache line. The same holds true
for nodes B4 and B6. During the execution of the program,
nodes B3 and B4 will constantly replace nodes B5 and B6 in
the cache leading to an aggregate of 40 conflict cache misses.
Table I shows the number of accesses, the number of misses,
and the energy consumption of each memory object. The total
energy consumption of the program amounts to 760 units.

B. Example (Steinke’s Approach)

As represented in Fig. 5, we have introduced a scratchpad
into the system. The scratchpad will be statically loaded using
the approach [20] presented by Steinke et al., which assumes
energy consumption to depend solely upon execution frequen-
cies. Consequently, in order to maximize the energy savings, the
approach selects the nodes with the highest execution frequen-
cies to be moved onto the scratchpad. If we assume that the size
of the scratchpad is one cache line, we find that the approach
can choose between node B2 or B7. Both nodes have equal

Fig. 5. Motivating example (Steinke’s approach).

TABLE II
ENERGY VALUES FOR SCRATCHPAD (ONE WORD)

TABLE III
ENERGY VALUES FOR SCRATCHPAD (TWO WORDS)

execution frequency, higher than all the other nodes. Assuming
that node B7 is moved and not copied to the scratchpad, the
modified memory layout is shown in Fig. 5. It can be observed
from the figure that in the modified memory layout, nodes
B2 and B5 will share the same cache line. Upon execution,
nodes B2 and B3 will constantly replace nodes B5 and B6
in the cache, respectively, leading to a total of 200 conflict
cache misses. Consequently, the aggregate energy consumption
(refer to Table II) rises steeply to 2150 units, which is about
three times larger than that of the system without a scratch-
pad. The present situation in which frequently executed nodes
(B2 and B5) recurrently replace each other in the cache is
known as cache thrashing.

Let us assume that we have a scratchpad of size 2 cache
lines present in the system. Then, the approach [20] will move
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Fig. 6. Motivating example (loop-cache approach).

TABLE IV
ENERGY VALUES FOR LOOP CACHE (ONE WORD)

nodes B2 and B7 onto the scratchpad. While the number of
accesses to the scratchpad doubles, the number of cache misses
remain constant at 40. The aggregate energy consumption for
the present setup, as shown in Table III, is 660 units.

C. Example (Loop-Cache Approach)

Let us assume a system with a preloaded loop cache (refer to
Fig. 6) with a capacity of one cache line is present. Also, the
preloaded loop cache is assumed to be able to accommodate
only one loop. According to the allocation strategy of preloaded
loop caches [10], only loops and functions can be fully or
partially allocated to the loop cache. Moreover, allocation of
loops or functions can only begin from the starting basic block
and can only be extended to the contiguous basic block in
memory. Finally, loops and functions that are preloaded onto
the loop cache are copied instead of moved. As a consequence,
the program memory layout remains invariant. In the presented
system, the loop cache will be preloaded with node B2. As
shown in Table IV, the number of cache misses remains pegged
at 40 and the aggregate energy consumption of the system is
710 units.

Let us assume that we have a loop cache of size 2 cache
lines present in the system. According to the allocation strategy,
nodes B2 and B3 will be allocated to the loop cache. In the
present setup, the number of cache misses (cf. Table V) is
reduced to 20 and the total energy consumption is 525 units.

TABLE V
ENERGY VALUES FOR LOOP CACHE (TWO WORDS)

Fig. 7. Motivating example (proposed approach).

TABLE VI
ENERGY VALUES FOR SCRATCHPAD (ONE WORD)

D. Example (Proposed Approach)

We will now demonstrate the effectiveness of our approach
for a system containing a scratchpad along with an I-cache.
Our approach uses a precise energy model based on cache hits
and cache misses. Consequently, our approach chooses the most
energy-consuming basic blocks for allocation to the scratchpad.
Our approach also keeps the program memory layout invariant
(cf. Fig. 7) by copying basic blocks on the scratchpad and re-
placing the basic blocks in the main memory by No-Operation
(NOP) instructions. Assuming that a scratchpad of size 1 cache
line is present, then our approach would choose the most
energy-consuming node to be allocated to the scratchpad. From
Table I, we observe that both nodes B5 and B6 consume the
maximum amount of energy. Consequently, our approach can
choose between one of the two nodes. As shown in Table VI,
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TABLE VII
ENERGY VALUES FOR SCRATCHPAD (TWO WORDS)

Fig. 8. Workflow of scratchpad-allocation algorithms.

this reduces the number of cache misses by half, and the
aggregate energy consumption is also reduced to 535 units.

Next, we assume that we have scratchpad of size 2 cache
lines present in the system. In this case, both nodes B5 and B6
are copied to the scratchpad by our approach. Consequently,
our approach eliminates all cache misses, and thus minimizes
the energy consumption. The energy consumption of the system
(cf. Table VII) is 310 units, the minimum compared against all
the previously presented approaches.

IV. PRELIMINARIES

We start by describing the assumed architecture for the cur-
rent research work. Before explaining the technique in detail, an
overview is provided in Section IV-B. The generation of MOs
is described in the following section. The interaction of MOs
within the cache is represented using a conflict graph, which
forms the basis of the proposed energy model and the algorithm.

A. Architecture

In this paper, we assume a Harvard architecture [see
Fig. 3(a)] with the scratchpad at the same horizontal level as the
L1 I-cache. The scratchpad is mapped to a region in the proces-
sor’s address space and acts as an alternative noncacheable
location for fetching instructions. Instruction fetches that do
not access the scratchpad address space are accessed through
the cache. The data cache shown in Fig. 3(a) is irrelevant since
in the present paper, only instructions are being utilized for
preloading the scratchpad. However, we would like to extend
the present approach to allocate data along with instructions to

the scratchpad. As shown in Fig. 3(b), the preloaded-loop-cache
setup is similar to using a scratchpad.

B. Workflow

The scratchpad-allocation algorithms presented in the fol-
lowing sections are based upon the workflow shown in Fig. 8.
The first step of the proposed approaches is trace genera-
tion. This step works upon the input CFG and the profil-
ing information to generate traces [21]. A trace possesses
the property of being independent of other traces. In other
words, placement of a trace at any location in the memory
hierarchy does not affect any other trace. Consequently, a
trace is assumed to be an atomic unit of the approach and
is referred to as a memory object. The second step analyzes
the interaction of MOs within the cache. The behavior of the
cache is modeled as a conflict graph with nodes denoting
the MOs and edges between two nodes denoting the conflict
relationship between two corresponding MOs. In the third
step, an accurate energy model is used to compute the energy-
consumption function for each MO. This information is at-
tributed to each node in the conflict graph. Finally, based upon
the conflict graph, the scratchpad-allocation algorithm deter-
mines a mapping of MOs. MOs are mapped to noncacheable
scratchpad memory or to cacheable main memory in order
to minimize the energy consumption of the system. The ILP-
based allocation algorithm selects the MOs to be mapped to
the scratchpad in a single step. In contrast, the greedy heuristic
iterates over the conflict graph, every time removing the most
energy-consuming MO from the conflict graph and mapping
it on to the scratchpad. In the following section, we provide a
detailed description of the trace-generation step.

C. Trace Generation (MOs)

In the first step of our approach, memory objects within
the program code are identified. The well-known compiler
optimization trace generation is utilized to identify the MOs.
A trace is a frequently executed straight-line path consisting
of basic blocks connected by fall-through edges [21]. Dy-
namic profiling of the application is required to determine the
execution count of each basic block as well as information
regarding the control flow. The authors in [21] proved that the
problem of trace generation is NP-complete. Consequently, we
use a greedy heuristic similar to the one used in Trimaran’s C
compiler [22], with the only difference being that our traces are
kept smaller than the scratchpad size, as larger traces cannot be
placed on to the scratchpad. A one-to-one relationship between
cache misses and corresponding traces is ensured by appending
the traces with NOP instructions to align them to cache-line
boundaries. Due to the fact that traces always end with an
unconditional jump, these appended NOP instructions are never
executed. However, the addition of NOP instructions causes an
increase in the program size, which can be neglected under
the assumption that the main memory is usually large enough
to hold the program and is available in predetermined sizes
(e.g., 512, 1024 kB, etc.). Traces result in substantial perfor-
mance improvements due to the following couple of reasons.
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Fig. 9. Greedy heuristic for trace-generation problem.

First, the number of cache misses is reduced as frequently
executed basic blocks are coalesced to form traces. This reduces
the probability of sharing the same cache line by frequently
executed basic blocks. Second, due to the fact that jump edges
between frequently executed basic blocks are changed to fall-
through edges, traces reduce the number of pipeline stalls
caused by jump instructions. The improved performance of the
processor’s pipeline results in improved performance of the
processor. The impact of increased program size is minimal
when compared against performance improvements achieved
by trace generation.

The heuristic used to generate traces is given in Fig. 9.
It takes as input a weighted CFG and the maximum trace
size and returns a list of traces (MOs) identified from the
application. The heuristic starts with the highest weight node
and creates a new trace consisting of the current node. A trace
can be extended upwards by coalescing a parent or downwards
by coalescing a child into the trace. The heuristic makes a
greedy choice by considering only the highest weight parent
and the highest weight child as candidates for extending the
trace. However, extending the trace is feasible only if the
size of the trace after coalescing remains less than the maxi-
mum trace size. The variable choice encodes the feasibility
of extending the trace in the upward or downward direction.
The process of extending the trace continues until no valid
candidate exists or the trace cannot be extended without vio-
lating the maximum trace size constraint. After this, the trace
is appended to the list of traces. New traces are generated and

Fig. 10. Motivating example (after trace generation).

extended as long as there exists a node that is not coalesced in
any trace.

Applying the trace-generation step to the motivating
example results in the modified CFG shown in Fig. 10.
The trace-generation heuristic was applied to the weighted
CFG of Fig. 4, and the maximum trace size was assumed to
be two words. Fig. 10 represents the CFG, the main memory
layout, and the execution trace at the granularity of traces
or MOs. Let us explain the heuristic for trace generation
with the help of the CFG given in Fig. 4. In the first
iteration, node B2 is chosen as the maximum weighted node
and a new trace called T1 incorporating B2 is created. The
maximum weight parent and child (cf., line numbers 8 and 9
of Fig. 9) of node B2 are B7 and B5, respectively. The trace
T1 is extended by prepending node B7. The size of the trace
is now equal to two words, and hence cannot be extended any
further. In the second iteration of the while loop (cf., line 2 of
Fig. 9), we choose node B5 and create a new trace T2, which
is then extended by appending node B6. The CFG generated by
the trace-generation step is shown in Fig. 10.

Finally, we summarize the justification for using traces in
our approach. First, traces improve the performance of both
the cache and the processor by enhancing the spatial locality
in the program code. Second, due to the fact that traces always
end with an unconditional jump [21], they form an atomic unit
of instructions that can be placed anywhere in memory without
modifying other traces. Finally, traces are accountable for every
cache miss caused by them. In the rest of the paper, unless
specified, traces will be referred to as MOs. In the following
section, we represent the cache behavior at the granularity of
MOs by a conflict graph.

D. Cache Model (Conflict Graph)

The cache maps an instruction to a cache line according to
the following function

Map(address) = address mod
CacheSize

Associativity ∗ WordsPerLine
.

Similarly, an MO is mapped to cache line(s) depending upon
its start address and size. Two MOs potentially cause a conflict
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in the cache if they are mapped to at least one common cache
line. This relationship can be represented by a conflict graph G
(see Fig. 11), which is defined as follows.
Definition: The conflict graph G = (X,E) is an edge and

node weighted directed graph with node set X = {x1, . . . , xn}.
Each vertex xi in G corresponds to an MO in the application
code. The edge set E contains an edge eij from node xi to
xj if a cache line belonging to xj is replaced by a cache line
belonging to xi using the cache replacement policy. In other
words, eij ∈ E if there occurs a cache miss of xi due to xj .
The weight mij of the edge eij is the number of cache lines
that need to be fetched if there is a miss of xi, which occurs
due to xj . The weight fi of a vertex xi is the total number of
instruction fetches within xi.

A conflict graph is built using both static and dynamic analy-
ses of a program. A node is created for every MO identified in
the program code. The address range of every MO is analyzed.
For all pairs of MOs that share a common cache line, two
directed edges are created, connecting the corresponding nodes
in the conflict graph. The weight of each node and each edge
in the conflict graph is initialized to zero. Dynamic profiling of
the application is required to compute the real weight of each
node and each edge. Since the trace-generation step modifies
the program memory layout, the profiling information that was
used for trace generation cannot be annotated to the conflict
graph. Consequently, we again profile the application after the
trace-generation step. The total number of instruction fetches
of an MO is attributed as the weight of the corresponding node.
The number of conflict misses of MO mi caused due to MO mj

is attributed as the weight of the directed edge eij from node xi

to node xj . Finally, the graph is pruned to remove nodes and
edges with zero weights. In order to minimize the influence of
the chosen input data set on the conflict graph, average values
generated by using several distinct input vectors can be used.

The conflict graph, as shown in Fig. 11, is a directed graph
because the conflict relationship is antisymmetric. The conflict
graph has the advantage that it can precisely model a wide
range of cache memories. Any cache with a fixed set of
parameters (e.g., associativity, size, replacement policy, etc.)
can be represented using a conflict graph. The conflict graph
G and the energy values are utilized to compute the energy
consumption of an MO according to the energy model proposed
in the following section.

E. Energy Model

As mentioned before, all energy values refer to the energy
consumption of the instruction-memory subsystem. The energy
E(xi) consumed by an MO xi is expressed as

E(xi)=
{

ESP(xi), if MO xi is present on the scratchpad
ECache(xi), otherwise

(1)

where ECache can be computed as

ECache(xi) = Hit(xi) ∗ ECache_hit + Miss(xi) ∗ ECache_miss

(2)

Fig. 11. Cache model (conflict graph).

where functions Hit(xi) and Miss(xi) return the number of hits
and misses, respectively, while fetching the instructions of MO
xi. ECache_hit is the energy of a hit and ECache_miss is the
energy of a miss in one line of the I-cache

Miss(xi) =
∑

xj∈Ni

Miss(xi, xj) with

Ni = {xj : ∀j eij ∈ E} (3)

where Miss(xi, xj) denotes the number of conflict cache misses
of MO xi caused due to conflicts with MO xj and corresponds
to the weights of the edge eij in the conflict graph. The neighbor
set of MO xi is represented by Ni in the above equation. The
sum of the number of hits and misses is equal to the number of
instruction fetches fi within an MO xi

fi = Hit(xi) + Miss(xi). (4)

For a given input data set, the number of instruction fetches fi

within an MO xi is a constant and is independent of the memory
hierarchy. Substituting the terms Miss(xi) from (3) and Hit(xi)
from (4) in (2) and rearranging derives

ECache(xi) = fi ∗ ECache_hit

+
∑

xj∈Ni

Miss(xi, xj) ∗ (ECache_miss − ECache_hit). (5)

The first term in (5) is a constant while the second term,
which is variable, depends on the overall program code layout
and the memory hierarchy. We would like to point out that
the approach [10] only considered just the constant term in its
energy model, and thus could not optimize the overall memory
energy consumption. Since there are no misses when an MO
xi is present in the scratchpad, we can deduce the following
energy equation:

ESP(xi) = fi ∗ ESP_hit (6)

where ESP_hit is the energy per access to the scratchpad.

V. PROBLEM FORMULATION

Once we have created the conflict graph G annotated with
vertex and edge weights, the energy consumption of MOs can
be computed. Now, the problem is to select a subset of MOs that
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minimizes the number of conflict edges and the overall energy
consumption of the system. The subset should be bounded in
size by the scratchpad size.

In order to formally describe the algorithm, we need to define
a number of variables. The binary variable l(xi) denotes the
location of MO xi in the memory hierarchy

l(xi) =
{

0, if MO xi is present on the scratchpad
1, otherwise

. (7)

Since an MO allocated to the scratchpad does not conflict with
other MOs, we can represent Miss(xi, xj) as follows

Miss(xi, xj) =
{

0, if MO xj is present on the scratchpad
mij , otherwise

(8)

where mij is the weight of the edge eij connecting vertex xi

to xj . Function Miss(xi, xj) can be reformulated using the
location variable l(xj) and represented as

Miss(xi, xj) = l(xj) ∗ mij . (9)

Similarly, the location variable l(xi) can be used to reformulate
the energy equation (1) denoting the energy consumed by the
MO.

E(xi) = [1 − l(xi)] ∗ ESP(xi) + l(xi) ∗ ECache(xi). (10)

We substitute the energy equations for ECache and ESP from (5)
and (6), respectively, into the above equation. By rearranging
the terms, we transform (10) into

E(xi) = fi ∗ ESP_hit + fi ∗ [ECache_hit − ESP_hit] ∗ l(xi)

+ [ECache_miss − ECache_hit]

∗

 ∑

j∈Ni

l(xj) ∗ l(xi) ∗ mij


 . (11)

We find that the last term is a quadratic-degree term, since
the number of misses of an MO xi not only depends upon
its location but also upon the location of the conflicting MOs
xj . The objective function ETotal denoting the total energy
consumed by the system needs to be minimized.

ETotal =
∑

xi∈X

E(xi). (12)

Minimization of the objective function is to be performed while
conforming to the scratchpad-size constraint.

∑
xi∈X

[1 − l(xi)] ∗ S(xi) ≤ ScratchpadSize. (13)

The size S(xi) of MO xi is computed without considering
the appended NOP instructions. The NOP instructions were
only appended to align MOs to cache-line boundaries. Since

scratchpad is a noncacheable memory, these NOP instructions
are stripped away from the MOs prior to allocating them to the
scratchpad. The underlying assumption in the problem formula-
tion is that no new edges in the conflict graph or no new conflict
relationships are created when an MO is mapped to the non-
cacheable scratchpad. This assumption can be partially fulfilled
by keeping the program memory layout invariant. However, the
assumption may fail for certain graphs with circular edge de-
pendences. Solving the nonlinear optimization problem results
in a scratchpad allocation optimized with respect to energy.

Our problem formulation can be easily extended to handle
complex memory hierarchies. For example, if we had more
than one scratchpad at the same horizontal level in the memory
hierarchy, then we only need to repeat (13) for every scratchpad.
An additional constraint ensuring that an MO is assigned to at
most one scratchpad is also required.

The above optimization problem is related to two NP-
complete problems, viz., weighted vertex cover [9] and knap-
sack [9] problem. Let us make the simplifying assumption that
the cache present in the system is large or high-associative
enough to hold all the MOs such that not a single conflict
cache miss occurs. The energy consumption of an MO under
the above assumption becomes independent of other MOs, and
the problem is reduced to a knapsack problem with each node
having constant weights. On the other hand, if we assume that
the energy of an access to the scratchpad ESP_hit is equal to
the energy of a cache hit ECache_hit, (11) transforms to the
following form and the problem is reduced to the weighted
vertex cover problem

E(xi) = fi ∗ ESP_hit + [ECache_miss − ECache_hit]

∗

 ∑

j∈Ni

l(xj) ∗ l(xi) ∗ mij


 . (14)

Fortunately, approximation algorithms can be employed to
obtain near-optimum solutions in polynomial time. We will
propose two techniques to solve the problem optimally as well
as near optimally. In the following section, we will present an
ILP-based technique to solve the problem optimally. After that,
we will present a greedy heuristic that solves the scratchpad-
allocation problem near optimally with a better runtime
complexity.

A. Integer Linear Programming (ILP)

In order to formulate a 0–1 ILP problem, we need to linearize
the scratchpad-allocation problem. This can be achieved by re-
placing the nonlinear term l(xi) ∗ l(xj) of (11) by an additional
binary variable L(xi, xj)

E(xi) = fi ∗ ESP_hit + fi ∗ [ECache_hit − ESP_hit] ∗ l(xi)

+ [ECache_miss − ECache_hit]∗

 ∑

j∈Ni

L(xi, xj) ∗ mij


. (15)
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Fig. 12. Greedy heuristic for scratchpad-allocation problem.

In order to prevent the linearizing variable L(xi, xj) from as-
suming arbitrary values, the following linearization constraints
have to be added to the set of constraints

l(xi) − L(xi, xj) ≥ 0 (16)

l(xj) − L(xi, xj) ≥ 0 (17)

l(xi) + l(xj) − 2 ∗ L(xi, xj) ≤ 1. (18)

The objective function ETotal and the scratchpad-size con-
straint remain unchanged in the current formulation

ETotal =
∑

xi∈X

E(xi) (19)

∑
xi∈X

[1 − l(xi)] ∗ S(xi) ≤ ScratchpadSize. (20)

A commercial ILP Solver [7] is used to obtain an optimal
subset of MOs that minimizes the objective function. The num-
ber of vertices |X| of the conflict graph G is equal to the number
of MOs, which is bounded by the number of basic blocks in the
program code. The number of linearizing variables is equal to
the number of edges |E| in the conflict graph G. Hence, the
number of variables in the ILP problem is equal to |X| + |E|
and is bounded by O(|X|2). The actual runtime of the used
ILP solver [7] was found to be less than a second on a Sun-
Blade 100 running at 500 MHz for a conflict graph containing
455 vertices. The computation times may be expected to in-
crease if noncommercial tools (e.g., lp_solve [5]) are used. In
the following section, we describe the greedy heuristic utilized
for obtaining near-optimum solutions.

B. Greedy Heuristic

The proposed greedy heuristic tries to put maximum
weighted nodes on the scratchpad. It takes as input the conflict
graph and the scratchpad size and returns the list of MOs to
be allocated onto the scratchpad. The heuristic is presented
in Fig. 12.

The heuristic iteratively computes the energy consumption
of each MO that can be placed on the scratchpad memory,
considering not only execution counts but also the number of
conflict cache misses caused by other MOs. The maximum
energy vertex to be allocated to the scratchpad is then greedily
selected. This vertex is removed from the conflict graph G

Fig. 13. Experimental workflow.

and appended to the list L, and the unallocated scratchpad size
(Rem_SPSize) is reduced appropriately.

An MO present in the scratchpad does not conflict with the
MOs present in the cache. The energy of the conflicting MOs
is thus reduced by removing the vertex and the adjacent edges
from the conflict graph. The energy consumption of an MO
xi is computed according to the energy model proposed in
Section IV-E. The heuristic iterates as long as there exists an
MO that can be placed on the scratchpad without violating
the scratchpad-size constraint. On termination, a list of MOs
to be allocated onto the scratchpad is returned. The time
complexity of the heuristic is O(ScratchpadSize ∗ (|X| + |E|))
if we precompute and store the energy consumption of each
MO xi at the end of each “while loop” iteration. In the next
section, we describe the experimental setup used for conducting
experiments.

VI. EXPERIMENTAL SETUP

The experimental setup consists of an ARM7T processor
core, on-chip instruction and data caches, an on-chip scratch-
pad, and an off-chip main memory. We perform extensive
experiments on direct-mapped as well as on two- and four-
way set-associative instruction caches of varying sizes. We
determine the effect of scratchpad-allocation techniques on
the energy consumption of the instruction-memory subsystem.
The cacti cache model [24] was used to calculate the energy
consumption per access to a cache, loop cache, and scratchpad
memory, and all are assumed to be on chip and use 0.5-µm
technology. The loop cache was assumed to hold a maximum of
four loops. The energy consumption of the main memory was
measured from our evaluation board [19]. The time to access
off-chip and on-chip memories (I-cache, D-cache, scratchpad,
and loop cache) was assumed to be ten CPU cycles and one
CPU cycle, respectively.

Experiments were conducted according to the workflow pre-
sented in Fig. 13. In the first step, the benchmark programs
are compiled using an energy-aware C compiler (ENCC) [8].
Trace generation [21] is a well-known I-cache performance-
optimization technique, and hence, for a fair comparison,
traces are generated for all the allocation techniques. In the
following step, the scratchpad-allocation algorithm is applied,
which can either be the greedy heuristic (cf., Section V-B), the
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ILP-based allocation algorithm (cf., Section V-A), or Steinke’s
scratchpad-allocation algorithm [20]. The generated machine
code is then fed into the instruction set simulator from advanced
RISC machines (ARM) Ltd. [1] to obtain the instruction trace.
The instruction trace is fed into a cycle accurate memory hierar-
chy simulator (MEMSIM) [15]. On the basis of the instruction
trace, the memory hierarchy, and the energy-cost model, it
computes the number of CPU cycles and the aggregate energy
consumed by the memory subsystem.

For the loop-cache configuration, the loop cache is preloaded
with the loops and functions selected by Ross’s allocation
algorithm [10]. The memory subsystem consists of an I-cache,
a preloaded loop cache, and the main memory. The energy
consumption of the memory subsystem is again computed by
using our memory-hierarchy simulator [15].

VII. RESULTS

A subset of benchmarks from the Mediabench suite was
used to substantiate our claims concerning energy savings
using the proposed algorithm. The benchmarks along with
their corresponding program size are mentioned in Table VIII.
Experiments were conducted by varying the size of the scratch-
pad/loop cache as well as the size and the associativity of the
I-cache present in the system, while the I-cache line size was
kept constant at 16 B. The number and the type of accesses
to every memory in the hierarchy was counted by the memory
simulator. Based on this information and the energy model
presented in Section IV-E, the energy consumption of the
instruction-memory subsystem was computed. The number of
CPU cycles spent during the execution of the benchmarks was
also determined.

In the following section, we first determine the most energy-
efficient I-cache architecture for the mpeg benchmark. Next,
we demonstrate that by the addition of a scratchpad, far better
energy savings can be achieved even with a smaller instruction-
memory hierarchy. In Section VII-C, we demonstrate that in
order to achieve energy savings along with the addition of a
scratchpad, an efficient allocation algorithm is also required.
A comparison between the proposed allocation algorithm
(cf., Section V-A) and a known allocation algorithm [20] under
varying I-cache parameters is presented in Section VII-D. In
Section VII-E, experimental results are presented to determine
the best scratchpad size for a given I-cache configuration. A
comparison between the scratchpad allocated with the pro-
posed optimal algorithm and the loop cache is presented in
Section VII-F. We end the experimental section by an overall
comparison of the scratchpad allocated with all the mentioned
allocation algorithms and the loop cache in Section VII-G.

A. Energy-Efficient Instruction-Cache Architecture

In the current section, we assume that the instruction-
memory hierarchy consists of an I-cache and the main memory.
Experiments are conducted to determine the most energy-
efficient I-cache for the mpeg benchmark by varying the size
and the associativity of the I-cache. The energy consumption
of the instruction-memory subsystem is computed using the
memory-hierarchy simulator [15]. Fig. 14 presents the energy

TABLE VIII
MEDIABENCH BENCHMARKS

Fig. 14. Energy consumption of instruction memory for mpeg.

consumption as a function of the size for three different set-
associative I-caches. From Fig. 14, it is easy to observe that for
each associativity, the energy consumption of the instruction-
memory subsystem monotonically decreases down to the mini-
mum point with the increase in the I-cache size. Thereafter, the
energy consumption increases with further increase in size. This
happens because a large cache would cause a reduced number
of cache misses but would also require a large energy per
access. The minimum energy points represent the most energy-
efficient I-cache size for each associativity. It is easy to observe
that I-caches of size 2, 4, and 8 kB are the minimum energy
sizes for four- and two-way set-associative and direct-mapped
I-caches, respectively. Moreover, from Fig. 14, we observe that
the 8-kB direct-mapped I-cache is the most energy-efficient
I-cache configuration for the mpeg benchmark. Next, we justify
the addition of a scratchpad in the memory hierarchy.

B. Benefits of Instruction-Cache- and
Scratchpad-Based Systems

Experiments for the present section were conducted as-
suming that the instruction-memory subsystem comprises a
scratchpad along with an I-cache and the main memory. The
scratchpad is allocated with the ILP-based optimal algorithm
presented in Section V-A. Fig. 15 represents the relative energy
consumption of the instruction-memory subsystem consisting
of a 512- or 1024-B scratchpad. The energy consumption of the
most energy-efficient memory hierarchy found in the previous
section is represented as the 100% baseline. There are a couple
of important observations to be made from Fig. 15. First, except
for the 1-kB four-way I-cache, the energy consumption of the
system with a 1024-B scratchpad is always better than that
of the system with the most energy-efficient I-cache. Second,
the energy consumption of the system with 1-kB I-cache and
1 kB of scratchpad is about 60% of the energy-efficient 8-kB
I-cache-based system. Consequently, the effectiveness of the
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Fig. 15. Comparison of energy consumption of I-cache + scratchpad versus
8-kB I-cache for mpeg.

Fig. 16. Cache behavior for epic benchmark.

Fig. 17. Cache behavior for mpeg benchmark.

scratchpad-based system is demonstrated by the fact that the en-
ergy consumption of the system with the most energy-efficient
I-cache can be reduced to 60% by a memory hierarchy whose
aggregate on-chip size (2 kB) is merely 25% of the on-chip
size of the original memory hierarchy. In the following section,
we stress the need for an effective allocation algorithm for a
scratchpad-based instruction-memory subsystem.

C. Comparison of Scratchpad-Allocation Algorithms

We will start by demonstrating the negative implications of
not modeling a cache by Steinke’s approach. Fig. 16 displays
the number of I-cache misses and the energy consumption of
the epic benchmark using Steinke’s algorithm and the proposed
ILP-based algorithm. In order to enable a better apprecia-
tion of the results, the number of cache misses and energy-
consumption values are presented as percentages of a 100%
baseline. The baseline in Fig. 16 represents the number of cache
misses and the energy consumption of the system without a

Fig. 18. Comparison of scratchpad (ILP) against scratchpad (Steinke) for
epic.

Fig. 19. Comparison of scratchpad (ILP) against scratchpad (Steinke) for
mpeg.

scratchpad. The 100% baseline is independent of the scratchpad
size and is pegged at a constant value for all the experiments.
From Fig. 16, we observe that the number of cache misses
for Steinke’s approach demonstrate unpredictable behavior. At
128 B of scratchpad, the number of cache misses are slightly
higher than the baseline, but are lower for 256 B. However, at
512 B, a steep rise in the number of cache misses is observed.
This phenomenon of excessive increase in cache misses is
known as cache thrashing, and also causes an increase in the
energy consumption of the system. On the other hand, the
number of cache misses and the energy-consumption values
monotonically decrease with the increase in scratchpad size for
our proposed method. This characteristic behavior of our ap-
proach originates from the precise cache and energy models. A
similar behavior of Steinke’s algorithm for the mpeg benchmark
can be observed from Fig. 17. Again, the baseline represents
the number of cache misses and the energy consumption of
the mpeg benchmark on a system without a scratchpad. For
Steinke’s algorithm, the energy consumption is higher than
the baseline for scratchpad sizes of 128 and 256 B. The high
number of cache misses for these scratchpad sizes nullify any
gains achieved by the use of an energy-efficient scratchpad.

A detailed comparison of all the parameters of the
instruction-memory subsystem is presented to enable a better
appreciation of the results. Figs. 18 and 19 display the energy
consumption of the instruction-memory subsystem with all the
respective parameters (i.e., scratchpad accesses, cache accesses,
and cache misses) of the ILP-based proposed algorithm for
the epic and the mpeg benchmarks, respectively. The last
column of the figures displays the execution time of the two
benchmarks in terms of CPU cycles. A direct-mapped I-cache
of size 1 and 2 kB is assumed to be present in the system for the
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Fig. 20. Energy consumption of ILP and Steinke’s algorithm for mpeg. (a) 1-kB direct mapped (DM) I-cache. (b) 4-kB DM I-cache.

Fig. 21. Energy consumption of ILP and Steinke’s algorithm for mpeg. (a) 1-kB two-way I-cache. (b) 2-kB two-way I-cache.

epic and the mpeg benchmarks, respectively. The results of the
proposed algorithm are compared against the corresponding
results of Steinke’s algorithm [20]. Unlike the baseline of
Fig. 16, the 100% baseline in Fig. 18 represent the varying
experimental values achieved by Steinke’s algorithm for each
scratchpad size. However, it enables a direct comparison of
the proposed approach against Steinke’s approach at each
scratchpad size. It should be noted that the I-cache misses and
the energy consumption of the system (see Fig. 16) for the
proposed approach decreases monotonically with the increase
in the scratchpad size.

From Fig. 18, it is interesting to note that in spite of the higher
I-cache accesses and lower scratchpad accesses, the pr oposed
algorithm reduces energy consumption against Steinke’s algo-
rithm. The substantially lower I-cache misses are able to over-
compensate for higher I-cache accesses and result in reduced
energy consumption. The justification for this behavior is that
Steinke’s algorithm tries to reduce energy consumption by in-
creasing the number of accesses to the energy-efficient scratch-
pad. In contrast, our algorithm reduces energy-consuming
I-cache misses by assigning conflicting MOs to the scratchpad.
Since on every cache miss, the slow and power-hungry main
memory is accessed, avoiding cache misses is beneficial both in
terms of energy and performance. For the mpeg benchmark, our
algorithm achieves up to 80% reduction in I-cache misses and,
as a consequence, results in substantial savings in energy and
execution time. The algorithm, on the average, conserves 26%
and 42% energy against Steinke’s algorithm for the epic and the
mpeg benchmarks, respectively. A reduction of 14% in CPU
cycles is also reported for the mpeg benchmark. However, at
1024 B, the reduction in energy consumption and the execution
time using our algorithm is minimal. The reason for this

behavior is that the scratchpad of size 1024 B is large enough
to hold all important MOs and, as a consequence, the solution
sets of the previous approach as well as our approach are fairly
similar. Next, we compare the two allocation algorithms by
varying the size and the associativity of the I-cache.

D. Modifying Instruction-Cache Parameters

Up to this point, we compared the scratchpad-allocation al-
gorithms for epic and mpeg benchmarks for systems containing
direct-mapped I-caches of 1 and 2 kB, respectively. Now, we
compare the proposed ILP-based allocation algorithm against
Steinke’s algorithm for the mpeg benchmark for the systems
with different I-cache configurations. The considered I-cache
configurations include 1- and 4-kB direct-mapped I-caches and
two- and four-way set-associative I-caches of size 1 and 2 kB.

Fig. 20(a) and (b) presents the energy consumption of the
system whose scratchpads are allocated using the two allocation
algorithms (viz., ILP and Steinke’s) for the mpeg benchmark.
Fig. 20(a) presents the energy-consumption values of the sys-
tem containing 1-kB direct-mapped I-cache, while Fig. 20(b)
presents those of the system with 4-kB direct-mapped I-cache.
The proposed allocation algorithm always leads to a more
energy-efficient allocation than that obtained using Steinke’s
algorithm. On average, the optimal solution leads to an energy
reduction of 35% over Steinke’s algorithm for a system with
1-kB direct-mapped I-cache. An even higher average energy
reduction of 41% is reported for the system with 4-kB direct-
mapped I-cache.

Fig. 21(a) and (b) presents the comparison of the pro-
posed allocation algorithm and Steinke’s algorithm for the
systems with 1 and 2 kB of two-way set-associative I-cache,
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Fig. 22. Energy consumption of ILP and Steinke’s algorithm for mpeg. (a) 1-kB four-way I-cache. (b) 2-kB four-way I-cache.

Fig. 23. Determining optimal scratchpad size for mpeg. (a) DM I-cache. (b) Two-way I-cache. (c) Four-way I-cache.

respectively. In Fig. 21(b), Steinke’s algorithm again displays
unpredictable behavior, as it leads to an increase in cache misses
for the 128-B scratchpad. The proposed algorithm performs
better than Steinke’s algorithm, although the reduction in en-
ergy consumption is less than that achieved for direct-mapped
I-caches. This behavior is justified as the two-way set-
associative I-caches result in a hit ratio of more than 99% for
the mpeg benchmark. Nevertheless, the algorithm achieves the
maximum energy savings of 19% and 24% against Steinke’s
algorithm for 1- and 2-kB I-caches, respectively.

The last set of Fig. 22(a) and (b) presents the compari-
son of the allocation algorithms for 1- and 2-kB four-way
set-associative I-cache-based systems, respectively. For high
associative I-caches, the number of conflict cache misses are
substantially less than those for low associative I-caches. Con-
sequently, very few conflict edges are present in the conflict
graph, which are used to model the behavior of MOs present in
the I-cache. As discussed in Section V, our allocation problem
reduces to the knapsack problem, which also forms the basis
of Steinke’s approach. Under these conditions, the allocation
of the MOs achieved by the proposed approach is similar to
that achieved by Steinke’s approach. This is corroborated by
energy-consumption values presented in Fig. 22.

E. Determining Optimal Scratchpad Size

In the experiments presented so far, MOs were efficiently
allocated onto the given memory hierarchy, consisting of a
scratchpad and an I-cache memory. In the current section,
we present the results of the experiments conducted to de-
termine the optimal scratchpad for the mpeg benchmark. The
experimental results also determine the set of pareto-optimal

scratchpads for the mpeg benchmark. The experiments were
conducted by increasing the scratchpad size from 128 B to
8 kB, and the energy consumption of the system was computed.
The scratchpad present in the system was allocated using the
algorithm presented in Section V-A. Fig. 23(a) presents the
energy consumption of the system with a direct-mapped I-
cache and a varying scratchpad. Additional experiments were
conducted by also varying the size and the associativity of
the I-cache memory. Fig. 23(b) and (c) presents the energy
consumption of the systems consisting of two- and four-way
set-associative I-caches, respectively.

From Fig. 23, we observe that the energy consumption of
the system decreases as we increase the scratchpad size till
it reaches the minimum point. Any further increase in the
scratchpad size also increases the energy consumption of the
system. As shown in Fig. 23(a), the minimum energy point
occurs at 1 kB of scratchpad memory for a 4-kB direct-mapped
I-cache-based system. However, for systems with 1- and 2-kB
direct-mapped I-caches, 2 kB of scratchpad memory leads to
the minimum energy consumption. Similarly, for two- and four-
way set-associative I-cache-based systems [cf., Fig. 23(b) and
(c)], the minimum energy consumption occurs when 2 kB of
scratchpad memory is present in the system. Scratchpad mem-
ories larger than the minimum energy configuration scratchpad
memory are an unattractive option as compared to an I-cache.
The high energy per access to the large scratchpad memory
offsets the gains that can be achieved by allocating more MOs
to the scratchpad. Consequently, the algorithm allocates more
MOs to the I-cache and less to the large scratchpad memory.

The benefits of performing the above set of experiments are
threefold. Firstly, we are able to study the variation in the energy
consumption of the system with the increase in scratchpad size.
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Fig. 24. Comparison of scratchpad (ILP) against loop cache (Ross) for epic.

Fig. 25. Comparison of scratchpad (ILP) against loop cache (Ross) for mpeg.

It is interesting to observe that 2 kB of scratchpad memory
forms the minimum energy configuration in all but one I-cache
configurations. However, the energy consumption of the re-
maining configuration (1-kB scratchpad and 4-kB I-cache)
is the global minimum energy-consumption value. Secondly,
we are able to determine the range of scratchpad sizes that
would be interesting for a system designer to perform design-
space exploration. For the mpeg benchmark, the minimum
energy-consumption scratchpad size is 1 or 2 kB. Consequently,
scratchpad memories between 128 B and 1 or 2 kB form the set
of energy-efficient (pareto-optimal) scratchpad sizes that allow
a tradeoff between the on-chip area and the energy consumption
of the system. Scratchpads larger than 2 kB consume more on-
chip area and also result in increased energy consumption of the
system. Hence, they are not part of the energy-efficient range of
scratchpad sizes. Finally, an iterative or a binary search-based
algorithm can be employed for determining the optimal scratch-
pad size for a given I-cache-based architecture. In the following
section, scratchpad-based systems are compared against loop-
cache-based systems.

F. Comparison of Scratchpad and
Loop-Cache-Based Systems

In the present section, we compare the energy savings
achieved by a scratchpad-based system against those achieved
by a preloaded-loop-cache-based system. The scratchpad is
allocated using the ILP-based algorithm while the preloaded
loop is allocated using Ross’s algorithm [10]. Figs. 24 and 25

Fig. 26. Energy comparison of ILP, heuristic, Steinke’s, and Ross’s algorithms
for epic.

display the energy consumption of the instruction-memory sub-
system and CPU cycles for the epic and the mpeg benchmarks,
respectively. The number of scratchpad accesses, I-cache
accesses, as well as the I-cache misses are also displayed in
the figures. All results are shown as percentages of the corre-
sponding parameters of Ross’s algorithm. Similar to Fig. 18,
the values of 100% baseline vary for each loop-cache size. The
size of the loop cache was assumed to be equal to the size of
the scratchpad, even though a loop cache requires more area
than a scratchpad due to the presence of a controller. For small
scratchpad/loop-cache sizes (128 and 256 B), the number of ac-
cesses to the loop cache are higher than those to the scratchpad.
However, as we increase the size, the loop cache’s performance
is restricted by the maximum number of preloadable MOs.
The scratchpad, on the other hand, can be preloaded with any
number of MOs as long as their aggregate size is less than
the scratchpad size. Moreover, the number of I-cache misses
is substantially lower for all sizes if a scratchpad allocated with
our technique is used instead of a loop cache. Consequently, a
scratchpad is able to reduce energy consumption at an average
of 24% and 52% against a loop cache for the epic and the
mpeg benchmarks, respectively. Average reductions of 6% and
18% in the execution time is also reported for the epic and the
mpeg benchmarks, respectively. In the following section, we
present the overall comparison of the allocation approaches for
scratchpad- and loop-cache-based approaches.

G. Overall Comparison

In Figs. 26 and 27, we compare the energy consumption
of the epic and the mpeg benchmarks for the scratchpad- and
loop-cache-based systems. The comparison of the execution
time of the epic and the mpeg benchmarks is presented in
Figs. 28 and 29, respectively. The scratchpad is allocated
using scratchpad-allocation algorithms (viz., ILP, Heuristic,
and Steinke’s), while Ross’s algorithm is used for allocating
the loop cache. A few interesting points can be noted from
the figures. Firstly, the proposed optimal and near-optimal
scratchpad-allocation algorithms result in a monotonically de-
creasing energy consumption and execution-time behavior of
the benchmark. However, the reductions in energy consumption
are larger than those in execution time. Secondly, the energy
consumption of the benchmarks due to the heuristic is fairly
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Fig. 27. Energy comparison of ILP, heuristic, Steinke’s, and Ross’s algorithms
for mpeg.

Fig. 28. Execution-time comparison of ILP, heuristic, Steinke’s, and Ross’s
algorithms for epic.

Fig. 29. Execution-time comparison of ILP, heuristic, Steinke’s, and Ross’s
algorithms for epic.

close to the optimal energy consumption achieved by the ILP-
based algorithm. Finally, for smaller sizes (128 and 256 B),
loop cache performs better than the scratchpad allocated with
Steinke’s algorithm, while the opposite is true for large sizes.

VIII. CONCLUSION AND FUTURE WORK

The essence of this paper is that equal emphasis should be
given to both the novel memories and also to the allocation
algorithms that lead to their proper utilization. In this paper, we
demonstrated that the addition of a scratchpad to an instruction
cache leads to substantial savings in the energy consumption
and the execution time of the application, as well as reduces
the aggregate on-chip area required by the instruction-memory

hierarchy. We report energy and on-chip area reductions of
40% and 75% over the most energy-efficient I-cache configu-
ration found for one benchmark. We also presented a generic
scratchpad-allocation technique that can handle a variety of
complex memory hierarchies. We modeled the allocation prob-
lem as a generic nonlinear optimization problem. The problem
was solved optimally using an ILP-based approach and also
near optimally using a heuristic. The near-optimal solutions
obtained by the heuristic were on an average a meager 6.0%
and 4.0% worse than the optimal solutions, in terms of en-
ergy consumption and performance, respectively. The presented
techniques reduce both energy consumption of the system and
the execution time of the applications against a published
technique. Average reductions of 23.4% and 7.0% in energy
consumption and execution time are reported for the ILP-based
approach. We also determined the pareto-optimal scratchpad
sizes for one benchmark. In addition, we also demonstrated
that the simple scratchpad memory allocated with the presented
techniques outperforms a preloaded loop cache. Average reduc-
tions of 29.4% and 8.7% in energy consumption and execution
time, respectively, are also reported. The allocation algorithms
were also tested by varying the size and the associativity of the
instruction cache present in the system. As a part of future work,
we would like to extend our approach by considering allocation
of data along with instructions onto the scratchpad and also
consider dynamic allocation of both data and instructions at
execution time.
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