
- 1 -

http://www.artist-embedded.org/

ARTIST2 Summer School 2008 in EuropeARTIST2 Summer School 2008 in Europe
AutransAutrans (near Grenoble), France(near Grenoble), France

September 8September 8--12, 200812, 2008

Lecturers: Peter Marwedel, Lecturers: Peter Marwedel, HeikoHeiko FalkFalk

Informatik 12Informatik 12

TU Dortmund, GermanyTU Dortmund, Germany

MemoryMemory--architecture architecture

aware compilationaware compilation

- 2 -

1. Increasing speed gap

2. Major consumer of electrical energy

3. Timing predictability difficult to achieve

4. …

The Problem with Memories

Or: Why work on processors if memory is
where the bottleneck is?

Memories?

Oops!
Memories!

- 3 -

Trends for the speeds
Speed gap between processor
and main DRAM increases

[P. Machanik: Approaches to Addressing the Memory Wall, TR Nov. 2002, U. Brisbane]

2

4

8

2 4 5

Speed

years

CPU P
er

fo
rm

an
ce

(1
.5

-2
 p

.a
.)

DRAM (1.07 p.a.)

31

≥ 2x
every 2
years

1
0

Similar problems also for
embedded systems &
MPSoCs
� Memory access times
>> processor cycle times
(today: e.g. 100 x)
� “Memory wall”
problem;
uniform memory
access a myth

- 4 -

Importance of Energy Efficiency

© Hugo De Man, IMEC, 2007

IPE=Inherent power efficiency;
AmI=Ambient Intelligence

G
O

P
s/

J

O. Vargas (Infineon Technologies): Minimum power consumption in mobile-phone
memory subsystems; Pennwell Portable Design - September 2005;

- 5 -

Dependency on the size

Energy

Access times Applications are
getting larger
and larger …

Sub-banking

+ locality of references
� Memory hierarchies

- 6 -

Timing Predictability

G.721: using unified
Cache@ARM7TDMI

Worst case execution
time (WCET) larger than
without cache

See later slide for
experimental setup

Many embedded systems are real-time systems

� computations to be finished in a given amount of time

Most memory hierarchies (e.g. caches) for PC-like systems designed
for good average case, not for good worst case behavior.

- 7 -

Vision

Application Compiler Binary
code

Linker/
Loader

Execution

(Memory)
architecture

model

Memory
architecture
specification

Pre-
pass

optimi-
zation

Post-
pass

optimi-
zation

Specific (multi-objective?) optimiza-
tions for memory architectures;

Link/load-time optimizations would
keep binary code memory
architecture independent

� Multiple objectives.
What are optimizing compilers actually optimizing for?
What is their cost model? �

- 8 -

Simulation tools

Compilation tools

� Integration of various optimizations
into framework

[M. Verma, L. Wehmeyer, R. Pyka, P. Marwedel, L. Benini: Compilation and Simulation Tool Chain for Memory Aware Energy
Optimizations, Workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS VI), 2006].

Application C code

Executable binaryMemory architecture
specification

Memory architecture
specification

Profile report

Memory Aware Compilation and Simulation Framework (for C) MACC

MACC still under development;
Tools for specific optimizations exist �

- 9 -

Related Work

• Optimizations exploiting burst mode for SDRAMs, using
loop unrolling and architecture description language
EXPRESSION (Dutt, Srivastava; UC Irvine)

• Smart linker (K. De Bosschere et al., U. Ghent)
• Architecture description language ArchC

(G. Araujo, U. Campinas)
• Work on scratchpad optimizations

(M. Kandemir, Penn State U.; R. Barua, U. Maryland;
Egger+Lee, SNU; IMEC; Marwedel et al., TU Dortmund)

• ..
Existing work covers only some of the aspects

- 10 -

What we have done:
Optimizations for Scratch Pad Memories (SPM)

Address space

ARM7TDMI
cores, well-
known for low
power
consumption

scratch pad memory

0

FFF..

Example

Small; no
tag memory

SPMs are small,
physically separate
memories mapped
into the address
space;

Selection is by an
appropriate address
decoder (simple!)

SPM

select

SPMs are fast, energy-efficient, timing-predictable

- 11 -

Predictability and scratch-pad memories

… In essence, we must reinvent computer science.
Fortunately, we have quite a bit of knowledge and
experience to draw upon. Architecture techniques such as
software-managed caches promise to deliver much of the
benefit of memory hierarchy without the timing
unpredictability.

[Ed Lee: Absolutely Positively on Time: What
would it take?, IEEE Computer, 2005]

… pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.

[J. Xu, D. Parnas: On satisfying timing
constraints in hard real-time systems, IEEE
Trans. Soft. Engineering, 1993, p. 70–84]

- 12 -

Comparison of currents using measurements

E.g.: ATMEL board with
ARM7TDMI and
ext. SRAM

Current
32 Bit-Load Instruction (Thumb)

48,2 50,9 44,4 53,1

116
77,2 82,2

1,16

0

50

100

150

200

Prog Main/ Data
Main

Prog Main/ Data
SPM

Prog SPM/ Data
Main

Prog SPM/ Data SPM

m
A

Core+SPM (mA) Main Memory Current (mA)

Even larger savings in terms of energy.

- 13 -

Why not just use a cache ?

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384

memory size

E
ne

rg
y
pe

r a
cc

es
s
[n

J]

.

Scratch pad

Cache, 2way, 4GB space

Cache, 2way, 16 MB space

Cache, 2way, 1 MB space

1. Timing predictability

2. Hardware complexity

3. Energy consumption (in tags, comparators and muxes)

[R. Banakar, S. Steinke, B.-S. Lee, M.
Balakrishnan, P. Marwedel.
Scratchpad Memory : A Design
Alternative for Cache On-chip memory
in Embedded Systems, Intern.
Workshop on Hardware/ Software
Codesign (CODES), 2002]

- 14 -

Migration of data and instructions
- Global optimization model -

Which object (array, loop, etc.) to
be stored in SPM?

Non-overlaying memory
allocation:

Gain gk & size sk for each object k.

Maximise gain G = Σgk, respecting
size of SPM SSP ≥ Σ sk.

Solution: Knapsack algorithm.

Overlaying allocation:

Moving objects back and forth
between hierarchy levelsProcessor

Scratch pad
memory,
capacity SSP

main memory

?

For i .{ }

for j ..{ }

while ...

Repeat

function ...

Array ...

Int ...

Array

Example:

- 15 -

A first, non-overlaying approach for
functions and global variables

Multi_sort
(mix of sort
algorithms)

C
yc

le
s

[x
10

0]
E

ne
rg

y
[µ

J]

Feasible with standard
compiler & pre- or
postpass optimization

Measured processor / external memory energy +
CACTI values for SPM (combined model)

Extensions to smaller code blocks,
stacks and heaps exist

- 16 -

Using these ideas in a pre-pass tool
Source is split into 2 different files by specially developed
memory optimizer tool *.

application
source

profile Info.

main mem. src

spm src.

linker script

*Built with tool design suite ICD-C available from ICD (see www.icd.de/es)

.exe

.ld linker

ARM-GCC
Compiler

ARM-GCC
Compiler

.c

.c

.c

.txt

Memory
optimizer
(Incl.
ICD-C*)

SPM
characteristics

- 17 -

Non-overlaying allocation problematic for
multiple hot spots �Overlaying allocation

• Effectively results in a
kind of compiler-
controlled overlays
for SPM

• Address assignment
within SPM required

CPU

Memory

Memory

SPM

- 18 -

Overlaying allocation by Verma et al. (1)

C

DEF A

USE A

USE A

MOD A USE C

USE C

B1

B2

B3

B4

B5

B6

B7

B8

Based on control flow graph.

[M.Verma, P.Marwedel: Dynamic Overlay of Scratchpad
Memory for Energy Minimization, ISSS, 2004]

- 19 -

Overlaying allocation by Verma et al. (2)

SPILL_STORE(A);
SPILL_LOAD(C);

SPILL_STORE(A);
SPILL_LOAD(C);

SPILL_LOAD(A);SPILL_LOAD(A);

C

DEF A

USE A

USE A

MOD A USE C

USE C

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

Global set of ILP equations
reflects cost/benefit relations
of potential copy points

Code handled like data

- 20 -

Runtime/energy reduction with respect to
non-overlaying (“static”) allocation

- 21 -

Multi-process Scratchpad Allocation:
Hybrid Context Switch

• Processes can use shared and
exclusively allocated areas

• Saving/restoring required for shared
area

• Optimization of sizes published by
VermaScratchpad

Process
P1,P2, P3

Process P1

Process P2

Process P3

Process P1Process P2Process P3

P1

P2

P3
Saving/Restoring
at context switch

Saving/Restoring at
context switch

- 22 -

Multi-process Scratchpad Allocation: Results

80

90

100

110

120

130

140

150

160

64 128 256 512 1024 2048 4096

Scratchpad Size (bytes)

E
ne

rg
y

C
on

su
m

p
tio

n
(m

J)

SPA: Single Process Approach

edge detection,

adpcm, g721, mpeg

Hybrid approach superior to using only
exclusively allocated or only shared areas

Hybrid

Shared

Exclusive

- 23 -

Dynamic set of applications

App. 2

App. 1

App. n Allocation
Manager

Standard
Compiler

(GCC)

Standard
Compiler

(GCC)

Operating
System

Compile-time
Transformations
Compile-time

Transformations

Profit values / Allocation hints

• 2 steps: compile-time analysis & runtime decisions

• No need to know all applications at compile-time

• Capable of managing runtime allocated memory objects

• Integrated with an embedded OS

Using MPArm simulator from U. Bologna

- 24 -

Dynamic set of applications:
Comparison of SPMM to Caches

• Baseline: Main memory only
• SPMM peak energy reduction by

83% at 4k Bytes scratchpad
• Cache peak: 75% at 2k 2-way $
• Application: sorting

• SPMM outperforms caches
• OS and libraries not

considered yet
• Chunk allocation results:

SPM Size ∆ 4-way

1024 74,81%

2048 65,35%

4096 64,39%

8192 65,64%

16384 63,73%

- 25 -

Scratch-pad/tightly coupled memory
based predictability

C program

SPM size

executable

Actual
performance

Worst case
execution time

memory-aware
compiler ARMulator

aiT

Time-triggered, statically scheduled operating systems

� Let‘s do the same for the memory system

�Are SPMs really more timing predictable?

�Analysis using the aiT timing analyzer

- 26 -

Architectures considered
ARM7TDMI with 3 different memory architectures:

• Main memory
LDR-cycles: (CPU,IF,DF)=(3,2,2)
STR-cycles: (2,2,2)
* = (1,2,0)

• Main memory + unified cache
LDR-cycles: (CPU,IF,DF)=(3,12,6)
STR-cycles: (2,12,3)
* = (1,12,0)

• Main memory + scratch pad
LDR-cycles: (CPU,IF,DF)=(3,0,2)
STR-cycles: (2,0,0)
* = (1,0,0)

- 27 -

Results for G.721

• L. Wehmeyer, P. Marwedel: Influence of Onchip Scratchpad Memories on WCET: 4th Intl
Workshop on worst-case execution time analysis, (WCET), 2004

• L. Wehmeyer, P. Marwedel: Influence of Memory Hierarchies on Predictability for Time
Constrained Embedded Software, Design Automation and Test in Europe (DATE), 2005

Using Scratchpad: Using Unified Cache:

Yes, they are clearly more timing predictable!

- 28 -

A WCET-Aware C-Compiler (WCC)

Distinctive Features:
• Integration of timing models into compilation &

optimization process.

• Tight coupling of WCET analyzer aiT into WCC’s
backend.

ICD-C
Parser

ANSI C ICD-C
IR

Code
Selector

LLIR

Register
Allocator

LLIR →→→→
CRL2 CRL2

aiT WCET
Analysis

CRL2 +
WCETEST

CRL2 →→→→
LLIR

WCET-
Opt. ASM

Analyses,
Optimi-
zations

Target Processor:
Infineon TriCore
TC1796

- 29 -

Imported WCET Data & Flow Facts in WCC

Most important WCET data imported into WCC:

• WCETEST of the entire program

• WCETEST of each single basic block

• Worst-Case execution frequencies of each CFG edge

Flow Fact Annotation within WCC:

• Annotation of e.g. loop iteration bounds directly in C source
code: _Pragma(“loopbound min 10 max 10”);

• Since compiler optimizations may restructure loops and
thus their annotated bounds, WCC automatically keeps
Flow Facts consistent during all applied optimizations.

- 30 -

Problems during WCETEST Minimization

The Worst-Case Execution Path (WCEP):

• WCET of a program P = length of longest execution path
of P (WCEP)

• To minimize P’s WCETEST, optimizations must exclusively
focus on those parts of P lying on the WCEP.

�Optimization of parts not lying on the WCEP don’t reduce
WCETEST at all!

�Optimization strategies for WCETEST Minimization must
have detailed knowledge about the WCEP.

�During optimization, the WCEP may switch within the CFG

- 31 -

Graph Colouring Register Allocation

1. Initialisation: Build Interference Graph G = (V, E) with
G = {virtual registers} ∪ {K physical processor registers},
e = {v, w} ∈ E ⇔ VREGs v and w may never share the same

PHREG, i.e. v and w interfere

2. Simplification: Successively remove all v ∈ V with deg. < K;
push each v onto stack S

3. Spilling: After step 2, each node of G has degree ≥ K.
Select one v ∈ V; mark v as potential spill; remove v from V;
push v onto stack S

4. Repeat steps 2 and 3 until G = ∅.

[A. W. Appel, Modern compiler implementation in C, 1998]

- 32 -

Problem of Standard Graph Colouring

3. Spilling: After step 2, each node of G has degree ≥ K.
Select one v ∈ V; mark v as potential spill; remove v from V;
push v onto stack S

Which node v should be selected as potential spill?

Graph colouring implementations heuristically selec t …

� … either some arbitrary node or …

� … the node with highest degree or …

� … a node in some inner loop.

� Uncontrolled spill code generation – potentially alo ng
Worst-Case Execution Path (WCEP) defining the WCET!

- 33 -

A Chicken-Egg Problem

A WCET-aware Register Allocator…

• …relies on WCET data provided by WCET analysis

• …but can‘t obtain WCET data since code containing
virtual registers is not analysable!

• Start by spilling each VREG onto stack
� code is fully analysable

• Perform WCET analysis, get WCEP P

• Allocate VREGs of that basic block b ∈ P with most worst-
case spill code executions to PHREGs using standard GC

• Recompute WCEP

The Way out:

- 34 -

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

ad
pcm

_g
72

1_
bo

ard
_te

st

ad
pc

m
_g

72
1_

ver
ify du

ff

ed
ge

_d
ete

ct
ed

n
ep

ic
fft_

10
24

fft_
16

_1
3

fft_
16

_7
ff t

_2
56 fir

g7
21

_e
nc

ode

g7
23

_e
nc

ode gs
m

gs
m

_d
ec

od
e

gsm
_e

nc
od

e

iir_
biq

ua
d_

N_
se

ct
ion

s

lat
n rm

_3
2_

64
lu

dc
mp

matm
ult

matr
ix1

_fl
oa

t

m
atr

ix1
x3

_
flo

at

mat
r ix

2_
fix

ed

matr
ix2

_fl
oa

t
md5
nd

es
se

le
ct

se
lec

tio
n_

so
rt

Ave
ra

ge
R

el
. W

C
E

T
E

S
T

[%
]

(U
si

ng
 O

pt
im

is
at

io
n

Le
ve

l -
O

3)

Results – WCETEST Reductions

100% = WCETEST using Std. WCET-unaware Graph-Coloring

- 35 -

Other WCET-aware Optimizations

• WCET-aware Procedure Cloning & Positioning
[Lokuciejewski, Falk et al., „WCET-Driven, Code-Size Critical
Procedure Cloning“, SCOPES 2008.]
[Lokuciejewski, Falk et al., „WCET-driven Cache-based Procedure
Positioning Optimizations“, ECRTS 2008.]

• WCET-aware I-Cache Locking
[Falk, Plazar et al., „Compile Time Decided Instruction Cache
Locking Using Worst-Case Execution Paths”, CODES+ISSS 2007.]

• WCET-aware Scratchpad Memory Allocation

- First simple approaches proposed by I. Puaut et al.

- Integrated ILP strategies under development at Dortmund,
supported by

- 36 -

Future work

• Tight integration of tools and representation of memory
architectures

• Making these optimizations available to the “average”
software engineer for embedded systems

• Creating comprehensive set of SPM optimizations in the
form of pre-pass optimizations

• Extensions focusing on multi-processor based systems

• Analysis of standard optimizations from the viewpoint of
WCET reduction

• Analysis of tradeoffs between multiple objectives

- 37 -

Conclusion

• Current compiler technology does not reflect non-uniform
memory access costs well

�Proposal for an introduction of optimizations driven by
models of memory access costs

� First approaches focus on exploitation of scratch-pad
memories

�Non-overlaying + overlaying approaches

�Single + multiple applications

�Optimizations driven by an explicit WCET model

�Significant WCET reductions even in well-established areas

