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1. Increasing speed gap

2. Major consumer of electrical energy

3. Timing predictability difficult to achieve

4. …

The Problem with Memories

Or: Why work on processors if memory is 
where the bottleneck is?

Memories?

Oops! 
Memories!
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Trends for the speeds
Speed gap between processor 
and main DRAM increases

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]
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Similar problems also for 
embedded systems & 
MPSoCs
� Memory access times 
>> processor cycle times
(today: e.g. 100 x)
� “Memory wall”
problem;
uniform memory
access a myth
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Importance of Energy Efficiency

© Hugo De Man, IMEC, 2007

IPE=Inherent power efficiency;
AmI=Ambient Intelligence
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O. Vargas (Infineon Technologies): Minimum power consumption in mobile-phone 
memory subsystems; Pennwell Portable Design - September 2005;
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Dependency on the size

Energy

Access times Applications are 
getting larger 
and larger …

Sub-banking

+ locality of references
� Memory hierarchies
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Timing Predictability

G.721: using unified 
Cache@ARM7TDMI

Worst case execution 
time (WCET) larger than 
without cache

See later slide for 
experimental setup

Many embedded systems are real-time systems

� computations to be finished in a given amount of time

Most memory hierarchies (e.g. caches) for PC-like systems  designed 
for good average case, not for good worst case behavior.
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Vision

Application Compiler Binary
code

Linker/
Loader

Execution

(Memory)
architecture

model

Memory
architecture
specification

Pre-
pass 

optimi-
zation

Post-
pass

optimi-
zation

Specific (multi-objective?) optimiza-
tions for memory architectures;

Link/load-time optimizations would 
keep binary code memory 
architecture independent

� Multiple objectives.
What are optimizing compilers actually optimizing for?
What is their cost model? �
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Simulation tools

Compilation tools

� Integration of various optimizations
into framework

[M. Verma, L. Wehmeyer, R. Pyka, P. Marwedel, L. Benini: Compilation and Simulation Tool Chain for Memory Aware Energy 
Optimizations, Workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS VI), 2006].

Application C code

Executable binaryMemory architecture 
specification

Memory architecture 
specification

Profile report

Memory Aware Compilation and Simulation Framework (for C) MACC

MACC still under development;
Tools for specific optimizations exist �
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Related Work

• Optimizations exploiting burst mode for SDRAMs, using 
loop unrolling and architecture description language 
EXPRESSION (Dutt, Srivastava; UC Irvine)

• Smart linker (K. De Bosschere et al., U. Ghent)
• Architecture description language ArchC

(G. Araujo, U. Campinas)
• Work on scratchpad optimizations

(M. Kandemir, Penn State U.; R. Barua, U. Maryland; 
Egger+Lee, SNU; IMEC; Marwedel et al., TU Dortmund)

• ..
Existing work covers only some of the aspects
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What we have done:
Optimizations for Scratch Pad Memories (SPM)

Address space

ARM7TDMI 
cores, well-
known for low 
power 
consumption

scratch pad memory

0

FFF..

Example

Small; no 
tag memory

SPMs are small, 
physically separate 
memories mapped 
into the address 
space;

Selection is by an 
appropriate address 
decoder (simple!)

SPM

select

SPMs are fast, energy-efficient, timing-predictable
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Predictability and scratch-pad memories

… In essence, we must reinvent computer science. 
Fortunately, we have quite a bit of knowledge and 
experience to draw upon. Architecture techniques such as 
software-managed caches promise to deliver much of the 
benefit of memory hierarchy without the timing 
unpredictability.

[Ed Lee: Absolutely Positively on Time: What 
would it take?, IEEE Computer, 2005]

… pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.

[J. Xu, D. Parnas: On satisfying timing 
constraints in hard real-time systems, IEEE 
Trans. Soft. Engineering, 1993, p. 70–84]
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Comparison of currents using measurements

E.g.: ATMEL board with 
ARM7TDMI and
ext. SRAM

Current
32 Bit-Load Instruction (Thumb)
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Even larger savings in terms of energy.
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Why not just use a cache ?
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Scratch pad

Cache, 2way, 4GB space

Cache, 2way, 16 MB space

Cache, 2way, 1 MB space

1. Timing predictability

2. Hardware complexity

3. Energy consumption (in tags, comparators and muxes)

[R. Banakar, S. Steinke, B.-S. Lee, M. 
Balakrishnan, P. Marwedel. 
Scratchpad Memory : A Design 
Alternative for Cache On-chip memory 
in Embedded Systems, Intern. 
Workshop on Hardware/ Software 
Codesign (CODES), 2002]
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Migration of data and instructions
- Global optimization model -

Which object (array, loop, etc.) to 
be stored in SPM?

Non-overlaying memory 
allocation:

Gain gk & size sk for each object k.

Maximise gain G = Σgk, respecting 
size of SPM SSP ≥ Σ sk.

Solution: Knapsack algorithm.

Overlaying allocation:

Moving objects back and forth 
between hierarchy levelsProcessor

Scratch pad 
memory,
capacity SSP

main memory

?

For i .{   }

for j ..{   }

while ...

Repeat

function ...

Array ...

Int ...

Array

Example:



- 15 -

A first, non-overlaying approach for 
functions and global variables

Multi_sort
(mix of sort 
algorithms)
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Feasible with standard 
compiler & pre- or 
postpass optimization

Measured processor / external memory energy + 
CACTI values for SPM (combined model)

Extensions to smaller code blocks, 
stacks and heaps exist
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Using these ideas in a pre-pass tool
Source is split into 2 different files by specially developed 
memory optimizer tool *.

application
source

profile Info.

main mem. src

spm src.

linker script

*Built with tool design suite ICD-C available from ICD (see www.icd.de/es)

.exe

.ld linker

ARM-GCC
Compiler

ARM-GCC
Compiler

.c

.c

.c

.txt

Memory 
optimizer
(Incl. 
ICD-C*)

SPM 
characteristics
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Non-overlaying allocation problematic for
multiple hot spots �Overlaying allocation

• Effectively results in a 
kind of compiler-
controlled overlays 
for SPM

• Address assignment 
within SPM required

CPU

Memory

Memory

SPM
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Overlaying allocation by Verma et al. (1)

C

DEF A

USE A

USE A

MOD A USE C

USE C

B1

B2

B3

B4

B5

B6

B7

B8

Based on control flow graph.

[M.Verma, P.Marwedel: Dynamic Overlay of Scratchpad 
Memory for Energy Minimization, ISSS, 2004]
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Overlaying allocation by Verma et al. (2)

SPILL_STORE(A);
SPILL_LOAD(C);

SPILL_STORE(A);
SPILL_LOAD(C);

SPILL_LOAD(A);SPILL_LOAD(A);

C

DEF A

USE A

USE A

MOD A USE C

USE C

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

Global set of ILP equations 
reflects cost/benefit relations 
of potential copy points

Code handled like data
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Runtime/energy reduction with respect to
non-overlaying (“static”) allocation
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Multi-process Scratchpad Allocation:
Hybrid Context Switch

• Processes can use shared and 
exclusively allocated areas

• Saving/restoring required for shared 
area

• Optimization of sizes published by 
VermaScratchpad

Process 
P1,P2, P3

Process P1

Process P2

Process P3

Process  P1Process P2Process P3

P1

P2

P3
Saving/Restoring 
at context switch

Saving/Restoring at 
context switch
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Multi-process Scratchpad Allocation: Results
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SPA: Single Process Approach

edge detection, 

adpcm, g721, mpeg

Hybrid approach superior to using only 
exclusively allocated or only shared areas

Hybrid

Shared

Exclusive
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Dynamic set of applications

App. 2

App. 1

App. n Allocation
Manager

Standard 
Compiler

(GCC)

Standard 
Compiler

(GCC)

Operating
System

Compile-time
Transformations
Compile-time

Transformations

Profit values / Allocation hints

• 2 steps: compile-time analysis & runtime decisions

• No need to know all applications at compile-time

• Capable of managing runtime allocated memory objects

• Integrated with an embedded OS

Using MPArm simulator from U. Bologna
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Dynamic set of applications:  
Comparison of SPMM to Caches

• Baseline: Main memory only
• SPMM peak energy reduction by 

83% at 4k Bytes scratchpad
• Cache peak: 75% at 2k 2-way $
• Application: sorting

• SPMM outperforms caches
• OS and libraries not  

considered yet
• Chunk allocation results:

SPM Size ∆ 4-way

1024 74,81%

2048 65,35%

4096 64,39%

8192 65,64%

16384 63,73%
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Scratch-pad/tightly coupled memory
based predictability

C program

SPM size

executable

Actual
performance

Worst case
execution time

memory-aware
compiler ARMulator

aiT

Time-triggered, statically scheduled operating systems

� Let‘s do the same for the memory system

�Are SPMs really more timing predictable?

�Analysis using the aiT timing analyzer
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Architectures considered
ARM7TDMI with 3 different memory architectures:

• Main memory
LDR-cycles: (CPU,IF,DF)=(3,2,2)
STR-cycles: (2,2,2)
* = (1,2,0)

• Main memory + unified cache
LDR-cycles: (CPU,IF,DF)=(3,12,6)
STR-cycles: (2,12,3)
* = (1,12,0)

• Main memory + scratch pad
LDR-cycles: (CPU,IF,DF)=(3,0,2)
STR-cycles: (2,0,0)
* = (1,0,0)
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Results for G.721

• L. Wehmeyer, P. Marwedel: Influence of Onchip Scratchpad Memories on WCET: 4th Intl 
Workshop on worst-case execution time  analysis, (WCET), 2004

• L. Wehmeyer, P. Marwedel: Influence of Memory Hierarchies on Predictability for Time 
Constrained Embedded Software, Design Automation and Test in Europe (DATE), 2005

Using Scratchpad: Using Unified Cache:

Yes, they are clearly more timing predictable!
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A WCET-Aware C-Compiler (WCC)

Distinctive Features:
• Integration of timing models into compilation & 

optimization process.

• Tight coupling of WCET analyzer aiT into WCC’s
backend.

ICD-C
Parser

ANSI C ICD-C
IR

Code
Selector

LLIR

Register
Allocator

LLIR →→→→
CRL2 CRL2

aiT WCET
Analysis

CRL2 +
WCETEST

CRL2 →→→→
LLIR

WCET-
Opt. ASM

Analyses,
Optimi-
zations

Target Processor:
Infineon TriCore
TC1796
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Imported WCET Data & Flow Facts in WCC

Most important WCET data imported into WCC:

• WCETEST of the entire program

• WCETEST of each single basic block

• Worst-Case execution frequencies of each CFG edge

Flow Fact Annotation within WCC:

• Annotation of e.g. loop iteration bounds directly in C source 
code: _Pragma( “loopbound min 10 max 10” );

• Since compiler optimizations may restructure loops and 
thus their annotated bounds, WCC automatically keeps 
Flow Facts consistent during all applied optimizations.
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Problems during WCETEST Minimization

The Worst-Case Execution Path (WCEP):

• WCET of a program P = length of longest execution path 
of P (WCEP)

• To minimize P’s WCETEST, optimizations must exclusively 
focus on those parts of P lying on the WCEP.

�Optimization of parts not lying on the WCEP don’t reduce 
WCETEST at all!

�Optimization strategies for WCETEST Minimization must 
have detailed knowledge about the WCEP.

�During optimization, the WCEP may switch within the CFG
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Graph Colouring Register Allocation

1. Initialisation: Build Interference Graph G = (V, E) with
G = {virtual registers} ∪ {K physical processor registers},
e = {v, w} ∈ E ⇔ VREGs v and w may never share the same

PHREG, i.e. v and w interfere

2. Simplification: Successively remove all v ∈ V with deg. < K;
push each v onto stack S

3. Spilling: After step 2, each node of G has degree ≥ K.
Select one v ∈ V; mark v as potential spill; remove v from V;
push v onto stack S

4. Repeat steps 2 and 3 until G = ∅.

[A. W. Appel, Modern compiler implementation in C, 1998]
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Problem of Standard Graph Colouring

3. Spilling: After step 2, each node of G has degree ≥ K.
Select one v ∈ V; mark v as potential spill; remove v from V;
push v onto stack S

Which node v should be selected as potential spill?

Graph colouring implementations heuristically selec t …

� … either some arbitrary node or …

� … the node with highest degree or …

� … a node in some inner loop.

� Uncontrolled spill code generation – potentially alo ng
Worst-Case Execution Path (WCEP) defining the WCET!
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A Chicken-Egg Problem

A WCET-aware Register Allocator…

• …relies on WCET data provided by WCET analysis

• …but can‘t obtain WCET data since code containing 
virtual registers is not analysable!

• Start by spilling each VREG onto stack
� code is fully analysable

• Perform WCET analysis, get WCEP P

• Allocate VREGs of that basic block b ∈ P with most worst-
case spill code executions to PHREGs using standard GC

• Recompute WCEP

The Way out:
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100% = WCETEST using Std. WCET-unaware Graph-Coloring
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Other WCET-aware Optimizations

• WCET-aware Procedure Cloning & Positioning
[Lokuciejewski, Falk et al., „WCET-Driven, Code-Size Critical 
Procedure Cloning“, SCOPES 2008.]
[Lokuciejewski, Falk et al., „WCET-driven Cache-based Procedure 
Positioning Optimizations“, ECRTS 2008.]

• WCET-aware I-Cache Locking
[Falk, Plazar et al., „Compile Time Decided Instruction Cache 
Locking Using Worst-Case Execution Paths”, CODES+ISSS 2007.]

• WCET-aware Scratchpad Memory Allocation

- First simple approaches proposed by I. Puaut et al.

- Integrated ILP strategies under development at Dortmund,
supported by



- 36 -

Future work

• Tight integration of tools and representation of memory 
architectures

• Making these optimizations available to the “average”
software engineer for embedded systems

• Creating comprehensive set of SPM optimizations in the 
form of pre-pass optimizations

• Extensions focusing on multi-processor based systems

• Analysis of standard optimizations from the viewpoint of 
WCET reduction

• Analysis of tradeoffs between multiple objectives
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Conclusion

• Current compiler technology does not reflect non-uniform 
memory access costs well

�Proposal for an introduction of optimizations driven by 
models of memory access costs

� First approaches focus on exploitation of scratch-pad 
memories

�Non-overlaying + overlaying approaches

�Single + multiple applications

�Optimizations driven by an explicit WCET model

�Significant WCET reductions even in well-established areas


