Tighter WCET Estimates by Procedure Cloning”

Paul Lokuciejewski, Heiko Falk, Martin Schwarzer, Peter Marwedel
Embedded Systems Group, Dept. of Computer Science 12
University of Dortmund
D-44221 Dortmund, Germany

{Paul.Lokuciejewski | Heiko.Falk | Martin.Schwarzer | Peter.Marwedel } @udo.edu

ABSTRACT

Embedded software spends most of its execution time in
loops. To allow a precise static WCET analysis, each loop
iteration should, in theory, be represented by an individ-
ual calling context. However, due to the enormous analysis
times of real-world applications, this approach is not feasible
and requires a reduction of the analysis complexity by limit-
ing the number of considered contexts. This restricted tim-
ing analysis results in imprecise WCET estimates. In partic-
ular, data-dependent loops with iteration counts depending
on function parameters cannot be precisely analyzed. In or-
der to reduce the number of contexts that must be implicitly
considered, causing an increase in analysis time, we apply
the standard compiler optimization procedure cloning which
improves the program’s predictability by making loops ex-
plicit and thus allowing a precise annotation of loop bounds.
The result is a tight WCET estimation within a reduced
analysis time. Our results indicate that reductions of the
WCET between 12% and 95% were achieved for real-world
benchmarks. In contrast, the reduction of the simulated pro-
gram execution time remained marginal with only 3%. As
will be also shown, this optimization only produces a small
overhead for the WCET analysis.

1. INTRODUCTION

Real-time systems acting in a safety-critical environment
must meet timing constraints imposed by the system speci-
fications which are based on the knowledge of the worst-case
execution time (WCET). This key parameter can be calcu-
lated in several ways.

One technique is the static WCET analysis determining
upper timing bounds of a program. Besides the hardware
timing characteristics specifying the execution time of sin-
gle instructions, the analysis relies on flow facts. They can
be divided into two classes, namely the mandatory ones and
those that improve the timing analysis. The mandatory flow
facts serve as restrictions to overcome the halting problem by
defining the iteration counts of loops and the recursion depth
and thus to ensure that the program will terminate [11].
The second class contains information used to describe the
program structure more accurately, in particular flow facts
identifying infeasible paths that are potentially executable
according to the control flow graph but are not feasible due
to the program semantics and the given input data. This in-
formation is not mandatory to obtain a safe WCET estimate
but might improve its tightness [7].

Embedded software spends a large amount of its execu-
tion time in loops. Thus, the WCET analysis of loops is

*This work has been funded in part by the ARTIST2 Net-
work of Excellence (http://www.artist-embedded.org/)

100,000

@1 Context @2 Contexts M3 Contexts B4 Contexts

10,000

1,000

100

10

Analysis Time [sec]

1

EPIC MPEG2 GSM

Figure 1: Context-Sensitive WCET Analysis Times

crucial and strongly relies on precise flow facts describing
the number of loop iterations. To improve the analyzability
of loops, each single iteration is represented by a context
to explicitly model a particular state of the loop execution.
When the number of contexts during the WCET analysis is
not restricted and each loop iteration is assigned a separate
context, the resulting WCET estimates are tight.

Real-world applications, however, are too complex to al-
low an efficient WCET analysis where each emerging con-
text is taken into account. Figure 1 addresses this issue.
For three complex benchmarks from the commonly used
MiBench suite [8], a WCET analysis was performed us-
ing aiT [1], a static WCET analyzer developed by AbsInt.
The number of distinguished contexts was varied from one
to four for all benchmarks. As can be seen, the analysis
time increases rapidly. For example, the analysis time for
the MPEG2 benchmark took 125.79 seconds for one and
16723.22 seconds for four distinguished contexts. Despite
these long analysis times, the WCET estimates are still
highly overestimated since the small number of considered
contexts was not sufficient for a precise timing analysis.

To cope with the exploding analysis time, the number
of contexts must be restricted. A restriction to n contexts
means that the first n — 1 loop iterations are considered sep-
arately while the remaining loop iterations are summarized
into a single context. This has a negative impact on the
WCET estimation since loops cannot be analyzed precisely
and worst-case assumptions must be done for the summa-
rized context to guarantee safeness.

In particular, these assumptions might lead to large WCET
overestimations for typical embedded systems applications
which contain functions with loops whose number of itera-
tions depend on function parameters. When the function
is called multiple times with different arguments controlling
the number of loop iterations, each loop execution requires
individual loop bounds. State-of-the-art timing analyzers
handle this issue by performing a loop analysis to deter-
mine explicit numbers of loop iterations for each loop ex-
ecution. The approach enables a tighter WCET analysis
since each loop contributes with its realistic runtime to the
global WCET.

However, the detection of loop bounds succeeds only for
simply structured loops. In order to provide the essential in-

formation about the unrecognized loop iteration counts, the
user must provide these annotations manually. This is done
by defining an interval for each loop, modeling lower and
upper bounds [6]. Any iteration counts lying in between the
boundaries cannot be explicitly specified. Hence, exact loop
bounds cannot be derived for a particular loop execution
from these user annotations. This ignorance is an inherent
source of imprecision since WCET analyzer must assume the
worst case and consider each loop execution exclusively with
the specified upper loop bounds regardless of their real be-
havior. To solve this problem, we propose procedure cloning
to make loops more explicit.

Procedure Cloning (also known as Function Specializa-
tion) is a standard compiler transformation [10] optimizing
functions called with different constant arguments. These
functions are cloned, the constant parameters are removed
from the parameter list and their occurrence is directly re-
placed by the constant values. The well-known benefits con-
cerning the average-case execution time (ACET) are a sim-
plified code that offers opportunities for further optimiza-
tions like constant folding as well as a reduced calling over-
head.

Compared to the marginal improvements of the ACET,
procedure cloning can be highly efficient for the WCET ana-
lysis since it makes different function call contexts explicit
and thus allows a separate loop annotation for each context.
This paper is the first to exploit this compiler optimization
to improve a programs predictability. Loops that are data-
dependent of constant function arguments now become bet-
ter analyzable since their original variable loop bounds are
replaced by constants allowing an explicit annotation within
each cloned function. Hence, the optimized code offers the
opportunity to calculate tighter upper timing bounds in an
acceptable amount of time while the number of contexts re-
mains restricted.

In addition, the tightness of the WCET estimates can be
further improved by the elimination of infeasible paths. In
the non-optmized code, loops might contain paths that are
only traversed for a small number of loop executions. A safe
WCET analysis must assume the worst case for the sum-
marized context and also considers these paths even though
they are never taken in reality for this particular calling con-
text.

The rest of this paper is organized as follows: Section 2
describes related work. In Section 3, the concepts behind
calling contexts and the resulting loss of analysis precision
due to their restriction are discussed. Procedure cloning and
its benefits for WCET analysis are presented in Section 4.
Section 5 describes the experimental environment, followed
by benchmarking results in Section 6. Section 7 summarizes
the contributions of this paper and gives directions for future
work.

2. RELATED WORK

Procedure cloning has been introduced by Cooper [3] and
is nowadays part of many optimizing compilers [10]. Up to
now, this approach was considered in the context of ACET
and the main objective was the increase of the average-case
performance while keeping the resulting code size increase
small. This paper, in contrast, studies the benefits of proce-
dure cloning on the WCET analysis and exploits them for
an efficient and precise timing estimation.

In the previous decades, research on compiler optimiza-
tions mainly focused on the reduction of the average-case
execution time. With the growing importance of embed-
ded systems, other criteria like energy dissipation or code

size become significant and various approaches have been
presented describing how to use compiler optimizations to
reduce them. However, there was little research on the min-
imization of the WCET by a compiler. The approach de-
scribed in [5] is one of the few examples where a compiler
optimization developed for ACET reduction was employed
to study its influence on the WCET.

In [12], a code-positioning optimization driven by worst-
case path information was presented. The algorithm rear-
ranges the memory layout of basic blocks to avoid branch
penalties along the WC path. The modified code has an im-
proved pipeline performance and results in a reduced WCET.

A compiler guided trade-off between WCET and code size
for an ARMT processor was studied by [9]. The authors ob-
served that applications implemented with 16-bit THUMB
instructions are smaller but also slower than the same code
using the full 32-bit instruction set. They use a simplified
timing analyzer to obtain WCET information employed in
their code generator to produce code that exploits this trade-
off and uses the two instruction sets for different program
sections.

A design study for a homogeneous WCET-aware compiler
was presented in [4]. The compiler generates input data for
a timing analyzer, starts the WCET analysis and finally im-
ports WCET-relevant information back into its data struc-
tures. With the compiler knowledge about the program and
the gained timing data, WCET-aware compiler optimiza-
tions can be realized. The focus of that paper was the de-
sign of a WCET compiler framework and can be considered
complementary to this present work.

3. RESTRICTED CONTEXTS

This section discusses the concepts of contexts with a spe-
cial focus on the analysis of loops. It shows why restricted
contexts can be fatal for a WCET analysis and the resulting
loss of tightness will be illustrated by an example.

The use of contexts is a common approach for static pro-
gram analyses. It enhances the analysis of functions by rep-
resenting each function call as an individual context. Thus,
all program details like the passed arguments can be explic-
itly specified. To depict a function call invoked within an-
other function, its calling history must be considered. This
is achieved by specifying this particular context with a call
string describing the sequence of functions called previously.
Loops resemble recursive functions calls since they invoke
themselves. To exploit the concepts of contexts for loops,
and thus to enhance the precision of their timing and stack
analysis, loops are transformed into dedicated functions call-
ing themselves. After this loop transformation, each loop
iteration is assigned an unique context.

As indicated in Section 1, real-world applications possesse
a structure too complex to analyze each emerging context.
In particular, nested loops can cause a rapid increase of con-
texts (state explosions). For example, the loop nest of three
nested loops with ten iterations each is represented by 1000
contexts. Such large numbers of contexts make a static ana-
lysis infeasible since both a vast amount of memory resources
and computation time are required. The only way out is to
reduce the complexity of the static analysis by restricting
the number of distinguished contexts.

In general, restricting the number of contexts simplifies
the calling history of function calls by restricting the length
of the call string. A definition of maximally n distinguished
contexts means that the first n — 1 functions calls will be
analyzed separately with all their details concerning the sys-
tem properties at this particular point of the program. All

following calls, in contrast, are summarized into the last
context. Thus, all precise calling information like the en-
countered value ranges during a particular call cannot be
explicitly expressed. The result is an inappropriate input
data for the value analysis required for a successful cache
and pipeline analysis.

Besides the analysis of function calls, an enormous loss of
tightness may also occur when loops are annotated manually
and iterations are summarized into single contexts. The
loss of tightness arises from the mandatory conservatism to
guarantee the safeness of the timing results. If a loop is part
of the WC path, its contribution to the global WCET is
calculated as follows: the maximal iteration count specified
by the user annotations is multiplied by the local WCET of
the loop body and added to the WCET for the evaluation
of the loop’s termination condition.

This entails two potential problems. First, program func-
tions containing loops whose loop bounds depend on the
function parameters might be invoked with varying argu-
ments. The result are function loops with different itera-
tion counts and thus have individual WCETs. Due to the
limited user annotations that simply define the lower and
upper loop bounds, the real number of iterations cannot be
derived. A conservative static timing analysis must expect
the worst case and assumes for the summarized context that
the loop is executed as often as defined by the user maxi-
mum. Second, the loop body might consist of different paths
each with an individual execution time. The WCET analy-
sis must again proceed pessimistically and assume that all
loop iterations summarized into the last context traverse the
WC path.

3.1 Exemplary lossof tightness

To emphasize the loss of precision, an exemplary scenario
is presented in the following. Assume that the function f
from the left-hand side of Figure 2 is invoked twice with the
values 100 and 5 for the parameter n. Furthermore, it is as-
sumed that the WCET of the path containing the ¢f-block
is twice as large as when this block is omitted and that the
number of contexts is restricted to k < 5. With the safe
user annotation defining the upper loop bound to be 100,
the first call to the function f results in an overestimation
since for the summarized context it is assumed that the re-
maining 100 — k loop iterations contribute with the local
WC path which includes the if-block. The overestimation
is even worse for the second call to f. Here, for the sum-
marized context the static analysis must assume that the
loop is not iterated k, but 100 times and that the remaining
100 — k loop iterations traverse the if-block being the WC
path. The result is a safe but also unacceptably large. Due
to its immense overestimation, the analysis result represents
an upper timing bound that does not expresses the actual
worst-case behavior of the given program.

To cope with the dilemma of shortening the analysis time
by restricted contexts but still obtaining tight WCET esti-
mations, the standard compiler optimization procedure clon-
ing can be expoited. We will show in the next section how it
improves the predictability by generating a program struc-
ture that allows a precise annotation of loop bounds.

4. PROCEDURE CLONING

Procedure cloning belongs to the class of inter-procedural
compiler transformations where the optimizing compiler gen-
erates a specialized copy of the original procedure. After-
wards, the original function calls are replaced by calls to
the newly created clones. The optimized code provides a

int f(float *x, int n, int p) { | int f1(float *x) {

for (i=1; i<=n; i++) { for (i=1; i<=5; i++)
x[i] = pow(x[il, p); x[i] = x[il*x[il;
if (i==10) {...} } return x[51; }

return x[n]; }

int main(void) {
return f(a, 5, 2); }

int main(void) {
return fi(a); }

Figure 2: Example for Procedure Cloning

more beneficial basis for aggressive inter-procedural data-
flow analyses [3]. On the other hand, cloning often of-
fers the opportunity for improved optimizations, particu-
larly for constant propagation and folding, copy propagation
and strength reduction. Also, entire paths might be elimi-
nated when cloning yields conditions that can be evaluated
by the compiler as always false and thus be never executed.

Figure 2 demonstrates cloning of function f allowing im-
proved optimizations across function call boundaries [2, 10].
Replacing the function parameters n and p by the constants
5 and 2, respectively, offers a significant amount of optimiza-
tion potential for the cloned function fi1. First, applying
strength reduction allows the replacement of the expensive
call to function pow by a multiplication. Second, the propa-
gated constant value of n results in a simplified control flow
graph. By exposing the value range of the loop induction
variable i, it is known at compile time that the condition
(i==10) will never become true. Thus, this infeasible path
can be eliminated yielding a smaller number of instructions
and a better pipeline behavior due to the reduced number of
control hazards. Last but not least, the calling overhead is
reduced. The decreased number of passed arguments mini-
mizes the number of required instructions for both the caller
and the callee.

Besides the improvements concerning the program run-
time, the optimization has one drawback. Each specialized
copy of the function body increases code size. In general,
it is also not always permitted to remove the original func-
tion even if it is not called anymore in the optimized pro-
gram. On general purpose systems there is no guarantee
that this function might be called from another compilation
unit not considered in the current optimization course and
its removal would be illegal. In the domain of embedded sys-
tems, this restriction is usually not given and the removal of
original functions can be performed more aggressively. The
designer knows in advance what software will be running
on the system and can thus definitely determine the func-
tions never called from other modules than the one they are
located in. These original functions can be removed after
cloning without endangering the systems consistency.

Hence, this compiler optimization should be used with
caution, and a trade-off between the resulting speed-up and
the increased code size, especially in the domain of embed-
ded system’s with restricted memories, should be taken into
account.

4.1 Sedection of functionsto becloned

There are different strategies to define how extensively
procedure cloning should be performed. Two factors are
relevant for the optimization. First, the maximum size of
the function permitted to be cloned must be specified. This
parameter can, for example, be defined by the number of
source code expressions found within the function. All func-
tions that exceed this parameter are omitted and not con-
sidered for procedure cloning since they may possibly result
in a too large code size increase.

The second factor guides the choice of functions to be
cloned by setting constraints on the occurrence of the con-
stant arguments. It defines how frequently a particular con-
stant argument must occur within all calls of the function
to be cloned. For example, the user might specify that con-
stant argument values must be present in more than half
of all function calls. When this frequency is not reached, it
will not be considered for optimization and the function will
not be cloned for this parameter. If the code size increase
is crucial, the number of additionally generated functions
must be kept minimal. The only candidates for cloning are
functions that are called most of the time with the same
constant argument. The extreme case is the choice of func-
tions that are always invoked with the same constant value
for a particular function parameter.

Procedure cloning is performed in three stages where each
function is analyzed separately. In the first step, constant
arguments and the number of their occurrences for each
function parameter are collected. Hereafter, the collected
arguments that do not meet the specified frequency are re-
moved and omitted for procedure cloning. This is done by
counting all function calls the considered argument is used
in and comparing it to the number of parameter occurrences
from the previous step. In the final stage, all constant argu-
ments that were not removed are used for procedure clon-
ing. The original function is cloned and assigned a unique
function name. The specialized argument is removed from
the parameter list and directly propagated into the code by
replacing the parameter variables by the constant value. Fi-
nally, the original function calls within the source code are
redirected to the cloned functions.

4.2 Improvementstothe WCET

In addition to the previously mentioned pure code opti-
mizations that yield a better code quality, procedure clon-
ing yields a program structure that strongly improves the
WCET analysis by making the code more predictable. It
tackles the two major problems discussed in Section 3: the
explicit specification of loop bounds and the elimination of
infeasible paths that may otherwise contribute to the WCET
for the sake of safeness. Both contributions of procedure
cloning enhance the tightness of the estimates since they re-
sult in a more accurate description of the program behavior.

Typical embedded software is loop-dominated. As studies
on MiBench benchmarks [8] pointed out, many loops are
located in functions and their number of iterations is often
specified by function parameters as shown on the left-hand
side of Figure 2. These functions, in turn, are called multiple
times with varying constant arguments resulting in strongly
deviating execution times spent in the loops.

To statically analyze these loops, the timing analyzer must
be provided manually with loop iteration counts. To pre-
serve WCET safeness, the loops are annotated with the
maximal number of iteration counts the loop is ever exe-
cuted with, i.e. the annotations must represent the global
maximum of iterations for this loop.

These loose loop annotations can be specified more pre-
cisely after procedure cloning. When a function is called
multiple times with varying constant values that dictate the
upper loop bound, this is exploited by the transformation
(see right-hand side of Figure 2). The variables in the spe-
cialized functions are replaced by the individual constants
and thus provide clones that are dedicated to individual loop
executions. The new user loop annotations can focus on
each specialized function explicitly and annotate their loops
more realistically. During WCET analysis with restricted

. Binary Flow
ol [» M—»
Executable]| Facts
| 1 PN
Optimized —
ICD-C |_,| "ANsI-C Simulator | | Timing
Optimizer Source Analyzer

Simulated WCET
Time

Figure 3: Workflow of Procedure Cloning

contexts, these loops contribute with their corrected maxi-
mal number of iterations. Thus, the transformation aims at
making the code more predictable.

Yet another code simplification has a positive effect on
the tightness of the WCET estimates. Loops often consist
of multiple paths. Some paths may have the longest exe-
cution time (WC path in the loop) but are never executed
due to unfulfilled conditions. A conservative timing ana-
lysis with restricted contexts must assume the worst-case
scenario where each loop iteration represented by the sum-
marized contexts goes through the WC path. After proce-
dure cloning, these infeasible paths can be eliminated in the
specialized functions.

This is illustrated by an example. As shown in function
f1 on the right-hand side of Figure 2, the path through the
if-block is never traversed for parameter n = 5. Compiler
data- and control-flow analyses are capable of detecting con-
ditions that are evaluated as being always false and remove
them from the control-flow graph. Thus, these infeasible
paths are not taken into account during WCET analysis
and don’t unnecessarily contribute to the estimated upper
timing bounds.

In the following sections, procedure cloning transforma-
tions described in this section are applied to real-world bench-
marks and their improvements concerning the WCET esti-
mates are presented.

5. EXPERIMENTAL ENVIRONMENT

This section describes the choice of benchmarks used to
evaluate the influence of procedure cloning on the WCET.
Furthermore, the benchmarking workflow is described.

The benchmarks come from the widely used MiBench
suite representing different applications typically found in
the embedded systems domain. The first benchmark is EPIC,
an experimental lossy image compression utility. MPEG2 is
a motion estimation for frame pictures, while GSM repre-
sents a speech compression.

All measurements were performed for two different 32bit
processors. The first was an Infineon TriCore 1796 micro-
controller. The other was an ARM7TDMI that supports
two different instruction sets: a full set of 32bit instructions
and the so called THUMB instruction set consisting of 16bit
instructions. Both modes were exploited for the evaluation
of the results.

The workflow is depicted in Figure 3. Two different bi-
nary executables are generated. One derived from the orig-
inal code that is used as reference object (marked with the
dotted line). The other binary is the resulting program after
procedure cloning and the standard optimizations constant
folding, constant propagation and dead-code elimination [5]
to remove infeasible paths. The optimizations are automat-
ically performed by a source-to-source optimizer (ICD-C
optimizer). Our parameters for procedure cloning as de-
scribed in Section 4.1 were a maximal function size of 2000
expressions and a frequency of 50% (constant argument to
be cloned must occur in at least half of all function calls).
The output of the optimizer, the optimized source code, is

provided as input for the compiler. Depending on the ar-
chitecture under test, different commercial compilers were
employed. For the TriCore processor the tricore-gcc was
used. For the ARM7TDMI the compilers armcc and tcc for
the ARM and THUMB mode, respectively, generated the
binary executable.

In the last test phase, the binaries are passed to the cycle-
true simulator to obtain the simulated processor cycles rep-
resenting the program execution time for a typical input
data set. In addition, the binary executables are passed to
the timing analyzer aiT together with the configuration file
containing the manually generated information about the
loop bounds (flow facts). The result is the WCET for the
evaluated TriCore and ARM instructions sets for both the
original and the optimized code. Due to the complexity of
the timing analysis as indicated in Figure 1, the number of
contexts was restricted to 1 (no remarkable improvements
were observed for two or three contexts).

6. RESULTS

WCET

Figure 4 depicts the relative WCET for the optimized
code with respect to the WCET estimated before procedure
cloning (corresponds to 100%). As can be seen, significant
WCET reductions of up to 95% were achieved. In the follow-
ing, the transformations performed by the ICD-C optimizer
are briefly discussed for each benchmark and the resulting
improvements are pointed out.

The WCET for the EPIC benchmark decreased by 94.61%
for the TriCore processor. Similarly remarkable improve-
ments were achieved for the ARM processor, namely 95.72%
for the ARM mode and 95.65% for the THUMB mode. This
is due to the code structure containing a large number of
nested loops. The image coder benchmark contains a func-
tion that is highly appropriate for cloning. It is a filter con-
taining 32 loops nested up to four times, and their number
of iteration counts partially depends on the function param-
eters. Furthermore, the function is called six times with dif-
ferent constant values. After procedure cloning, each func-
tion call is specialized. The passed constants are propagated
and in some cases explicitly define the upper loop bounds.
The result is tighter min / max intervals for each loop execu-
tion e.g. [1...15] (in non-optimized code) becomes [1...1]
after the transformation, meaning that the timing analyzer
can assume one loop iteration in contrast to the pessimistic
assumption of 15 iterations.

The benchmark MPEG2 contains two functions that were
cloned. The first function implements the Fullsearch algo-
rithm to detect the motion of macro-blocks. It is called
with two different constant values defining the height of the
image block. Within this function, another procedure is
called computing the distance between these blocks. It is
invoked with the same block height constants as passed to
its caller. These values are used to control the number of
iteration counts for multiple loops. The source-to-source
optimizer performs cloning for each of these functions. The
result is a transformed code that has a dedicated version of
the Fullsearch implementation for each block size. The loop
bounds in the nested function can again be defined more pre-
cisely. As for EPIC, the timing analysis of the loops becomes
better analyzable and thus more predictable. This is con-
firmed by the benchmark results. For TriCore, the WCET
after procedure cloning was reduced to 70.08% compared to
the unoptimized code. Similar improvements were gained
for the ARM processor: the worst-case execution time was
reduced to 66.75% and 66.55% for the ARM and THUMB

100%

90% ETriCore @ ARM ETHUMB
T 80% T 1
E 0%
W e0%
S 5%
L
T 3
T 20%
& 10w

0% 1

EPIC MPEG2 GSM

Figure 4: Relative WCETSs after Procedure Cloning

modes, respectively. The reason for the strong reduction is
the large number of function calls for the nested function.
In total, it is called more than 1.4 million times. For the
unoptimized code with imprecise loop bound specifications,
each analyzed loop contributes to the overestimation.

GSM, the last evaluated benchmark, contains a function
representing a filter for the short term residual signal. The
function is called with strongly varying constants (13, 14 and
120) defining the number of iterations for its loop. With-
out procedure cloning, the designer must specify the loop
bounds safely, and annotate the maximal number of loop it-
eration with 120. Obviously, for all calls with the constants
13 and 14, the timing results show an overestimation since
the timing analyzer assumes 120 loop iterations. Procedure
cloning solves this problem by cloning this function twice,
one specialized version for the constant 13 and one for 120.
Due to the small number of occurrences of the constant 14,
this argument was not considered for specialization. The
original version is kept and handles calls with the constant
14. Due to the improved analyzability, the loops can be ex-
actly specified by the system designer. This has a positive
effect on the estimated WCETs. Reductions from 12.73%
(ARM mode) up to 31.03% (THUMB mode) with regard to
the WCET of the non-optimized code were achieved.

The significant WCET reductions after procedure cloning
comes basically from the possibility to tighten the min / maz
intervals specifying the loop bound iterations. Another rea-
son for the success of this compiler transformation was the
fact that the specialized functions were part of the WC path.
Otherwise, their optimization would have had no effect on
the WCET. As discussed in Section 4.2, the elimination of
infeasible paths might also have positive effects on the tim-
ing results. However, for the benchmarks considered in this
paper, they were marginal as comparisons between the orig-
inal and optimized code indicated. Although some paths
could be eliminated in the cloned function, they did not im-
prove the WCET results since they had not lied on the WC
path and were thus irrelevant for the timing analysis.

Simulated Program Execution Time

To examine the impact of procedure cloning on the ACET,
the simulated execution times for typical program input data
sets of the original and optimized code were compared. The
improvements were negligible. For the EPIC benchmark,
the simulated execution time even slightly increased between
0.02% and 3% for TriCore and THUMB mode, respectively.
For MPEG2, the optimization gain was between 0.21% (for
TriCore) and 2.6% (for the THUMB mode). No improve-
ments were achieved for the GSM benchmark executed on
the ARM7TDMI, and a minimal simulated time reduction
of 0.01% was observed for the TriCore processor. The min-
imal degree of the execution time reduction came from the
fact that the cloned functions did not provide additional
opportunities to further improve the code by the performed
source-to-source optimizations, i.e. the newly created func-
tions did not allow to additionally simplify the code with
the performed optimizations like constant folding.

@TriCore EIARM ETHUMB

g g
g 2

250%

100% "
i I
0% T T
EPIC MPEG2 GSM

Figure 5: Relative Code Sizes after Cloning

g

Relative Code Size [%]
5
g

Code Size

Finally, the code size is briefly examined. As mentioned
in Section 4, the code size increase is a drawback. Each
cloned function increases the code size in particular when
the functions are large or multiple specialized copies of a
function are created. In Figure 5, the relative code size is
shown. 100% correspond to the code size of the benchmarks
before procedure cloning. The code size of the optimized
EPIC benchmark rose to more than 300% for all instruc-
tion sets since a large function with 32 nested loops was
cloned six times. However, this increase is acceptable since
the absolute code size of the optimized code remains small,
namely 21 kilobytes. For MPEG2, the code size increased
between 22.0% and 28.94% for TriCore and ARM7TDMI in
the THUMB mode, respectively. Although procedure clon-
ing created multiple specialized copies, they all were rela-
tively small so that the code size increase was acceptable.
For the GSM benchmark, the code size increase was negli-
gible and achieved its highest value of 3.28% for the ARM
mode. Again the reason is that just few and small functions
were specialized.

Runtime of the WCET Analysis

To evaluate the impact on the complexity of the WCET
analysis, all benchmarks were analyzed in their original and
optimized version. The runtime of the timing analyzer aiT
on an AMD Sempron 3000+ with 2 GB RAM on average
increased by 14% for the analysis of the optimized code by
procedure cloning compared to the analysis of the original
code. The reason is a larger control-flow graph containing
more functions than the original one. However, concern-
ing the large WCET improvements, the increased analysis
runtime is acceptable.

7. SUMMARY AND FUTURE WORK

This paper solves the problem of how to preserve the tight-
ness of WCET results for programs with data-dependent
loops that require a limited analysis with a restricted num-
ber of calling contexts. The analysis of these loops is an
inherent source of unpredictability since their number of
loop iterations can be rarely specified precisely. The re-
sulting WCET is heavily overestimated. We propose pro-
cedure cloning as an approach to improve the analyzability
and thus to make the code more predictable. The optimized
code allows an explicit specification of loop bounds and fur-
thermore advances the elimination of infeasible paths for
tighter WCET results.

The effects of procedure cloning were evaluated with real-
world benchmarks from the MiBench suite. The results em-
phasize the effectiveness of procedure cloning, a WCET re-
duction between 12% and 95% was achieved. In contrast,
the simulated program execution time for the optimized
code hardly changed after the optimization. The results
also show that the optimization implies only a small over-
head for the WCET analysis runtime. Thus, procedure clon-
ing is best suited to improve the analyzability of real-world

applications that require a reduced analysis complexity.

In the future, we plan to incorporate a WCET-aware
C compiler into the workflow by replacing the commercial
compilers. This would enable an improved exploitation of
procedure cloning. Currently, the compiler is not aware of
any WCET information and employs heuristics to improve
the average-case execution time. Within the WCET-aware
compiler, cloning could be guided by data provided by the
timing analyzer and primarily functions on the worst-case
path could be aggressively optimized. The integration into
a WCET-aware compiler also offers the opportunity to per-
form a trade-off between the improvements concerning the
WCET and the resulting code size. Thus, to meet the re-
strictions on the code size defined by the system, the com-
piler could evaluate the functions that produce the best gain
after specializing and exclusively optimize them. Further-
more, we want to study if it might be possible to perform
procedure cloning virtually, i.e. to optimize the program
exclusively for the WCET analysis and keep the original
code structure for the generation of the binary executable.
Hence, we would be able to precisely annotate the loops and
avoid an code size increase in the final code.

Acknowledgments

The authors would like to thank AbsInt Angewandte Infor-
matik GmbH for their support concerning WCET analysis
using the aiT framework.

8. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. Worst-Case

Execution Time Analyzer aiT for TriCore. 2007.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp.
Compiler transformations for high-performance
computing. ACM Comput. Surv., 26(4):345-420, 1994.

[3] K. D. Cooper, M. W. Hall, and K. Kennedy. A
Methodology for Procedure Cloning. Computer
Languages, 19(2):105-117, 1993.

[4] H. Falk, P. Lokuciejewski, and H. Theiling. Design of
a WCET-Aware C Compiler. In ESTIMedia’06, pages
121-126, 2006.

[5] H. Falk and M. Schwarzer. Loop Nest Splitting for
WCET-Optimization and Predictability Improvement.
In ESTIMedia’06, pages 115-120, 2006.

[6] C. Ferdinand, R. Heckmann, H. Theiling, and
R. Wilhelm. Convenient User Annotations for a
WCET Tool. In WCET’03, pages 17-20, 2003.

[7] J. Gustafsson, A. Ermedahl, C. Sandberg, and
B. Lisper. Automatic Derivation of Loop Bounds and
Infeasible Paths for WCET Analysis using Abstract
Execution. In RT'SS’06, pages 57—66, 2006.

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,

T. Mudge, and T. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In WWC’01, pages 3-14, 2001.

[9] S. Lee, J. Lee, C. Y. Park, and S. L. Min. A Flexible
Tradeoff between Code Size and WCET using a Dual
Instruction Set Processor. In SCOPES’0/, pages
244-258, 2004.

[10] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[11] S. Thesing. Safe and Precise WCET Determinations
by Abstract Interpretation of Pipeline Models. PhD
thesis, Saarland University, 2004.

[12] W. Zhao, D. Whalley, C. Healy, et al. WCET Code
Positioning. In RTSS’04, pages 81-91, 2004.

