
Loop Nest Splitting for WCET-Optimization and Predictability Improvement ∗

Heiko Falk Martin Schwarzer

University of Dortmund, Computer Science 12, D - 44221 Dortmund, Germany
Heiko.Falk| Martin.Schwarzer@udo.edu

Abstract
This paper presents the influence of the loop nest split-

ting source code optimization on the worst-case execution
time (WCET). Loop nest splitting minimizes the number of
executed if-statements in loop nests of embedded multime-
dia applications. It identifies iterations of a loop nest where
all if-statements are satisfied and splits the loop nest such
that if-statements are not executed at all for large parts of
the loop nest’s iteration space.

Especially loops and if-statements of high-level lan-
guages are an inherent source of unpredictability and loss of
precision for WCET analysis. This is caused by the fact that
it is difficult to obtain safe and tight worst-case estimates
of an application’s flow of control through these high-level
constructs. In addition, the corresponding control flow redi-
rections expressed at the assembly level reduce predictabil-
ity even more due to the complex pipeline and branch pre-
diction behavior of modern embedded processors.

The analysis techniques for loop nest splitting are based
on precise mathematical models combined with genetic al-
gorithms. On the one hand, these techniques achieve a sig-
nificantly more homogeneous structure of the control flow.
On the other hand, the precision of our analyses leads to the
generation of very accurate high-level flow facts for loops
and if-statements. The application of our implemented al-
gorithms to three real-life multimedia benchmarks leads to
average speed-ups by 25.0% – 30.1%, while WCET is re-
duced between 34.0% and 36.3%.

1. Introduction
In contrast to general-purpose systems, embedded sys-

tems often have to meet real-time constraints. The correct-
ness of a real-time system depends not only on the logical
result of the computation, but also on the time at which the
results are produced. Besides the criticality of safeness of
real-time systems, the market demands high performance,
energy efficient and low cost products. Without knowledge
about the worst-case timing of a real-time application, the
designer tends to use oversized hardware in order to guar-
antee the safeness of the real-time system.

In recent years, the real-time behavior of embedded mul-
timedia applications (e. g. medical image processing, video
compression) with simultaneous consideration of power ef-
ficiency has become a crucial issue. Many of these applica-
tions are data-dominated using large amounts of data mem-
ory. Typically, such applications consist of deeply nested
for-loops. The main algorithm is usually located in the in-
nermost loop. Often, such an algorithm treats particular
parts of its data specifically, e. g. an image border requires
other manipulations than its center. This boundary checking

∗This work is partially funded by the European IST FP6 Network of
Excellence ARTIST2.

for (x=0; x<36; x++) { x1=4 * x;
for (y=0; y<49; y++) { y1=4 * y; / * y loop * /

for (k=0; k<9; k++) { x2=x1+k-4;
for (l=0; l<9; l++) { y2=y1+l-4;

for (i=0; i<4; i++) { x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (x3<0 || 35<x3 || y3<0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 1. A typical Loop Nest (from MPEG 4)

is implemented usingif-statements in the innermost loop
(see e. g. Figure 1, an MPEG 4 full search motion estima-
tion kernel [9]).

This code fragment has several properties making it sub-
optimal w. r. t. worst- and average-case execution time
(ACET). First, the if-statements lead to a very irregular
control flow. Any jump instruction in a machine program
causes a control hazard for pipelined processors [13]. This
means that the pipeline needs to be stalled for some instruc-
tion cycles, so as to prevent the execution of incorrectly
prefetched instructions. WCET analysis is faced with the
problem to estimate whether a jump is taken or not. The
worst-case influence of this decision on pipeline and branch
prediction behavior needs to be taken into account. Since it
is very difficult to predict these control flow modifications
accurately, resulting WCETs tend to become imprecise the
more irregular the control flow is.

In addition, the way how conditions are expressed within
if-statements may also have a negative impact on WCET. If
conditions are connected using the logical and / or operators
of ANSI-C [10], they are evaluated lazily. For example, ex-
pressione2 of the conditione1 || e2 is not evaluated if
e1 already evaluates to true. Hence, each occurrence of the
|| and&& operators implies hidden control flow modifica-
tions having a negative influence on WCET. This source of
unpredictability caused by theif-statements becomes even
more severe if theif-statements are located in the heart of
a loop nest as depicted in Figure 1. Here, WCET analysis
has to multiply the overestimated data computed for theif-
statements with the possibly also overestimated number of
loop iterations, leading to even more imprecise estimates.

Considering the example shown in Figure 1, loop nest
splitting is able to detect that
• the conditionsx3<0 andy3<0 are never true,
• bothif-statements are true forx ≥ 10 ory ≥ 14.

Information of the first type is used to detect conditions
not having any influence on the control flow of an applica-
tion. This kind of redundant code (which is not typical dead
code, since the results of these conditions are used within
theif-statement) can be removed from the code, thus reduc-
ing sources of unpredictability during WCET analysis of a
program.

for (x=0; x<36; x++) { x1=4 * x;
for (y=0; y<49; y++)

if (x>=10 || y>=14) / * Splitting-If * /
for (; y<49; y++) / * Second y loop * /

for (k=0; k<9; k++)
... / * l- & i-loop omitted * /

for (j=0; j<4; j++) {
then block 1; then block 2; }

else { y1=4 * y;
for (k=0; k<9; k++) { x2=x1+k-4;

... / * l- & i-loop omitted * /
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (0 || 35<x3 || 0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 2. Loop Nest after Splitting

Using the second information, the entire loop nest can be
rewritten so that the total number of executedif-statements
is minimized (see Figure 2). In order to achieve this, a new
if-statement (thesplitting-if) is inserted in they loop testing
the conditionx≥10 || y ≥14. The else-part of this new
if-statement is an exact copy of the body of the originaly

loop shown in Figure 1. Since allif-statements are fulfilled
when the splitting-if is true, thethen-part consists of the
body of they loop without anyif-statements and associated
else-blocks. To minimize executions of the splitting-if for
values ofy ≥ 14, a secondy loop is inserted in thethen-part
counting from the current value ofy to the upper bound 48.
The correctly transformed code is illustrated in Figure 2.

As shown by this example, our technique is able to gen-
erate a very homogeneous control flow in the hot-spots of
an application. Furthermore, the algorithms briefly summa-
rized in this paper enable the generation of precise high-
level flow facts for WCET analysis. This paper evalu-
ates the effect of loop nest splitting on the WCET of se-
lected real-life benchmarks. Loop nest splitting is done by
automatically transforming ANSI-C source codes. These
source codes are then compiled for the ARM7 processor.
WCET analysis for the resulting executable programs is fi-
nally done using the aiT WCET analyzer.

Section 2 of this paper gives a survey of related work.
Section 3 presents the analyses and optimizations of of loop
nest splitting. Section 4 describes the benchmarking results,
and Section 5 summarizes and concludes this paper.

2. Related Work
Loop transformations have been described in literature

on compiler design for many years (see e. g. [2, 13]) and are
often integrated into today’s optimizing compilers. Classi-
cal loop splitting(or loop distribution/ fission) creates sev-
eral loops out of an original one and distributes the state-
ments of the original loop body among all new loops. The
main goal of this optimization is to enable the paralleliza-
tion of a loop due to fewer data dependencies [2] and to
possibly improve I-cache performance due to smaller loop
bodies. The impact of this optimization on WCET has not
yet been studied.

Loop unswitchingis applied to loops containing loop-
invariantif-statements [13]. The loop is then replicated in-
side each branch of theif-statement, reducing the branching
overhead and decreasing code sizes of the loops [2]. The
goals of loop unswitching and the way how the optimiza-
tion is expressed are equivalent to the topics of Section 1.
But the fact that theif-statements must not depend on index

variables makes loop unswitching unsuitable for multime-
dia programs. The fact that only loop-invariant conditions
are considered implies that no valuable flow facts for WCET
analysis are generated during this optimization.

In [12], classical loop splitting is applied together with
function call insertion at the source code level to improve I-
cache performance. After the application of loop splitting, a
large reduction of I-cache misses is reported for one bench-
mark. All other parameters (instruction and data memory
accesses, D-cache misses) are worse after the transforma-
tion. All results are generated with cache simulation soft-
ware which is known to be imprecise, and the WCETs and
ACETs of the benchmark are not considered at all.

This survey of related work shows that loop optimiza-
tions typically aim at improving temporal or spatial local-
ity of caches and thus focus on ACET reduction. The in-
fluence of loop optimizations on WCET has not yet been
studied thoroughly. Loop nest splitting was originally pre-
sented in [6, 8]. However, these original publications solely
concentrated on the optimization of average-case execution
time and energy dissipation. The impact of the optimization
on WCET was not yet taken into account. Furthermore, all
control-flow related data computed during the optimization
process was discarded after loop nest splitting and was not
used during subsequent optimization or analysis steps.

3. Analysis and Optimization Algorithm

Structural C
Code Analysis

Source Code
Transformation

Relevant Polytopes

Polytopes for Conditions

Condition
Satisfiability

Section 3.1

Global Search Space
Construction

Section 3.3

Optimized Polytopes

Condition
Optimization

Section 3.2

Global Search Space

Result Polytope

Global Search Space
Exploration

Section 3.4

Transformed ANSI-C Program

for(x=0;x<36;x++){

x1=4*x;

for(y=0;y<49;y++)

if(x>=10 || y>=14)

for(;y<49;y++)

for(k=0;k<9;k++)...

else{

y1=4*y;...

}}

for(z=0;z<20;z++)

for(x=0;x<36;x++){

x1=4*x;

for(y=0;y<49;y++){

y1=4*y;

for(k=0;k<9;k++){

x2=x1+k-4;

for(l=0;l<0;l++)...

}}}

Original ANSI-C Program

Figure 3. Design Flow of Loop Nest Splitting

Figure 3 gives an overview over the techniques required
for loop nest splitting. As can be seen from this figure,
loop nest splitting relies on polyhedral models in order
to represent loop nests andif-statements. Polyhedra and

2

polytopes are defined as follows:

Definition:
1. P = {x ∈ Z

N | Ax = a, Bx ≥ b} is called apolyhe-
dron for A, B ∈ Z

m×N anda, b ∈ Z
m andm ∈ N.

2. A polyhedronP is called apolytope, if |P | < ∞.

Since polyhedra are systems of linear inequations, loop
nest splitting requires loop bounds and conditions ofif-
statements to be affine expressions depending on the loops’
index variables. For a given loop nestΛ = {L1, . . . , LN}
where each loopLl is characterized by its index variable
il and lower / upper boundslbl andubl, loop nest splitting
computes valueslb ′

l andub ′
l for every loopLl ∈ Λ with

• lb ′
l ≥ lbl andub ′

l ≤ ubl, i. e. the computed values
must lie within the loop bounds,

• all loop-variantif-statements inΛ are satisfied for all
values of the index variablesil with lb ′

l ≤ il ≤ ub ′
l,• loop nest splitting by all valueslb ′

l andub ′
l leads to the

minimization ofif-statement execution.

The valueslb ′
l andub ′

l are used for the construction of the
splitting if-statement. The individual steps carried out dur-
ing loop nest splitting as shown in Figure 3 are briefly de-
scribed in Section 3.1 (cf. also [7] for a more in-depth de-
scription). Section 3.2 deals with the automatic generation
of high-level flow facts during loop nest splitting.

3.1. Workflow of Loop Nest Splitting
Since the analyses of loop nest splitting require that the

source code to be optimized meets some preconditions,
these requirements are checked in the very beginning. Dur-
ing this phase labeled “Structural C Code Analysis” in Fig-
ure 3, only suitable loop nests andif-statements having
affine bounds and conditions are extracted from the source
code. The output of this phase consists of a set of polytopes,
each of them representing a single condition occurring in
the source code. The core optimization algorithm consists
of four sequentially executed tasks that are illustrated as a
shaded region in Figure 3. In the beginning, all conditions
in a loop nest are analyzed separately without considering
any inter-dependencies among them.

First, it is detected if conditions ever evaluate to true or
not (“Condition Satisfiability”). For example, the two con-
ditionsx3<0 andy3<0 are eliminated from the code shown
in Figure 1, since they are provably false during each loop
nest iteration and are thus represented by empty polytopes.

Second, all satisfiable conditions are analyzed and an
optimized search space for each condition is constructed
(”Condition Optimization”). This means, that a polytope
P representing an original conditionC is replaced by an
optimized polytopeP ′ modeling a conditionC′ such that
C′ ⇒ C holds. The goal is to generateP ′ in such a way
thatC′ is significantly simpler thanC. For example, con-
dition optimization detects thatC′ = x >= 10 implies
C = 4* x + k + i >= 40 for the loops of Figure 1.

In a third step, all polytopesP ′ generated during con-
dition optimization are combined to form a global search
spaceG (“Global Search Space Construction”). This stage
is motivated by the fact that the previous phases only con-
sidered single conditions of entireif-statements in isolation.
In order to determine value ranges of the loop index vari-
ables, for which allif-statements in a loop nest are true,

all P ′ need to be combined using intersection and union
of polytopes according to the structure of allif-statements.

Finally, this global search spaceG has to be explored
leading to the optimized result for loop nest splitting
(“Global Search Space Exploration”). Basically, this phase
selects a subset of constraints defining the global search
spaceG in order to build a final polytopeR representing
the splittingif-statement. For the code shown in Figure 1,
the outcome of the global search space exploration is the
polytopeR = {x ≥ 10} ∪ {y ≥ 14}.

The resultR of global search space exploration is finally
used to rewrite a loop nest (“Source Code Transformation”).
For this purpose, the splittingif-statement has to be gener-
ated and inserted in the loop nest. Itsthen- andelse-parts
are created by replicating parts of the original loop nest.

3.2. Flow Fact Generation
Since the major part of the execution time of a program

is spent in loops, the iteration counts play an important role
for WCET estimation. Hence, it is crucial to pass precise in-
formation about the number of loop iterations to the WCET
analyzer in order to obtain safe and accurate WCET bounds.
As already stated in the previous section, polytopes are used
to model conditions and loops. Since polytopes are repre-
sented by linear inequations, the bounds of a loopLl neces-
sarily have to be affine expressions of the surrounding loops
for loop nest splitting. An outermost loopL1 is not sur-
rounded by any other loop so that its boundslb1 andub1

are required to be constant. This way, it is ensured that the
loop’s iterations are allowed to be non-constant but still are
fully analyzable at compile time.

During loop nest splitting, polytopes are generated mod-
eling the loop currently under analysis. This is done
straightforward by defining affine constraints for the lower
and upper bounds of the loop itself and for all surrounding
loops. In the resulting polytope, each integral point repre-
sents a single execution of the current loop body for one
actual assignment of values to the loops’ index variables.
By counting the number of integral points of these poly-
topes, the total number of executions of the loop body can
be determined exactly. For this purpose, so-calledEhrhart
polynomials[4] are applied to the polytopes.

Example: For the l -loop shown in Figure 1, a polytope hav-
ing the constraints0 <= x < 36 , 0 <= y < 49 , 0 <= k < 9 and
0 <= l < 9 would be generated. This polytope contains 142,884
points. Hence, the body of thel -loop is executed as many times
within the entire loop nest.

This number of integral points is used to generate flow
facts for WCET analysis that exactly specify the number of
executions of a loop body compared to the code lying out-
side the outermost loopL1. In the case of the aiT WCET an-
alyzer [1] used throughout this work, annotations likeflow

0x40007c / 0x40002e is exactly 142884; are cre-
ated, where the given addresses represent the basic blocks
lying inside the current loop and outside the outermost loop,
respectively.

In addition, more annotations concerning the splitting-if
generated after global search space exploration can be pro-
vided to aiT. As already mentioned in Section 3.1, the final
solution of loop nest splitting is a polytopeR which is used
to generate the splitting-if. The computation of the size of
R using Ehrhart polynomials leads to the actual number of

3

ARM7 ARM-Mode ARM7 THUMB-Mode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WCET ACET WCET ACET

CAVITY ME QSDPCM Average

Figure 4. Relative WCETs and ACETs after Loop Nest Splitting

loop iterations for which the splitting-if provably is true.
Since all loops are fully analyzable at compile time, the
number of iterations for which the splitting-if is not true
can also be computed. These two values are used to gener-
ate additionalflow annotations for aiT precisely modeling
the control flow structures resulting from loop nest splitting.

4. Evaluation

In this section, the impact of loop nest splitting on
WCET is evaluated. For this purpose, the benchmarking
workflow is presented in Section 4.1. Benchmarking results
are given in Section 4.2.

4.1. Benchmarking Methodology
The techniques presented in Section 3 are fully im-

plemented using the SUIF [16], Polylib [15] and PGA-
Pack [11] libraries. Both GAs use the default parameters
provided by [11] (population size 100, replacement frac-
tion 50%, 1,000 iterations). Our tool was applied to three
multimedia programs. First, a medical tomography image
processor (CAVITY[3]) is used. The second benchmark is
an MPEG 4 full search motion estimation (ME [9], see Sec-
tion 1), and the QSDPCM algorithm [14] for scene adaptive
coding serves as third benchmark.

Since all polyhedral operations used [15] have exponen-
tial worst case complexity, loop nest splitting as a whole
also has exponential complexity. Nevertheless, the effective
runtimes of our tool are very low, only a maximum of 1.58
CPU seconds (CAVITY) are required for optimization on
an AMD Athlon running at 1.3 GHz.

In order to quantify the influence of loop nest splitting
on the WCET of the benchmarks, we considered an ARM7
based processor architecture. The ARM7 is a dual instruc-
tion set CPU having a 32-bit wide ARM instruction set and
a 16-bit THUMB instruction set. For both instruction sets,
the native ARM compilersarmccandtccwere used to gen-
erate executable code from the benchmark’s source codes.
Both compilers are always invoked with all optimizations
enabled so that highly optimized code is generated.

In a first step, the source codes were compiled for both
instruction sets without loop nest splitting being applied.
The resulting executables were passed to AbsInt’s WCET
analyzer aiT [1] for the ARM7 to obtain the WCETs be-
fore our optimization. In addition to the binary executable,
a specification file containing the exact number of loop it-
erations is also provided to aiT. In parallel, the same exe-
cutables were processed by the cycle-true native ARM sim-
ulator. These simulations used typical input data for the
benchmarks and the resulting cycle counts are considered

as the ACETs of the benchmarks in the following.
In a second step, the source codes were optimized us-

ing our tool for loop nest splitting. The resulting optimized
source codes were processed in the same way as described
in the previous paragraph, leading to the corresponding
WCETs and ACETs after loop nest splitting. For WCET
analysis of the optimized codes, a specification file contain-
ing theflow annotations for loop bodies and the splitting-if
(cf. Section 3.2) is also provided.

4.2. Benchmarking Results

WCET and ACET
Figure 4 shows the effects of loop nest splitting on the
WCET and ACET of the benchmarks for the ARM7 using
both the ARM and the THUMB instruction sets. The figure
shows the corresponding values for the optimized bench-
marks as a percentage of the unoptimized versions denoted
as 100%.

As can be seen from this figure, loop nest splitting is able
to reduce both ACET and WCET significantly. Concern-
ing ACET, improvements between 6.4% (QSDPCM) and
54.8% (ME) were measured for the ARM instruction set.
Similarly, ACET is reduced between 11.5% (QSDPCM)
and up to 59.4% (ME) using THUMB instructions. On av-
erage for all considered benchmarks, ACET is reduced be-
tween 25.0% (ARM) and 30.1% (THUMB). These numbers
clearly demonstrate that the generation of a homogeneous
control flow within loop nests leads to increased average
performance since a large amount of code located in the in-
nermost loops before our optimization is eliminated.

However, Figure 4 also shows that the WCET reductions
achieved after loop nest splitting have a similar order of
magnitude. Here, the gains reach from 4.4% (QSDPCM)
up to 86.5% (ME) when using 32-bit wide instructions. For
the 16-bit THUMB instruction set, reductions of WCET
between 9.6% (QSDPCM) and even 89.0% (ME) were re-
ported by aiT. On average over all benchmarks, the reduc-
tions of WCET achieved by loop nest splitting are signifi-
cantly larger than the corresponding ACET reductions. In
terms of WCET, average improvements of 34.0% (ARM)
and 36.3% (THUMB) can be reported.

Despite the fact that WCET is reduced more than ACET,
Figure 4 does not show an invalid WCET underestimation.
This is due to the fact that Figure 4 presents all results just as
a percentage of the WCETs and ACETs of the unoptimized
benchmarks. This way, it is legal to reduce WCET by 89%
and ACET by just 59%. For all results presented in this
paper, the estimated absolute WCETs are correct and safe
and are larger than the corresponding absolute ACETs.

4

100%

1000%

10000%

100000%

1000000%
CAVITY ME QSDPCM Average

ARM7 ARM-Mode ARM7 THUMB-Mode

Figure 5. Relative WCETs after Loop Nest
Splitting without Flow Annotations

Of course, these differences in the average WCET and
ACET values are caused by the enormous improvements
of WCET for the ME benchmark. For the two other
benchmarks (CAVITY and QSDPCM), the WCET reduc-
tion scales with the corresponding ACET improvements.
This behavior shows that the achievable gains in terms of
WCET also depend on the overall structure of the unopti-
mized benchmark’s code.

For example, both ME and QSDPCM have a simi-
lar structure like that shown in Figure 1. The difference
between both benchmarks leading to the varying WCET
reductions is the structure of the code blocks executed
conditionally by virtue of theif-statements. For ME,
then block 1 and then block 2 just contain the as-
signment of a constant to a variable, whereas bothelse -
blocks contain very complex array accesses and address
computations. Since these address computations invoke in-
teger divisions and modulo computations, this code leads to
the generation of calls to runtime libraries. For QSDPCM,
the situation is vice versa – here, thethen-blocks are more
complex than theelse-blocks.

This slight difference has the effect that for the unopti-
mized ME, the WCET path passes through theelse-parts
of the if-statements, whereas it lies on thethen-parts for
QSDPCM. After loop nest splitting, the new WCET path
traverses thethen-part of the splitting-if for both bench-
marks. For ME, the innermost loop of thisthen-part now
just contains the assignments of constants. Thus, the new
WCET path of ME after loop nest splitting does no longer
contain the costly address computations mentioned above,
leading to the very high gains reported in this section. In the
case of QSDPCM, the innermost loop of thethen-part of the
splitting-if still contains the complex address computations
after loop nest splitting. As a consequence, this complex
code still lies on the WCET path so that the gains in terms
of WCET are not as high as compared to ME.

Impact of Flow Facts on WCET
The benefits of the flow facts extracted during loop nest
splitting for WCET analysis are depicted in Figure 5. This
diagram shows the WCETs resulting from the analysis of
the benchmarks after loop nest splitting, but without pro-
viding aiT with the flow annotations precisely describing
the splitting-if (cf. Section 3.2). Results are presented in
a relative way such that the 100% baseline represents the
WCETs before loop nest splitting.

As can be seen, the flow facts computed during global

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%
CAVITY ME QSDPCM Average

ARM7 ARM-Mode ARM7 THUMB-Mode

Figure 6. Relative Code Sizes after Loop Nest
Splitting

search space exploration are essential for a successful
WCET minimization after loop nest splitting. Without
this information, aiT is unable to compute precise WCETs
from the optimized control flow structures. For all bench-
marks, the WCETs without flow facts are worse than
WCETs before any optimization being applied. For the ME
benchmark, the degradations of WCET range between 4%
(THUMB) and 231% (ARM). For QSDPCM, WCET re-
sults without flow facts are even worse. Here, increases
between 743% and 767% compared to the WCETs of
the unoptimized benchmarks were measured. The highest
WCETs were computed for CAVITY. For this benchmark,
WCETs increase between 113,031% (ARM) and 113,953%
(THUMB) if aiT is not provided with the flow facts gener-
ated by loop nest splitting.

Code Size
Since code is replicated, loop nest splitting obviously en-
tails a certain increase in code size that we do not want
to neglect. However, Figure 6 shows that these increases
are within small bounds. In order to measure code sizes,
the size of the text sections in bytes was extracted from
the ELF binaries of the benchmarks before and after loop
nest splitting. For CAVITY, code size increases range be-
tween 19.9% (ARM) and 15.9% (THUMB). Although the
ME benchmark is accelerated most, its code enlarges least.
Increases of just 5.8% (ARM) and 8.1% (THUMB) were
measured. Finally, the code of QSDPCM enlarges between
7.9% (ARM) and 10.5% (THUMB). On average over all
benchmarks, code size increases of just 11.2% (ARM) and
11.5% (THUMB) were measured.

For fine tuned embedded systems with hard constraints
on both worst-case execution time and code size, code size
increases might potentially be a severe drawback. However,
loop nest splitting offers inherent opportunities for solv-
ing this problem since it is perfectly suited for trading off
WCET with code size increases.

As depicted in Figure 2, loop nest splitting generates a
splitting-if like if (x >= 10 || y >= 14) and places it
in the y-loop, since this is the innermost loop of the entire
loop nest the splitting-if directly depends on. Within the
splitting-if, the remaining loop nest consisting of thek-, l -,
i - and j -loop can be found. Since the splitting-if does not
depend on index variables of this remaining loop nest by
definition, it is always legal to place the splitting-if in any
of these loops. This way, the portions of code replicated
during loop nest splitting become smaller on the one hand.

5

100%

101%

102%

103%

104%

105%

106%

107%

108%

109%

110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%

Relative WCET

R
e

la
ti

v
e

C
o

d
e

S
iz

e

y

y
vx

l
k y4

x4

vy

ji

Figure 7. Possible WCET / Code Size Trade-Offs for Loop Nest Splitting

On the other hand, it can be expected that less improve-
ments of WCET will be achieved since moreif-statements
are executed, leading to the mentioned trade-off.

Figure 7 shows the corresponding Pareto curves for the
ME and QSDPCM benchmarks. The x-axis denotes the rel-
ative WCETs of the benchmarks, whereas the y-axis shows
the corresponding relative code sizes (100% = unoptimized
code version). Each point is labeled with the loop in which
the splitting-if is placed. The code versions used to generate
all previously presented results are marked withy (ME and
QSDPCM). As expected, they lead to the lowest WCETs
and entail the highest code size increases. In contrast, code
versionsj (ME) and y4 (QSDPCM) are the slowest but
smallest ones. In between these two extremal points, other
interesting solutions for loop nest splitting can be found.

These experiments show that it is worthwhile to study
possible trade-offs when applying loop nest splitting under
tight code size constraints. A more systematic study than
that presented here resulting in an automated approach to
explore WCET / size trade-offs is part of the future work.

5. Conclusions
This paper puts the previously presented source code op-

timization loop nest splitting in the context of WCET. Loop
nest splitting removes redundancies in the control flow of
embedded multimedia applications. Using polytope mod-
els, conditions having no effect on the control flow are re-
moved. Genetic algorithms identify ranges of the iteration
space where allif-statements are provably satisfied. The
source code of an application is rewritten in such a way that
the total number of executedif-statements is minimized.

It has turned out that loop nest splitting is highly bene-
ficial for WCET optimization. This is due to the fact that
the quality of WCET analysis inherently depends on a pre-
cise description of the control flow of an application un-
der analysis. On the one hand, precise high-level flow facts
representing e. g. loop iterations have to be provided. On
the other hand, assembly-level jumps modifying the control
flow are hard to analyze since the conditions under which
a jump is taken or not are difficult to analyze resulting in
imprecise worst-case assumptions.

The benefits of loop nest splitting on WCET are twofold.
First, the optimization by itself produces a very linear and
homogeneous control flow in the hot-spots of an appli-
cation. As a consequence, the potential for applying the
imprecise worst-case assumptions mentioned above during
WCET analysis of the time-critical parts of a code is heav-
ily reduced. Second, loop nest splitting inherently computes
execution frequencies of all relevant control flow constructs

during its analyses. These execution frequencies can di-
rectly be used to formulate precise loop and flow annota-
tions for the WCET analyzer.

The results presented in this paper underline the effec-
tiveness of loop nest splitting. In terms of average-case ex-
ecution times, it achieves improvements between 25.0% –
30.1%. However, even larger average gains are reported
in terms of WCET. Here, reductions between 34.0% and
36.3% were measured for an ARM7 based processor.

In the future, we intend to integrate loop nest splitting
into our WCET-aware C compiler [5]. Due to its multi-
objective capabilities, it is perfectly suited to systematically
explore the WCET / size trade-offs of loop nest splitting.

Acknowledgments
The authors would like to thank AbsInt Angewandte In-

formatik GmbH for their support concerning WCET analy-
sis using the aiT framework.

References
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case Execution

Time Analyzers.http://www.absint.com/ait, 2005.
[2] D. F. Bacon, S. L. Graham et al. Compiler Transformations for

High-Performance Computing.ACM Computing Surv., 26(4), 1994.
[3] M. Bister, Y. Taeymans et al. Automatic Segmentation of Cardiac

MR Images.IEEE Journ. on Computers in Cardiology, 1989.
[4] P. Clauss and V. Loechner. Parametric Analysis of polyhedral Iter-

ation Spaces.Journal of VLSI Signal Processing, 19(2), July 1998.
[5] H. Falk and P. Lokuciejewski. Design of a WCET-Aware C Com-

piler. In Proc. of “6th Intl. Workshop on WCET Analysis” (WCET),
Dresden, July 2006.

[6] H. Falk and P. Marwedel. Control Flow driven Splitting of Loop
Nests at the Source Code Level. InProc. of DATE, Munich, Mar.
2003.

[7] H. Falk and P. Marwedel.Source Code Optimization Techniques
for Data Flow Dominated Embedded Software. Kluwer Academic
Publishers, Boston, Oct. 2004.

[8] H. Falk and M. Verma. Combined Data Partitioning and Loop
Nest Splitting for Energy Consumption Minimization. InProc. of
SCOPES, Amsterdam, Sept. 2004.

[9] S. Gupta, M. Miranda et al. Analysis of High-level Address Code
Transformations for Programmable Processors. InProc. of DATE,
Paris, 2000.

[10] B. W. Kernighan and D. M. Ritchie.The C Programming Language.
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[11] D. Levine.Users Guide to the PGAPack Parallel Genetic Algorithm
Library. Tech. Rep. ANL-95/18, Argonne National Lab., 1996.

[12] N. Liveris, N. D. Zervas et al. A Code Transformation-Based
Methodology for Improving I-Cache Performance of DSP Appli-
cations. InProc. of DATE, Paris, 2002.

[13] S. S. Muchnick.Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, 1997.

[14] P. Strobach. A new technique in scene adaptive coding. InProc. of
EUSIPCO, Grenoble, 1988.

[15] D. K. Wilde. A Library for doing polyhedral Operations. Tech.
Rep. 785, IRISA Rennes, France, 1993.

[16] R. Wilson, R. French et al. An Overview of the SUIF Compiler
System.http://suif.stanford.edu/suif/suif1, 1995.

6

