ARTIST2 Summer School 2008 in Europe

Autrans (near Grenoble), France
September 8-12, 2008

Memory-architecture
aware compilation

http://lwww.artist-embedded.org/

Lecturers: Peter Marwedel, Heiko Falk
Informatik 12
TU Dortmund, Germany

The Problem with Memories

Memories?
Oops!
Memories!

1. Increasing speed gap
2. Major consumer of electrical energy

3. Timing predictability difficult to achieve

4.

Or: Why work on processors if memory is
where the bottleneck is? BIE

ot o

B U
Trends for the speeds

Speed gap between processor Similar problems also for
an“d main DRAM increases embedded systems &
°| Speed /T @ MPS0Cs
= Memory access times
| >> processor cycle times
* (today: e.g. 100 x)
< “Memory wall”
5- problem;
uniform memory
M access a myth
1 & : : : :

0O 1 2 3 4 5 years

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]

Inlommanen Soce
[Foes

GOPs/J

Importance of Energy Efficiency

L g " Stuck at 200Gop/J
I P ck of Vp scalin
100 r :
—=— ASIC
- IP ———trend ASIC
L e & —o— altera
i . / «DSP —— trend FPGA
1 == - =4 | .« DSP
'/ /M'IT’U x RISC
. / . ‘{ o intel
' wole T e —+— trend MPU Audio codec and Other peripherals
e 4t CELL amplifiers 10%
S .. b | 10%
/ Color display
+ and backlighting ———0
01 T Al T A 10% RF modem and
2 y 9 9 9 amplifier
5 5 z 5 Z 0%
vear Courtesy: Philips
© Hugo De Man, IMEC, 2007
IPE=Inherent power efficiency; Me;g,ﬁliies Application
Aml=Ambient Intelligence PIOCEES0F

20%

Source: Siemens

0. Vargas (Infineon Technologies): Minimum power consumption in mobile-phone

memory subsystems; Pennwell Portable Design - September 2005; E

Inlommanen Soce
e

U
Dependency on the size

(S
- N

[
o

Sub-banking

n & ~ 00 W
[Tl
>
/(D
=
(@)
<

Energy [n)]
Access Time [ns]
=

Applications are
getting larger
and larger ...

O = N W

64 128 256 512 1k 2k 4k 8k 16k 32k 64k
Memory Size (Bytes)

+ locality of references
< Memory hierarchies

ot o

U
Timing Predictability

Many embedded systems are real-time systems
& computations to be finished in a given amount of time

Most memory hierarchies (e.g. caches) for PC-like systems designed
for good average case, not for good worst case behavior.

Worst case execution
time (WCET) larger than
without cache

[] Simulation
. WCET

ol n
11
i1l

0 64 128 256 512 1k 2k 4k 8k
Cache-Size [Bytes]

Cycles [*1000]

J G.721: using unified
Cache@ARM7TDMI

See later slide for
experimental setup

Islomamtion Socey

......... =

[
Vision
< Multiple objectives.

What are optimizing compilers actually optimizing for?
What is their cost model? <

Pre- f b
N pass ; : ~ Linker/
Application optimi- » Compiler | e
_ zation

- .. » EXxecution
N
Memory | (Memory) Spec!flc (multi-objective?) pptlmlza-
architecture | architecture tions for memory architectures;
specification & Link/load-time optimizations would

keep binary code memory
architecture independent

I Ty

ot o

<= |Integration of various optimizations
Into framework

Memory Aware Compilation and Simulation Framework (for C) MACC

| Application C code # [Compilation tools]

¥ . §

Memory architecture ‘ ,
rspecification @iﬁggt@cgure ‘ Executable binary |

T : B
| Profile report = [Simulation tools]

[M. Verma, L. Wehmeyer, R. Pyka, P. Marwedel, L. Benini: Compilation and Simulation Tool Chain for Memory Aware Energy
Optimizations, Workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS VI), 2006].

MACC still under development;
Tools for specific optimizations exist & BUE

ot o

Related Work

e Optimizations exploiting burst mode for SDRAMS, using
loop unrolling and architecture description language
EXPRESSION (Dutt, Srivastava; UC Irvine)

 Smart linker (K. De Bosschere et al., U. Ghent)

e Architecture description language ArchC
(G. Araujo, U. Campinas)

 Work on scratchpad optimizations
(M. Kandemir, Penn State U.; R. Barua, U. Maryland,
Egger+Lee, SNU; IMEC; Marwedel et al., TU Dortmund)

Existing work covers only some of the aspects

HHEE

What we have done:
Optimizations for Scratch Pad Memories (SPM)

SPMs are small,

_ Address space
physically separate

memories mapped 0
nto the address scratch pad memory Small; no
Space, tag memory

Selection is by an
appropriate address

decoder (simple!) FFF..
Exambple ARM7TDMI
select P cores, well-
known for low
SPM power
| consumption

SPMs are fast, energy-efficient, timing-predictable

Inlommanen Soce
[Foes

S

Predictability and scratch-pad memories

... pre-run-time scheduling Is often the only practical
means of providing predictability in a complex system.

[J. Xu, D. Parnas: On satisfying timing
constraints in hard real-time systems, IEEE
Trans. Soft. Engineering, 1993, p. 70-84]

... In essence, we must reinvent computer science.
Fortunately, we have quite a bit of knowledge and
experience to draw upon. Architecture techniques such as
software-managed caches promise to deliver much of the
benefit of memory hierarchy without the timing
unpredictabllity.

[Ed Lee: Absolutely Positively on Time: What
would it take?, IEEE Computer, 2005]

Inlommanen Soce
Tt b gt :

s bmpnn

Comparison of currents using measurements

E.g.: ATMEL board with
ARM7TDMI and

Current

eXt. S RAM 32 Bit-Load Instruction (Thumb)
200

150 A /3

TR ioxa Lehe < | i
Bl | o e 100 116 772
| 50
4812 50,9 44’4

0

Prog Main/ Data Prog Main/ Data Prog SPM/Data Prog SPM/ Data SPM
Main SPM Main

O Core+SPM (mA) O Main Memory Current (mA)

Even larger savings in terms of energy.

Inlommanen Soce

ot o

o dm e

Why not just use a cache ?
Timing predictability
Hardware complexity

Energy consumption (in tags, comparators and muxes)

—&— Scratch pad

—#— Cache, 2way, 4GB space

¢ —4— Cache, 2wnay, 16 VB space
—<— Cache, 2wnay, 1 MB space

/ [R. Banakar, S. Steinke, B.-S. Lee, M.

_e—— ¢ Balakrishnan, P. Marwedel.

Scratchpad Memory : A Design
Alternative for Cache On-chip memory

‘ ‘ ‘ ‘ ‘ ‘ in Embedded Systems, Intern.
256 512 1024 2048 4096 8192 16384 Workshop on Hardware/ Software

menory size Codesign (CODES), 2002]
BUE

Inlommanen Soce
e

Energy per acoess [N]

O B N W » O O N 0 O

o—9 ¢

Mt

U
Migration of data and instructions

- Global optimization model -

Example: Fori{ } | Which object (array, loop, etc.) to
forj.{ } be stored in SPM?
while ... Non-overlaying memory
main memory Repeat allocation:
function ... | Gain g, & size s, for each object k.

Maximise gain G = 2g,, respecting
AT one size of SPM SSP = X s,.

/ Solution: Knapsack algorithm.
Scratch pad | .
memory, A AT Overlaying allocation:
capacity SSb 4 Moving objects back and forth
Processor Int . between hierarchy levels .
-)"F

Inlommanen Soce
[Foes

S

A first, non-overlaying approach for
functions and global variables

11000
10000
9000 - Feasible with standard
§ :1 8000~ compiler & pre- or
i 7000 - postpass optimization
0 9 6000
sg Hoces
L>)~ LL 4000
3000
2000
Multi_sort 1000
(mix of sort 0.
algoritth) 0 64 128 256 512 1k 2k 4k 8k

Scratch Pad Size

Measured processor / external memory energy + Extensions to smalle-r code bIOCkS’
CACTI values for SPM (combined model) stacks and heaps exist BB

Inmrn]nuun SOy

......... =

Using these ideas In a pre-pass too

o dmSmn

Source Is split into 2 different files by specially developed

memory optimizer tool *.

application
source

(o

|

IXt

—
=)

profile Info.

main mem. src

——>[

ARM-GCC
Compiler

~ N
Memory ’Spmsrc

\

optimizer

(Incl. — - -{

ARM-GCC
Compiler

Icb-cY)
1 Ty

SPM
characteristics

[14] =)

linker script

1

[Ilnker]

8

.exe

*Built with tool design suite ICD-C available from ICD (see www.icd.de/es) BB

ot o

M

H Y U
Non-overlaying allocation problematic for
multiple hot spots = Overlaying allocation

CPU
>PM o Effectively results in a
kind of compiler-
controlled overlays
Memory | for SPM
ML « Address assignment

within SPM required

ot o

S

Overlaying allocation by Verma et al. (1)

[M.Verma, P.Marwedel: Dynamic Overlay of Scratchpad

Memory for Energy Minimization, ISSS, 2004] E

Inlommanen Soce
[Foes

=on

Overlaying allocation by Verma et al. (2)

SPILL_STORE(A):
SPILL_LOAD(C):

Global set of ILP equations
reflects cost/benefit relations
of potential copy points

SPILL_LOAD(A); I

Code handled like data

ot o

en BAmn

U —
Runtime/energy reduction with respect to
non-overlaying (“static”) allocation

10 /! Processor Energy [Memory Energy M Total Energy M Execution Time

0,8
0,7 -
0,6 -
0,5
0.4 -
0,3 -
0,2
0,1
0,0 -

64 100 128 200 256 avg.
Scratchpad Size (Bytes)

s B4]{mn

Multi-process Scratchpad Allocation:
Hybrid Context Switch

Process P1

Process P2

Process P3

Process P3

Scratchpad

Saving/Restoring \
at context \switch 1

P2

P1

Saving/Restoring at
context switch

N

Processes can use shared and
exclusively allocated areas
Saving/restoring required for shared
area

Optimization of sizes published by
Verma B

ot o

s 1P mn

Multi-process Scratchpad Allocation: Results

Hybrid approach superior to using only edge detection,
exclusively allocated or only shared areas adpcm, g721, mpeg

S;A: Single Process Approach

160

H Exclusive

150 -
Shared

140 - m

Hybrid

130 -

120 -

110 - — —) 1

100 -

Energy Consumption

64 128 256 512 1024 2048 4096
Scratchpad Size (bytes)
[W ""I‘l

Inlommanen Soce
[Foes

Hoe+

Dynamic set of applications

2 steps: compile-time analysis & runtime decisions
 No need to know all applications at compile-time

Capable of managing runtime allocated memory objects
Integrated with an embedded OS

’I Standard

App. 1

. Compile-time
App. 2 ﬁ Transformations | Z> C((z;ng:pcl:l)er

4
° R S R S »

° ¢ =
» Allocation
Manager

L

‘ App. n

.@l%lqgl@l!!-!

Profit values / Allocation hints

Using MPArm simulator from U. Bologna

HoW

H Y U
Dynamic set of applications:
Comparison of SPMM to Caches

» Baseline: Main memory only « SPMM outperforms caches
« SPMM peak energy reduction by * OS and libraries not
83% at 4k Bytes scratchpad considered yet
» Cache peak: 75% at 2k 2-way $ e Chunk allocation results:
e Application: sorting 100.00%
810, 00%%
SPM Size A 4-way o [IStat &1,
5 70,00% [Best Fit
1024 74,81% . - [First Fit
E G0,00% []1 Pass
2048 65,35% £ 50,00% [3 Pass
L 3
4096 64,39% 5 0o : ;E?TT
bt 30.00% 1 Bl Bl L
= ' CET - [Cache 2way
8192 65,64% 20,00% -+ ' T BE F | [Cache dway
16384 63,73% iy
0,008 -|LEL

1024 20448 4098 8192 16384
seratchpad f cache size

't e

HoH

Scratch-pad/tightly coupled memory
based predictability

Time-triggered, statically scheduled operating systems

& |et's do the same for the memory system

& Are SPMs really more timing predictable?
% Analysis using the aiT timing analyzer

rC program
.
| memory-aware Actual

rSPI\/I size 4{ compiler } ARMuIator]—» performance
Rt

executable :] Worst case
L execution time
\/_

ot o

Hoe+

—

B vV UEE——
Architectures considered

ARMY7TDMI with 3 different memory architectures:

« Main memory
LDR-cycles: (CPU,IF,DF)=(3,2,2)
STR-cycles: (2,2,2)
*=(1,2,0)

« Main memory + unified cache
LDR-cycles: (CPU,IF,DF)=(3,12,6)
STR-cycles: (2,12,3)

*=(1,12,0)

« Main memory + scratch pad
LDR-cycles: (CPU,IF,DF)=(3,0,2)
STR-cycles: (2,0,0)

*=(1,0,0)

HoH

B vV UEE——
Results for G.721

Using Scratchpad: Using Unified Cache:

5500 5500
5000 5000
4500 4500
'5' 4000 [] Simulation '5' 4000
8 G Il WCET 8 36 .WCET
E 3000 E 3000 —
¢ 2500 $ 2500
Y 2000 S, 2000
O 1500 O 1500 -
1000 1000 - r r
500 - 500 - I I
o N W |
0 64 128 256 512 1k 2k 4k 8k 0O 64 128 256 512 1k 2k 4k 8k
SP-Size [Bytes] Cache-Size [Bytes]

Yes, they are clearly more timing predictable!

L. Wehmeyer, P. Marwedel: Influence of Onchip Scratchpad Memories on WCET: 4th Intl

Workshop on worst-case execution time analysis, (WCET), 2004

L. Wehmeyer, P. Marwedel: Influence of Memory Hierarchies on Predictability for Time

Constrained Embedded Software, Design Automation and Test in Europe (DATE), 2005

Inlommanen Soce
[Foes

HoeH

A WCET-Aware C-Compiler (WCC)

‘ ANS| C ICD-C Code
Parser Selector

; v - ﬁ E\iT WCET)]
Ta;_rge t Processor ,gr;talllr)r/]sles ': 7 \ Analysis |
Termos """ Lastons | (o] (om0
WCLT-
Distinctive Features: W

* Integration of timing models into compilation &
optimization process.

o Tight coupling of WCET analyzer aiT into WCC'’s
backend.

ot o

HoeH

—

H Y U
Imported WCET Data & Flow Facts in WCC

Most important WCET data imported into WCC:
« WCET_.4; of the entire program
« WCET_.; of each single basic block

 Worst-Case execution frequencies of each CFG edge

Flow Fact Annotation within WCC:

 Annotation of e.g. loop iteration bounds directly in C source
code: _Pragma(“loopbound min 10 max 10");

e Since compiler optimizations may restructure loops and
thus their annotated bounds, WCC automatically keeps
Flow Facts consistent during all applied optimizations.

-30-

—

Problems during WCETs; Minimization

The Worst-Case Execution Path (WCEP):

« WCET of a program P = length of longest execution path
of P (WCEP)

 To minimize P’'s WCET s, Optimizations must exclusively
focus on those parts of P lying on the WCEP.

& Optimization of parts not lying on the WCEP don’t reduce
WCET 7 at all!

& Optimization strategies for WCETs; Minimization must
have detailed knowledge about the WCEP.

% During optimization, the WCEP may switch within the CFG

s E4]{mn

Graph Colouring Register Allocation

1. Initialisation: Build Interference Graph G = (V, E) with
G = {virtual registers} [{K physical processor registers},
e ={v,w} E -« VREGs v and w may never share the same
PHREG, I.e. v and w interfere

2. Simplification: Successively remove all v 0V with deg. < K;
push each v onto stack S

3. Spilling: After step 2, each node of G has degree = K.
Select one v LI V; mark v as potential spill; remove v from V;
push v onto stack S

4. Repeat steps 2 and 3 until G = 1.

[A. W. Appel, Modern compiler implementation in C, 1998]

Inlommanen Soce
Tt b gt :

Problem of Standard Graph Colouring

3. Spilling: After step 2, each node of G has degree = K.
Select one v LI V; mark v as potential spill; remove v from V;
push tack S

< Uncontrolled spill code generation — potentially alo ng
Worst-Case Execution Path (WCEP) defining the WCET!

HaE+

A Chicken-Egg Problem

A WCET-aware Register Allocator...

e ...relies on WCET data provided by WCET analysis

e ...but can't obtain WCET data since code containing
virtual registers is not analysable!

The Way out:

e Start by spilling each VREG onto stack
<= code Is fully analysable

 Perform WCET analysis, get WCEP P

* Allocate VREGs of that basic block b [P with most worst-
case spill code executions to PHREGSs using standard GC

e Recompute WCEP

HeW

Results —- WCET.<; Reductions

110% -

100%

90% -

80%

(£0O- 1A uonesiwndo buisn)

70% -

60% | I

[96] 1S3 13DM 19

S g4 w
(@) £
% e
2
o) -
e\eeov\xoe
8
owoo O nnuv
/WJ
2
o203 IS

S

0, %, ¢ c
% 7 nw 1 \&N\\ =

0\ /+N, ©
2,3, Pl
%, 24 % ©)
Q\Q\@J\\@A\\N«\

7
L% D
9 n/v 2 G

N W
)

%, %, =
% 05 % <

oo«\ < =
owoo e&\\w _

%, 42,
«oeoﬂow\o, Q\Q/ N_-_u
S) 7
o) 2o} 4

o)

®)

.moo % m/J W
v, %, -
/4 0@ Wﬂ% m
ﬂV

By, o D
<\

%&,v W
2N\

PN >
YNEEN ~
00\/ N P
\0@ % _|E
%y n_.._.v_
)

e\

S
%, OAN
\wo @Q&O w

)
7, !
25 7\ 0/
N
&W\%ﬂ@/ m
OQ/NQOQ —
o %
<6\
%
%

HeE
-

Other WCET-aware Optimizations

« WCET-aware Procedure Cloning & Positioning

[Lokuciejewski, Falk et al., ,WCET-Driven, Code-Size Critical
Procedure Cloning“, SCOPES 2008.]

[Lokuciejewski, Falk et al., ,WCET-driven Cache-based Procedure
Positioning Optimizations®, ECRTS 2008.]

« WCET-aware I-Cache Locking

[Falk, Plazar et al., ,Compile Time Decided Instruction Cache
Locking Using Worst-Case Execution Paths”, CODES+ISSS 2007.]

« WCET-aware Scratchpad Memory Allocation
- First simple approaches proposed by I. Puaut et al.

- Integrated ILP strategies under development at Dortmund,

supported by PREDATOR (&=

HeE+

U U
Future work

Tight integration of tools and representation of memory
architectures

Making these optimizations available to the “average”
software engineer for embedded systems

Creating comprehensive set of SPM optimizations in the
form of pre-pass optimizations

Extensions focusing on multi-processor based systems

Analysis of standard optimizations from the viewpoint of
WCET reduction

Analysis of tradeoffs between multiple objectives

HeHT

—

Conclusion

e Current compiler technology does not reflect non-uniform
memory access costs well

& Proposal for an introduction of optimizations driven by
models of memory access costs

First approaches focus on exploitation of scratch-pad
memories

% Non-overlaying + overlaying approaches

% Single + multiple applications
& Optimizations driven by an explicit WCET model

& Significant WCET reductions even in well-established areas

