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Abstract

Various scratchpad allocation strategies have been de-
veloped in the past. Most of them target the reduction of
energy consumption. These approaches share the neces-
sity of having direct access to the scratchpad memory. In
earlier embedded systems this was always true, but with
the increasing complexity of tasks systems have to perform,
an additional operating system layer between the hardware
and the application is becoming mandatory. This paper
presents an approach to integrate a scratchpad memory
manager into the operating system. The goal is to minimize
energy consumption. In contrast to previous work, compile
time knowledge about the application’s behavior is taken
into account. A set of fast heuristic allocation methods is
proposed in this paper. An in-depth study and compari-
son of achieved energy savings and cycle reductions was
performed. The results show that even in the highly dy-
namic environment of an operating system equipped embed-
ded system, up to 83% energy consumption reduction can be
achieved.

1 Introduction

Studies show that in an embedded system, significant
amount of energy is being dissipated in the memory subsys-
tem. Furthermore, not only the energy dissipation but also
the access times are becoming a performance bottleneck in
current embedded systems [19, 12]. Over the last decades,
the improvements in processing speed and the memory ac-
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cess times have diverged increasingly. For different mem-
ory technologies, there is usually a trade-off between size,
speed and energy consumption. Therefore, it is beneficial
to incorporate various memories into a system, so they can
fulfill all requirements on the capacity, and provide suffi-
cient performance for the application’s hotspots. Beside
Caches, which have the advantage of being almost trans-
parent to the software, but have a hard to predict behavior
and consume more energy than equivalent plain memories.
Therefore, small fast on-chip memories aka.scratchpads
have been introduced into embedded systems. Since they
are plain memories, it is up to the compiler to exploit them
in an efficient way.

Exploiting scratchpads can be performed in different
scenarios. For example, a fixed set of processes which are
permanently ready for execution, or an unrestricted access
to the entire scratchpad are usual assumptions. The devel-
opment in embedded systems shifts towards complex multi
process systems incorporating an operating system layer in
their software. That is the target scenario in this work. The
scratchpad allocation strategies presented here provide ef-
ficient scratchpad utilization in a highly dynamic environ-
ment where the set of active processes may change at run-
time. The goal is to maximize the amount of accesses to the
scratchpad memory over the entire runtime of the system,
implying reduced energy consumption and reduced runtime
of processes. To achieve this goal, a combined approach is
proposed. At compile-time, the set of memory objects is de-
termined, consisting of statically or dynamically allocated
data and functions. For each memory object, the access pat-
tern of each process is determined and translated to a profit
value which is attached to that object. At runtime, a scratch-
pad memory manager which is incorporated into the oper-
ating system computes the set of objects to be placed onto
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the scratchpad. At each context switch, this set of memory
objects may change in such a way that high scratchpad uti-
lization for the set of currently active processes is achieved.
This work proposes several heuristic methods which are ca-
pable of performing the allocation decisions in real time.
Furthermore, an ILP based optimal method for the runtime
scratchpad allocation for evaluation purposes will be pre-
sented. The results show that despite the tight time con-
straints for the heuristic methods, the best heuristic achieves
energy savings close to values of the ILP based method.

The scratchpad manager presented here has been im-
plemented for the RTEMS operating system [11]. Tests
and benchmarks have been performed on the MPARM SoC
simulator [9]. The simulated hardware is highly config-
urable, so it was possible to perform experiments for var-
ious scratchpad sizes, while obtaining comparable energy
values.

The structure of this paper is as follows: It starts with an
overview of related work. In Section 3 compile–time trans-
formations are presented. Hereafter, seven heuristic runtime
methods are presented, divided into two groups differing in
the way memory objects are treated. In Section 5, the ILP
based approach is presented. Section 6 contains the results.
Presented values show that peak energy consumption reduc-
tions of up to 83% compared to the non–optimized applica-
tion are achieved. Best heuristic methods are close to the
optimal solution. On average, the best heuristic is less then
6% off the ILP based solution. The final section is the con-
clusion.

2 Related Work

Classical dynamic memory allocation techniques and
various ways of optimizing accesses have been summarized
by Wilson et al. [18]. The significant amount of research
devoted to this aspect of operating systems shows the de-
mand on efficient allocation strategies. Nevertheless, Garey
et al. [4] show that this problem is NP-hard, therefore it is
a reasonable approach to concentrate on fast and efficient
heuristics.

Additional research has been done concerning special-
ized allocation strategies. Three of them should be men-
tioned here; one is the work done by Zhao et al. [20], which
utilizes pools of similar memory objects and prefetching to
improve the cache utilization. The second one presented by
Mamagkakis et al. [10] offers an automatically generated
set of Pareto-optimal configurations to adjust the memory
manager to a particular application. To achieve significant
energy reductions of up to 82%, their approach also con-
siders the utilization of scratchpad memories. Finally, work
done by Lebeck et al. [8] tries to perform the allocation of
memory pages in such a way that low-power and standby
modes of memories can be utilized efficiently.

Pure scratchpad allocation techniques can be divided
into two major approaches; the first one allows the scratch-
pad memory to be distributed in the processor’s address
space. Approaches utilizing such architectures have been
presented by Angiolini et al. [1, 2]. The advantage is that
for a static distribution, the application does not have to be
changed at all. Unfortunately, this kind of scratchpad mem-
ories is not very common in current systems, therefore, for
our apporach we assume the scratchpad memory to be a
plain memory bounded by a fixed address range.

A static allocation technique has been presented by
Steinke et al. [14]. At compile time, the application is an-
alyzed in terms of access profiles for each memory object.
Data as well as code is taken into account. According to
the profile results, a fixed partition of objects is computed.
Energy savings of up to 78% compared to a system without
scratchpad memory could be achieved.

Efficiently utilized scratchpad memories also outperform
caches in terms of die size, energy consumption and run-
time. Banakar et al. [3] compared a statically allocated
scratchpad memory to a 2-way set-associative cache of the
same size. The results show 34% smaller area requirements
of the scratchpad memory and a lower energy consumption
of up to 82% in the memory. Also, an improvement of the
runtime of up to 16% could be achieved. Applications run-
ning on systems containing both scratchpads and caches do
not have to be optimized only for one kind of memory. As
shown in previous work [16], a scratchpad can be used to
minimize the miss rate in the cache which also leads to in-
creased energy savings of up to 29%.

According to work done by Wehmeyer et al. [17], the
presence of partitioned scratchpads in a system can also be
advantageous in terms of energy consumption. The work
shows that additional energy savings of about 22% com-
pared to a single scratchpad approach could be achieved.
Finally, work also has been done to improve scratchpad
utilization by subdividing memory objects into smaller
parts [7].

Authors propose in [15] an approach which is able
to optimize an application consisting of multiple concur-
rently running processes. Three different allocation strate-
gies have been proposed. Beginning with a simple one,
where the scratchpad is divided statically among applica-
tions, continuing with a dynamic one, which assigns the en-
tire scratchpad to each application and ensures the content
is copied properly on context switches. The third approach
combines the previous two. Compared to the case where the
application with the highest energy savings gets the entire
scratchpad memory assigned and allocated statically, this
approach was able to additionally save up to 37% of energy.

The usual assumption up till now was that the system
does not provide an operating system layer between the
application and hardware. In the approach presented in

42



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

this paper, contemporary state of the art embedded systems
equipped with this kind of hardware abstraction layer are
the target platform. Some work which is is closely related
to the one presented in this paper, has already been done
by Poletti et al. [13]. Poletti extended the memory man-
ager present in the RTEMS operating system to be able to
allocate on request some memory areas onto the scratchpad.
Items once allocated to the scratchpad will stay there until
deleted. The decision whether to allocate a memory area
to the scratchpad is taken only based on the amount of free
space available in the scratchpad memory. Therefore, the
manager neither always ensures a good distribution of the
scratchpad among the applications, nor achieves an adapta-
tion to the current workload.

3 Compile–time Transformations

The operating system extension presented here requires
some preparation steps to be performed at compile time.
First of all, plain C code does not provide any notion of
general memory objects. A memory object is a contiguous
area of memory having a common set of properties. For
example, global data arrays are the most common kind of
memory objects. In our approach, both code and data may
be grouped into memory objects. Therefore, the first step
is to associate the global data, functions and dynamically
allocated data present in the C code with a structure encap-
sulating all the memory object properties. The restriction
to use function level granularity is mostly due to the source
code scope of this approach. There are well known stan-
dard optimizations like function–exlining, which could be
used to decrease the size of functions to add further oppor-
tunities for placing code objects on the scratchpad.

The main attributes of the object’s properties structure
are its size, the current address and its profit value. This
value denotes how worthwhile it is to place a memory ob-
ject on the scratchpad. The profit value is the number of
accesses weighted with the difference in energy consump-
tion per access between scratchpad and main memory. Ob-
jects which are frequently accessed are more valuable. De-
pending on the allocation strategy, an efficiency value is also
precomputed for each memory object. This value takes into
account the size of a memory object. Small, frequently ac-
cessed memory objects are most efficient.

Efficiency=
Profit value
Object size

Gathering the profit values is done by profiling the ap-
plication in a similar way as in previous single-application
approaches. The application is compiled and simulated.
The MPARM simulator records each memory access. Af-
terwards, the sequence of memory accesses together with

Figure 1: Dereferencing layer introduced into the applica-
tion.

the address mapping file provided by the compiler is used
to determine the number of accesses to each memory object.

The decision whether to put an object on the scratchpad
and where it should be located is moved from the applica-
tion to the runtime system. Therefore, the actual address of
a memory object may change at runtime. This implies that
whenever the application needs to access a memory object,
it has to request its address from the runtime system. This
is achieved by introducing an additional dereferencing layer
in the access to memory objects. As shown in Figure 1, ap-
plications store only handles to the memory object.

The runtime system is designed to be able to dynami-
cally reorganize the scratchpad content. In general in the
presence of a preemptive multitasking operating system, it
is not always safe to move memory objects. At the C-Code
level, accesses are represented by a single expression. As
shown in Figure 2, this does not have to translate into a sin-
gle assembly level instruction. Therefore, it is possible that
a dispatcher-interrupt occurs while some instructions have
been executed, but the final access didn’t happen, yet. Since
the SPMM is called, it could reorganize the scratchpad at
that point in time, and move the memory object being ac-
cessed. This would lead to an invalid memory access the
next time execution continues. To prevent this situation, the
SPMM has to be informed which memory objects are in
use. This is achieved by marking objects as locked before
accessing them, and releasing the lock after the access has
been completed. Basically, a lock is a flag in the properties
of a memory object. The runtime system checks this flag to
determine how the object has to be treated at each reorga-
nization step. A set flag signals to the runtime system that
such a memory object has to be located at exactly the same
address, the next time the process execution continues. This
may be achieved in different ways, depending on the allo-
cation method. The straight forward method is not to move
the object at all.

Besides the fact that locking is necessary to ensure cor-
rect code execution, it has the advantage of allowing to
cache the dereference pointer to used memory objects, pre-
venting significant overhead on each access.

Compile time transformations are fully automated. All
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Figure 2: Invalid memory object access due to preemption.

source code modifications are performed on top of the ICD-
C compiler framework [6]. The workflow can be divided
into multiple steps:

• identify memory objects,

• generating code for locking accesses,

• add dereferencing layer,

• compile for profiling and execute,

• compute profit value and add it to the code.

4 Runtime Allocation Strategies

This work introduces a new component at the operating
system level, which is capable of automatically managing
the content of the scratchpad memory. From the developer’s
point of view, the approach should be absolutely transpar-
ent, therefore the compile-time transformation that need to
be applied to the application are done automatically. Never-
theless, the interface between the scratchpad memory man-
ager (SPMM) and the application is designed to be conve-
niently usable, so either manual utilization of the SPMM or
more sophisticated compile–time analysis and transforma-
tions can be combined easily with this work.

The current implementation of the SPMM can handle
statically allocated data objects and code objects corre-
sponding to function which have to be introduced to the
SPMM at startup, as well as data objects dynamically al-
located at runtime. Each memory object provides a profit
value to the SPMM indicating how worthwhile it is to be
placed on the scratchpad. Several allocation strategies using
these profit values have been implemented for the SPMM.
The allocation strategies presented in Section 4.1 do not re-
move objects marked in use from the scratchpad memory.
This ensures that the base address of these objects stays un-
changed. Section 4.2 presents strategies which trade addi-
tional copy costs due to removing locked objects from the
scratchpad for more flexibility while allocating new objects
onto that memory.

Besides the allocation strategies, the most crucial part of
the SPMM which decides about the actual energy savings
is the way memory objects and free space on the scratchpad

Figure 3: Tree based memory area management for 4k bytes
of scratchpad memory.

Figure 4: List based memory object management.

are managed. Three data structures have been investigated.
As a first approach, a Skip-List based manager has been
implemented. The basic idea is to manage lists of free ar-
eas which provide at least a particular amount of free space.
A common approach is to manage lists for sizes of pow-
ers of two. Another approach would be a binary tree based
buddy-system. The tree consists of nodes which represent a
particular size. The root node is related to the entire scratch-
pad; if the entire scratchpad is free or completely occupied
no other nodes are present. Otherwise, child nodes repre-
senting the upper and lower half of the area are inserted.
Again, if one of these areas is partially occupied, the node
has child nodes assigned. As shown in Figure 3, looking for
free space is done by traversing nodes of a suitable minimal
size. If no free area has been found, a larger area is split,
if available. The third method uses a simple linked list of
areas. Figure 4 shows an allocation example. The scratch-
pad areas are linked to their neighbors. Each area may be
free or assigned to a memory object. If a scratchpad area is
assigned to a memory object, the object pointer of that area
is pointing to the properties structure of that object. A free
area is denoted by an object pointer set to null.

While looking for a free space, the list is traversed. De-
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pending on the allocation method, this may stop at the first
sufficiently large area. Then, this area is split into one rep-
resenting the memory object being placed there and a sec-
ond one for the remaining free space. If memory objects
are removed, free areas may be merged again. Mostly due
to the limited size of the scratchpad, the list based method
performed best.

4.1 Locking Allocation Strategies

Common to all allocation strategies is the way memory
objects are selected to be candidates for being moved onto
the scratchpad. Objects are placed onto the scratchpad in a
greedy way, similar to the greedy solution of the knapsack
problem. Each object is assigned an efficiency value. It
is precomputed as the quotient of its profit value and the
size. All objects currently in main memory are iterated in
a decreasing order of their efficiency values. Each object
which is worth being copied onto the scratchpad, because
the copy costs do not exceed the profit value, is a candidate
for being put on the scratchpad. If any memory objects are
ready to be moved to the scratchpad, the final decision to do
so and the actual placement is done according to one of the
allocation strategies presented next.

Static Allocationassumes each memory object which has
been placed once on the scratchpad to be locked. Therefore,
objects never get removed from there until they are freed
by the owning process. The placement is done in a first fit
manner with a circulating (roving) pointer for the start area.
There is a fixed minimal size ofM bytes for each scratchpad
area, allowing for a trade-off between runtime and scratch-
pad fragmentation. Basically, this prevents splitting the
scratchpad into a large number of small areas. For example,
an application requesting the SPMM to put many single–
word global variables onto the scratchpad, could cause this
situation. Due to the fact that usually, all global static data
items and functions are introduced to the SPMM right be-
fore the application process starts, the first call to this allo-
cation strategy will place them onto the scratchpad, leaving
only a limited amount of free space for objects dynamically
allocated at runtime. Also, processes starting later may or
may not get their objects allocated to the scratchpad depend-
ing on the current utilization.

First Fit Allocation and theBest Fit Allocationare sim-
ilar to the previous static strategy. In contrast to the static
allocation, objects may be replaced on the scratchpad. Fur-
thermore, these strategies have much higher runtime re-
quirements, since for each candidate a new search at most
over the entire list of scratchpad areas is required. With
respect to the size, either a First-fit strategy or a Best-fit
method is used to find a suitable location on the scratch-
pad. Only completely empty areas of suitable size or areas
used by an unlocked object of another process are consid-

Figure 5: Futile reordering of objects of the same process.

ered as possible locations to put the new object. The Best
Fit Allocation prefers free and small areas. To avoid fu-
tile copy operations for objects of the same process with a
lower efficiency, these objects are never considered being
a replacement candidate for the current object. Since these
objects already got allocated onto the scratchpad, it is very
likely to have to reallocate them on a different location in
later steps. An example of this situation is shown in Fig-
ure 5. Each line represents the scratchpad allocation after
each allocation step. For example, memory object 3 causes
object 2 to be removed from the scratchpad, since its profit
is smaller. During the next call of the SPMM, the same sit-
uation repeats; in that case memory object 1 is removed and
memory object 2 is moved back to the scratchpad. It contin-
ues until all objects are on the scratchpad. In the end, there
were many futile data movements which could have been
avoided.

Single Pass AllocationandTriple Pass Allocationstrate-
gies try to find a good allocation, while keeping the total
runtime at the level of the static strategy. Similar to the first-
fit and best-fit strategies, these strategies can remove un-
locked memory objects of other processes from the scratch-
pad, but the idea here is to traverse the scratchpad only once
for all candidate memory objects. In the single pass method,
free areas and areas occupied by objects of other processes
are treated equally, while in the triple pass method only free
areas are considered first, then scratchpad areas occupied by
objects of other processes and finally all unlocked objects
are considered for replacement. For efficiency reasons, the
passes are performed only once. An algorithmic description
of the single pass allocation is presented in Algorithm 1.

4.2 Restoring Allocation Strategies

In contrast to the locking allocation strategies described
in the previous section, a more relaxed handling of locked
objects is performed here. In the previously described meth-
ods, these objects were never removed from the scratchpad.
Now, these objects are also considered to be candidates for
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Algorithm 1 SinglePass()
Require: MOi a list of objects sorted by efficiency for pro-

cessi.

1: p = SPMstart

2: for all s in MOi do
3: while p < SPMend &&

(!IsSuitable(p,s) ‖ IsLockedOb jectAt(p)) do
4: p = NextArea()
5: end while
6: if p == SPMend then
7: return {End of SPM, stop allocation}
8: end if
9: if IsOccupiedArea(p) && ! IsCodeOb jectAt(p)

then
10: MoveToMainMemory(GetMemoryOb jectAt(p))
11: end if
12: MarkAreaFree(p) {Join free areas, if possible}
13: MarkAreaUsed(p,s) {Split area, if necessary}
14: MoveFromMainMemory(s)
15: p = NextArea()
16: end for

replacement. The downside is that this may introduce sig-
nificant overhead, since all locked objects have to be re-
stored at their original place when the process the objects
belong to continues execution.

Dynamic Allocationdirects the SPMM to use the entire
scratchpad for each process. Objects of other processes are
always removed first from the scratchpad. The advantage
of this method is that there are no interferences between the
processes, so from the point of view of predictable alloca-
tion and execution times, this method is superior to others
presented here. Nevertheless, the copy cost will be quite
high on each context switch. Intra-process allocation of ob-
jects to the scratchpad will be done in the same way the
static allocation works. This is due to the fact that it is not
beneficial to replace unlocked, less valuable objects of the
same process. Objects of other processes won’t be present
on the scratchpad, anyway.

Chunk Allocationtackles two major disadvantages of
the dynamic allocation; the excessive amount of additional
buffers each processes needs for backup in the main mem-
ory and the high copy costs due to the complete write-back
of the scratchpad on each context switch. Objects of each
process are sorted by their efficiency value. Objects of high-
est values whose total size do not exceed the size of the
scratchpad and whose copy overhead is less than the gains
which could be achieved by placing them on the scratch-
pad are grouped together into a chunk. In the second step,
this chunk is placed onto the scratchpad. First, a sufficiently
large empty area is searched. If it is not available, the chunk
is placed at the beginning of the scratchpad, forcing objects

Figure 6: Placement strategy for the Chunk Allocation.

of other processes to be removed. Figure 6 depicts this sit-
uation. For the chunk P2, there is a sufficient large space
on the scratchpad. For chunk P1, no suitable space has
been found, therefore it will be placed at the beginning of
the scratchpad memory. The dark grey areas depict the set
of objects which have to be removed from the scratchpad,
since they will be replaced by chunk P1. In the subsequent
runs the chunk is placed at the same address it was placed
first. This ensures that blocked objects keep their addresses.

In contrast to the dynamic method, the size of the backup
storage in the main memory is reduced to the minimum re-
quired to store the objects placed on the scratchpad. This
is not only beneficial in terms of memory utilization, but
also in terms of copy overhead. Only the actually required
amount of data is moved between scratchpad and main
memory. Grouping of objects has the advantage of reduced
overhead at further context switches. As long as no memory
objects have been created or deleted, the set of objects be-
longing to a chunk does not change, therefore the overhead
of finding and grouping these objects can be saved on sub-
sequent context switches. Finally, the possibility of keeping
chunks in the scratchpad across context switches may also
save copy overhead.

5. Optimal Allocation Strategies

In addition to the runtime strategies presented in Sec-
tion 4, an ILP based offline allocation strategy has been
developed. It provides a baseline for the best possible
scratchpad allocation to show the quality of the runtime ap-
proaches. To achieve this, the ILP based solution needs
a global view over the entire runtime of the system. This
helps to avoid locally optimal allocations which would pre-
vent higher gains in future steps. Since there is a mutual de-
pendency between the execution speed of each process and
the scratchpad allocation, it is not possible to stick to fixed
time slices, but context switches have to occur at exactly the
same points of control the solution has been precomputed
for. This is achieved by counting calls to SPMM functions
and taking at runtime the precomputed actions assigned for
a particular point of control.

The objective function to be maximized is defined as fol-
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lows:

∑
t∈T

(
∑
i∈It

xi,t ·Pi ·Ti,t

− ∑
i∈It∩It−1

ψi,t ·CMM→SPM,SIZEi

− ∑
i∈It∩It−1

ωi,t ·CSPM→MM,SIZEi ·DATAi

− ∑
i∈It\It−1

xi,t ·CMM→SPM,SIZEi ·STATi

)

→ max

wherexi,t is a binary decision variable denoting whether an
objecti is on the scratchpad at point of controlt. For each
point of control, there is a set of available objectsIt . ωi,t and
ψi,t are binary decision variables stating whether to move
an object at a particular point of controlt. ωi,t describes the
movement from the main memory to the scratchpad.ψi,t

will be set to one if a memory objecti has to be moved
back to the main memory at a particular point of control.
Pi denotes the constant profit of an object if it is placed on
the scratchpad.Ti,t is a binary constant set to one if the
process to which objecti belongs is being executed at point
of controlt.

Points of control are the time instants at which the
scratchpad allocation could be changed. This may hap-
pen on context switches and whenever dynamic memory is
being allocated or deallocated. To determine the sequen-
tial order of control points, the application and the SPMM
are compiled for profiling. In that mode, all memory ob-
jects are kept in main memory. Nevertheless, the calls to
SPMM functions have to be preserved, since the solution
of the ILP has to be applied at a particular call. Addition-
ally, some constants are defined for the ILP formulation.C
constants denote the copy cost for moving objects of par-
ticular size between the scratchpad and main memory. Fi-
nally, theDATAi andSTATi binary constants describe the
type of a memory object.DATAi is set to one for any kind
of data objects. Additionally,STATi is set to one for stati-
cally allocated data objects. Basically, the target function to
be maximized states that only profits of objects that are on
the scratchpad while the process they belong to is running
have to be counted. However, the gains have to be decreased
by the overhead due to object movement.

The constraints have to ensure that

• locked memory objects are not moved between
scratchpad and main memory,

• the sizes of objects on the scratchpad do not exceed the
total scratchpad size,

• objects have to fit completely onto the scratchpad,

• each scratchpad location is occupied by at most one
memory object at a time,

• objects must not be moved within the scratchpad,

• the decision variablesx, ω and ψ correlate to each
other.

In the case of restoring allocation strategies, constraints
have to be slightly modified,

• it is not necessary to prevent locked memory objects
from being moved,

• locked objects have to be placed at the same location
on the scratchpad,

• if a process is running, all locked objects which were
on the scratchpad the last time the process was exe-
cuted, have to be placed there again.

6 Results

Five different sets of benchmarks have been used to an-
alyze the quality of the proposed allocation strategies. The
benchmarks target a wide range of applications.

• AUTO benchmark is derived from the MiBench [5]
Testsuite. It consists of benchmarks from the auto-
motive and industrial domain: BASICMATH, BIT-
COUNT, QSORT and SUSAN have been used.

• TELECOM benchmarks consist of typical encoding
tasks, like CRC32, FFT, IFFT, ADPCM and GSM.

• MEDIA- benchmarks consist of AV processing appli-
cations: ADPCM, G723 and EDGE-DETECTION

• MEDIA+ benchmarks incorporates in addition to the
MEDIA- the MPEG2 decoder.

• SORT is a collection of sorting algorithms. Included
are five algorithms: BUBBLESORT, HEAPSORT,
INSERTIONSORT, QUICKSORT and SELECTION-
SORT.

Table 1 summarizes the benchmark sizes in bytes and the
number of active processes. Applications of each Bench-
mark are run in parallel. Some applications consist of sub-
tasks (i.e. ADPCM-Encode and ADPCM-Decode) which
are also assigned to separate processes. The applications
are executed under the control of the RTEMS operating sys-
tem. The binary executables have been generated using the
ARM-GCC compiler. The SPMM uses the list based mem-
ory object management techniques introduced in Section 4.
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Code size Input size Processes
AUTO 13936 15100 6
TELECOM 27552 24401 7
MEDIA- 7628 4864 5
MEDIA+ 23300 11660 6
SORT 7044 6796 8

Table 1: Benchmark sizes and process counts.

The simulation runs were performed on the MPARM
SoC simulator. The energy consumption and runtime cycles
have been obtained from models provided by MPARM [9].
All experiments have been performed for various scratch-
pad sizes of 256 Bytes up to 16 kBytes. In the cache based
experiments, a 2-way and 4-way set associative cache of
the same size as the scratchpad was used. To avoid inter-
ferences due to increased size of available fast memory, the
cache based experiments were run without a scratchpad. In
all other runs, no caches were present in the system.

The results consist of two main sets of comparisons. The
first set provides comparisons to the original application and
an operating system setup without a scratchpad manager.
The second set determines the quality of the heuristic meth-
ods relative to the ILP based method. Results presented in
this paper concentrate on the energy consumption since this
is the main optimization goal. Nevertheless, measurements
of the runtime have also been performed.

Figure 7 shows the average deviation of energy con-
sumption compared to the ILP based solution. Average val-
ues over scratchpad sizes of 256 Bytes up to 4k Bytes have
been computed for each benchmark. Additionally, overall
average values are also included in the diagram. Especially
the restoring strategies perform very well, achieving an av-
erage deviation of about 6%. The restoring strategies per-
form on average better than the blocking ones, because it
is quite cheap to move data around in our target architec-
ture. The benefit which can be achieved because of the
additional free space on the scratchpad often countervails
the additional copy costs. Additionally, a second effect
contributes to this result; keeping blocked objects on the
scratchpad means to split the free space into many smaller
areas, and therefore the computational effort needed to find
a good solution increases. The first-fit strategy has a very
poor performance especially for SORT, because it allocates
the memory objects in a really straight forward way. It has
been implemented, because in previous work for dynamic
storage allocation in main memories, this kind of heuristics
could achieve very good results. This is not true in the con-
text of a limited size, highly utilized scratchpad. The chunk
allocation performs best, because it combines the advantage
of the dynamic allocation with the possibility to keep some
objects in the upper regions of the scratchpad across mul-
tiple context switches and additionally save copy overhead
this way.

Figure 7: Deviation of energy consumption compared to
ILP based solution.

Figure 8: Deviation of energy consumption compared to
ILP based solution for MEDIA+.

A comparison for scratchpad sizes larger than 4kBytes
could not be performed for all benchmarks because of the
excessive increase in the ILP solver’s runtime.

Detailed measurements have been performed for all
benchmarks. A similar behavior has been observed in all
cases. Therefore, only the MEDIA+ benchmark is pre-
sented in detail here. Figure 8 shows the comparison of
heuristic methods with the ILP based approach. Restoring
strategies perform well for all scratchpad sizes, while the
first and best fit methods always show the highest deviation.
Especially in the case of the best fit method, the additional
overhead due to the search for a best suited space does not
pay off. The first fit method performs even worse. This
method unnecessarily often removes objects of other pro-
cesses from the scratchpad while free space may be avail-
able in other regions of the memory.

Figure 9 shows the relative energy consumption for
the MEDIA+ benchmark. A system without a scratchpad
memory manager running the MEDIA+ benchmark repre-
sents the 100% baseline. The highest energy savings were
achieved by the static allocation for a 16k scratchpad. The
energy consumption was reduced by 58%. Except for this
particular setup, the chunk allocation achieved always the
highest savings. Using that allocation strategy the energy
consumption could be reduced by 49%. Besides the fact
that with increasing scratchpad size the energy consump-
tion goes down, also the highest energy reduction shifts
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Figure 9: Energy consumption for MEDIA+ benchmark.

Figure 10: Runtime for MEDIA+ benchmark.

from dynamic methods for small memories to the very sim-
ple static method for sufficiently large memories. For other
benchmarks, a saturating effect could be observed. Starting
from a particular size, all allocation strategies except First
Fit achieved similar cycle and energy savings.

The required amount of cycles to run MEDIA+ is shown
in Figure 10. The overall observations to the savings in
energy consumption also apply to the reductions in cycle
counts. The highest runtime reduction also could be ob-
served for the static allocation for a 16k scratchpad. The
runtime was reduced by 65%. Using the chunk allocation
strategy the runtime could be reduced by 61%. The strong
relation between energy consumption and runtime require-
ments exists due to the properties of the target architecture.
Program execution is faster when scratchpad is being uti-
lized, so the total CPU energy consumption goes down. Ad-
ditionally, accesses to scratchpad need less wait cycles as
well as less energy.

The results for the SORT benchmark are shown in Fig-
ure 11. They include the energy savings that could be
achieved by incorporating caches into the system. To keep
the results comparable to other diagrams, the baseline of
100% represents the energy consumption of the original
code run on a system without caches. According to this fig-
ure, the SPMM based approach is capable of outperforming
a cache equipped system for the SORT benchmark. The
optimized energy consumption was reduced by 83% com-
pared to the original for a scratchpad size of 4k Bytes. The
cache based system was able to achieve a peak energy re-

Figure 11: Comparison of SPMM to Caches for SORT
benchmark.

duction of 75% for a 2k 2–way cache. Compared to the
cache based system, better performance of the SPMM has
not been observed for all benchmarks. That is due to the
fact that caches intercept access to all memory locations,
while the SPMM based methods currently do not take into
account the accesses performed in the operating system and
those performed in standard libraries.

7 Conclusion

This work presents a new approach to integrate scratch-
pad memory support into the operating system. In contrast
to previous work, this approach is based on transformed in-
put programs. Transformations can be done automatically,
it does not affect the development process. Various allo-
cation strategies have been studied. The results show that
for current scratchpad sizes, it may be beneficial to risk
higher copy costs instead of using runtime intensive alloca-
tion strategies. Also, usually the gain due to the additional
free space exceeds the overhead of removing and restoring
objects on the scratchpad. The main limitation of this ap-
proach is that currently, neither the RTEMS operating sys-
tem nor the standard libraries participate in the competition
for free space on the scratchpad. Therefore, extending this
approach in that direction would probably lead to higher
energy savings, and would definitely outperform caches for
any kind of applications. From the point of view of each
single process this approach resembles a hardware based
cache in terms of predictability. But in contrast to caches,
the software based implementation of SPMM allows for a
better performing, highly configurable, jet dye area saving
way of implementing on chip data and code caching.
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