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Abstract—A static loop analysis is a program analysis com-
puting loop iteration counts. This information is crucial for
different fields of applications. In the domain of compilers, the
knowledge about loop iterations can be exploited for aggressive
loop optimizations like Loop Unrolling. A loop analyzer also
provides static information about code execution frequencies
which can assist feedback-directed optimizations. Another
prominent application is the static worst-case execution time
(WCET) analysis which relies on a safe approximation of loop
iteration counts.

In this paper, we propose a framework for a static loop
analysis based on Abstract Interpretation, a theory of a
sound approximation of program semantics. To accelerate
the analysis, we preprocess the analyzed code using Program
Slicing, a technique that removes statements irrelevant for
the loop analysis. In addition, we introduce a novel polytope-
based loop evaluation that further significantly reduces the
analysis time. The efficiency of our loop analyzer is evaluated
on a large number of benchmarks. Results show that 99%
of the considered loops could be successfully analyzed in an
acceptable amount of time. This study points out that our
methodology is best suited for real-world problems.

I. I NTRODUCTION

Knowledge about loop iteration counts is mandatory for a
large number of different static program analyses. One of the
most prominent candidates are compiler-based loop transfor-
mations. Since programs spend most of their execution time
in loops, their optimization is considered to be one of the
most effective compiler tranformations. This optimization
class typically relies on the knowledge of how often a
loop is executed. Examples for loop transformations are
Loop Unrolling [1], Loop Tiling or Software Pipelining[2].
Without knowing the loop iteration counts at compile-time,
these optimizations can not be applied and optimization
potential is not explored.

A related domain of compiler optimizations which profit
from the availability of loop iteration counts isfeedback-
directed optimization (FDO). FDOs are typically based on

The research leading to these results has received funding from the
European Community’s ArtistDesign Network of Excellence and from the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 216008.

external data about execution frequencies gathered at pro-
gram run time. A compiler exploits this profiling information
to focus its optimization efforts on the most frequently
executed program portions. An increasing academic inter-
est as well as a growing commercial acceptance of FDO
emphasizes the optimizations’ future potential [3]. However,
the main problem with profiling information is its program
model which is valid for a particular set of input data. Thus,
for different input sets, the program must be re-compiled [4]
to gather valid profiling information. One solution to this
problem is the application of a static loop analyzer which
computes an approximation of possible program values valid
for all possible input data. These input-invariant approxima-
tions allow the computation of execution frequencies which
are valid for varying input sets.

The third major class of static program analyses which
benefits from a reliable loop analysis is the static worst-case
execution time analysis. The WCET is a key parameter for
systems that must meet real-time constraints. Especially for
safety-critical systems, e. g. in the avionic and automotive
domain, the adherence of the WCET must be ensured to
avoid system failure potentially leading to a disaster. Also
for scheduling algorithms and an effective hardware design,
the WCET is a crucial issue. A static WCET analysis
relies on safe upper bounds of loop iterations in order to
derive a finite WCET estimation. The majority of static
WCET analyzers tries to detect loops in the object code by
pattern matching. However, these pattern-based approaches
are limited and highly depend on the compiler used for the
code generation. Moreover, they often fail in the analysis
of more complex loops. Thus, WCET analyzers typically
offer the possibility to provide loop information manuallyby
the user. In order to overcome this tedious and error-prone
process, an automatic and universal loop analysis is highly
desired [5]. The analysis has to meet strict requirements. On
the one hand, the results must be safe, i. e. underestimated
loop iteration counts are not acceptable since this would
yield an invalid WCET estimation. On the other hand, the
loop analysis results should be as precise as possible in order
to keep the overestimation of the estimated WCET minimal.

In this paper, we present an automatic static loop analysis



for a high-level code representation which can be employed
to either assist compiler optimizations or to provide manda-
tory information for a WCET analysis. It is based on a theory
of a sound approximation of the program’s semantics called
Abstract Interpretation[6] which considers all potential
values a program variable might have at any program point.
Since all possible input data is assumed, the analysis is not
sensitive to a particular input set. Thus, it is more reliable
than profiling information and generates safe parameters for
a WCET analysis. The main contributions of this paper are
as follows:

1) We introduce a fast static loop analysis which pro-
duces highly precise results about loop iteration counts
and execution frequencies of code elements.

2) Our analysis overcomes the restrictions of pattern-
based approaches by performing an interprocedural
data-flow analysis on source code level.

3) A technique calledInterprocedural Program Slicing
is applied in order to simplify the analyzed code and
allow a faster analysis.

4) The analysis exploits mathematical concepts of poly-
topes to significantly accelerate the conventional loop
analyses found in the literature.

5) For the first time, a static loop analyzer is applied to
a wide collection of different real-world benchmarks.
We show that our analyzer generates precise results in
an acceptable amount of time. This can be considered
as a proof of concepts and indicates the loop analyzer’s
practical use for other projects.

The rest of this paper is organized as follows: Section II
gives a survey of the related work. An introduction to
the theory of Abstract Interpretation which is the basic
framework for our loop analysis is presented in Section III.
Section IV introduces the concepts of the interprocedural
Program Slicing, followed by our novel concepts of the
polytope-based loop evaluation in Section V. In Section VI
we describe our experimental environment and show how
the previously described techniques are combined. Results
achieved on different real-world benchmark suites are pre-
sented in Section VII. Finally, Section VIII summarizes this
paper and gives directions for future work.

II. RELATED WORK

Most of the previous works relying on known loop
iteration counts implicitly assume the existence of a loop
analyzer. However, static loop analysis is only sparsely dealt
within today’s literature. An overview of related work is
presented in the following.

[7] presents a pattern-based approach to determine the
loop iteration counts for an assembly program. The analy-
sis exclusively evaluates instructions which represent loops
while other instructions are ignored. In that way, loops
which rely on function parameters can not be analyzed. To
overcome this problem, the authors provide a mechanism

which allows the specification of value ranges for unknown
variables making their analysis semi-automatic.

The approach developed in [7] has been adapted to
programs written in the high-level languageC by [8]. Again,
the loop analysis does not automatically succeed for all types
of loops. Mandatory information that can not be extracted
during the static analysis must be provided by the user in
the form of source code annotations.

In contrast to the pattern-based loop analyses, [9] uses an
interprocedural data-flow based loop analysis at assembly
level. The advantage of this approach is that the success of
the static analysis does not strictly rely on pre-defined code
patterns a particular compiler generates but on the semantics
of the instruction set for a specific target machine. As stated
by the authors, their analysis works best for well-structured
loops and where the loop counter is modified only by a
simple addition.

A different approach for a fully automatic static loop
analysis at source code level was described in [10]. The
authors involve a data flow analysis which is based on
the theory ofAbstract Interpretationthat enables an auto-
matic extraction of information about all possible program
executions. Their data flow analysis determines a precise
approximation of variable values which are exploited to
calculate the number of loop iterations. The approximation
is achieved by representing actual values as intervals. By this
loss of precision, the concrete program’s semantics become
decidable and make an answer to the question about loop
iterations possible.

This work was employed in [5] to assist a static WCET
analysis. It was extended by supporting a determination of
loop bounds for nested loops as well as a detection of
infeasible paths, i. e. paths that are not taken in particular
execution contexts of the program and which should thus
be excluded from the WCET analysis to avoid WCET
overestimation.

Further improvements to this loop analysis were presented
in [11]. The authors combine different standard program
analyses likeProgram Slicingand Invariant Analysistech-
niques in order to accelerate the loop analysis. This pub-
lication is close to the work presented in this paper. We
also use Program Slicing to reduce the amount of code to
be analysed. However, we additionally exploit Slicing to
leverage our novel polytope-based loop evaluation as will
be described in more detail in Section V. Moreover, unlike
our loop analyzer the authors state that their analysis can not
handle recursive code and that their analysis fails for more
complex loops.

III. A BSTRACT INTERPRETATION

Abstract Interpretation is a theory of sound approximation
of mathematical structures. In computer science, it is mainly
used to approximate semantic models of computer systems.
The theory’s main field of application is the static program



analysis which exploits the fact that undecidable or very
complex problems can be solved when incomplete results
are tolerated [6].

In general, the static loop analysis is not decidable since
it includes the proof of termination. Thus, for concrete
program semantics an automatic loop analysis which de-
termines loop iteration counts for any type of loops is
only feasible for a restricted set of programs. However, by
introducing abstract semantics, which is a superset of the
concrete semantics of the program that covers all possible
concrete cases, the loss of information makes the analysis
computable. We take advantage of this fact and build our
static loop analysis upon the theoretical concepts of the
classical Abstract Interpretation discussed next.

A. Classical Abstract Interpretation

The fundamental idea behind Abstract Interpretation is to
find an appropriate compromise between the precision of the
analysis and analysis time. This reduction of information is
achieved by mapping a possibly infinite set of program states
typically consisting of the value of the program counter
(program point) and a set of variables (or memory locations)
into a finite set ofabstract states. This mapping is achieved
by the functionα calledabstraction function:

α : L → M (1)

while L andM are complete lattices. Typically, computations
on M are less complex than onL. The counterpart toα is
the concretization functionγ with

γ : M → L (2)

It maps elements of latticeM into latticeL. During a static
program analysis, computations are performed on the more
abstract sets being part ofM before finally transforming
them into the original (concrete) states via the concretization
function. The abstract states which representM are specified
by their abstract domain. Different domains are known in
literature like the convex polyhedra domain [12], the congru-
ence domain [13] or the octogan domain [14] which provide
different representations of the variable values held in an
abstract state. These domains represent different trade-offs
between precision and complexity. For our loop analysis, we
use the interval domain [6] which represents a set of variable
values by a single intervalI:

I = {⊥} ∪ {[z1, z2] | z1 ≤ z2} (3)

for z1 ∈ Z ∪ {−∞} , z2 ∈ Z ∪ {∞} and⊥ representing an
empty interval.

Besides the representation of values, theabstract opera-
tors define computations in the abstract domain. As for the
concrete semantics of a program, which might modify their
values with n-ary operators, its abstract domain generated

via the abstraction functionα must provide equivalent oper-
ators. In case of our interval domain, the abstract operators
are based on interval arithmetics.

The objective of a static analysis based on Abstract
Interpretation is to assign sets of possible variable values
(abstract states) to edges of a control flow graph(CFG). The
CFG consists of five different node types which represent
program points:

1) A designatedstart and end node representing the
beginning and end point of a CFG.

2) Expression nodesrepresenting different expression
types found in a concrete semantic model.

3) Condition nodesrepresenting forks in a control flow,
i. e. this type of nodes has one incoming and two
outgoing edges.

4) Join nodesmerging two paths of the CFG, i. e. these
nodes have two incoming and one outgoing edge.

Based on the CFG, a transition system is constructed. It
defines how an abstract state is transfered into another state
at program pointP :

τ : P(STATES) → P(STATES) (4)

The transition systemτ is used to construct a system of
equations which define the assignment of abstract states
to program points. A solution is found by a fixed-point
iteration. It begins with the least possible assignmentτ(⊥)
where⊥ is the least elementrepresenting∅. The fixed-point
iteration continues as long as a further application ofτ does
not compute a new state:

τn−1 = τn (5)

The problem of Abstract Interpretation is that a termi-
nation of the fixed-point iteration can not be guaranteed.
Moreover, due to the nature of Abstract Interpretation which
iteratively simulates each state transition, the fixed-point
iteration can consume a significant amount of time for loops
with large iteration counts. To overcome both problems, the
widening operator∇ [6] can be applied. It allows the substi-
tution of an infinite sequence of abstract states(Ŝ ((Ŝi)i∈N)
of a program pointq by a finite and safely approximated
sequence ((Ŝm

∇
)m∈N). Its application typically enlarges the

abstract states during the fixed-point iteration leading toa
correct but also over-approximated solution which might
become infeasible as result for many applications. Thus,
a narrowing operator△ was introduced by [15] trying to
restrict the over-approximation afterwards.

B. Modified Abstract Interpretation

The classic widening operator can not be applied for
our static loop analysis since it yields significantly over-
approximated loop iteration counts, in the worst-case even
∞, which are insufficient for compiler optimizations or a
static WCET analysis. In addition, the iterative behavior



of the classical Abstract Interpretation might slow down
the analysis such that it becomes impractical. In particular,
this can be observed for the analysis of program loops
with high iteration counts for which each loop iteration is
separately simulated. This section proposes a solution for
both problems.

The main innovation of this work is the development
of a static loop analysis that on the one hand exploits the
formal framework of Abstract Interpretation but on the other
hand avoids its iterative behavior during the loop analysis.
We propose a non-iterative static loop evaluation which
determines loop iteration counts and variable values with
a purely static analysis by iterating through the loop body
exactly once. If this efficient approach succeeds for the
analysis of a loop, the classical Abstract Interpretation is
omitted for this loop, otherwise the classical approach is
applied.

In the following, we first describe the extensions to the
basic concepts of the classical Abstract Interpretation which
are required for the integration of the fast non-iterative loop
evaluation. The latter will be described in Section V.

First of all, the classical set of five node types described
previously must be extended by further node types which
are required for the analysis of programs written in an
imperative high-level language like ANSI-C. The new node
types comprise for example compound statements, function
calls or loop statements.

Moreover, the classical approach begins with the con-
struction of a complete transition system for the five node
types. This is a closed model for which the solution is
found by one particular approach, the fixed-point iteration.
In contrast, our analysis requires a more flexible model of
the transition system. We do not consider the analyzed CFG
as a closed monolithic system but subdivide the graph into
smaller chunks for which a separate transition system is
constructed and solved. This enables an easy exchange of
the solvers. In our framework, our novel non-iterative static
loop evaluation is applied to transition systems that represent
loops.

Like the classical approach, our analysis also begins at
thestart node of the CFG and traverses the graph during its
static program analysis. Depending on the encountered node
type, a particular set of rules which is based on Abstract
Interpretation is applied. The rules manage the computation
of safe abstract states at the given program point. Also, more
complex node types like those which represent compound
statements might consist of nested statements requiring their
own rules. Thus, our approach can be considered as a
simulation based on Abstract Interpretation which analyses
the program in a hierarchical manner. Due to the isolated
consideration of particular programming language constructs
like loops, the methods used to compute the abstract states
can be freely interchanged. This gives us the freedom to
either evaluate loops with Abstract Interpretation or perform

compound statement
(true)

compound statement
(false)

if( a > 0 )

join

q0

q1 q3

q2 q4

q5

Figure 1. Analysis of anif -else statement

the evaluation with our more efficient non-iterative static
approach.

Figure 1 gives an example for anif-else statement
based on our modified model.qn represent different program
points. Our analysis starts with the abstract stateŜq0

. For
state Ŝq1

, all values fromŜq0
which meet the condition

if(a > 0) are assigned. Equivalently,̂Sq3
is handled. These

two abstract states are passed as input to the compound
statement nodes representing the condition’sthen- and
else-part, respectively. For these complex nodes, further
rules are applied and finally their outputs represented by
the abstract stateŝSq2

and Ŝq4
are merged at thejoin node

leading to the computation of the abstract stateŜq5
.

To determine the number of loop iterations, a counter
variable is incremented each time our abstract simulation
enters the first program point within the loop body. If the
CFG edge leaving the loop is taken for the first time,
the current value of the counter variable represents a safe
lower bound for the number of loop iterations. The counter
is incremented as long as the loop body is entered and
a fix point for its abstract states is not achieved. If the
fixed-point iteration has found a solution, the value of the
counter variable represents a safe approximation for the
upper bound of the loop iterations. When the number of loop
iterations depends on a variable represented by an interval
with unequal bounds, e. g. generated by ajoin node, then
the number of loop iterations might be variable in the sense
that the lower and upper bounds are different.

IV. I NTERPROCEDURALPROGRAM SLICING

Program Slicing is a program analysis which finds state-
ments of a program that are relevant for a particular com-
putation. The technique was introduced in [16]. It defines
how a given program can be sliced w.r.t. aslicing criterion.
By definition, a slicing criterion is defined by a pair〈q, V 〉
where q is a program point, as already described in the
last section, andV is a subset of program variables at
q. The slice for a given program w.r.t.〈q, V 〉 defines a
subset of the program containing all statements which might
affect the variables inV , i. e. variables that might either
be used or defined atq. The fields of applications for
Slicing are manyfold. Nowadays, Program Slicing is used for
debugging [17], [18], software maintenance [19], compiler
optimizations [20] or for flow analyses [21].

An intermediate program representation that enables an
efficient Program Slicing is theProgram Dependence Graph



Entry: main

while(i<11)

++i

return i if(i<sum)

sum += i

i = 1 sum = 0
int main( void )
{
      int i = 1;     
      int sum = 0;
      while( i<11 ) {
         if( i < sum )
            sum += i;

         ++i;
      }
      return i;
}

Figure 2. Example for Program Slicing

(PDG) [22]. It is a directed graph that makes both control
and data dependencies visible. Data dependencies represent
essential data flow relationships of a program while the
control dependencies, usually derived from a CFG, serve
to indicate relevant control flow relationships. Taking both
types of dependencies into account allows the efficient
determination of a program slice with respect to a slicing
criterion.

An example for Program Slicing is depicted in Figure 2.
The PDG of the program on the left-hand side of the
figure consists of nodes representing statements and edges
modelling data dependencies (dotted arrows) as well as
control dependencies (solid arrows). By definition, each
PDG contains a distinguished entry node that serves as a
starting point for the analysis. The program is sliced with
respect to thewhile loop exit conditioni < 11, i. e. i is a
variable of the slicing criterion. The corresponding program
slice can be found by reversing all edges and performing a
Depth First Searchalgorithm starting at the node specified
by the slice criterion. All nodes that are visited, are part of
the slice. They are marked in grey in the figure and are those
statements being relevant for the loop analysis. Statements
in the remaining nodes can be omitted for the loop analysis.

The main drawback of the PDG is its restriction to an in-
traprocedural slicing. Since most real applications typically
consist of numerous procedures, they can not be handled by
PDGs. To overcome this problem, [23] extended the PDG by
concepts which enable to cross the boundaries of procedures.
The interprocedural program representation is calledSystem
Dependence Graph (SDG). It is based on a PDG and models
procedure calls as well as the transfer of values via function
parameters and return values.

In our framework, we apply Program Slicing w.r.t. loop
exit conditions. By taking all relevant data and control
dependencies into account, the resulting program slice con-
tains all statements that are involved in the determination
of loop iteration counts. Our slicing is accompanied by a
context-sensitive alias analysis to support pointers. Contexts
introduce a distinction between different calls to a particular
function, thus allowing a more precise analysis.

Program Slicing is run before the actual loop analysis with
Abstract Interpretation for two purposes. First, like [21], we
want to accelerate the loop analysis. By slicing the code

in advance, all superfluous statements are eliminated. By
considering the relevant subset of the program, the fixed-
point iteration can usually find a solution in a reduced
amount of time. Second, the integration of our fast non-
iterative loop evaluation (see Section V) requires simple
loop bodies to infer final abstract states without repetitive
iterations. Loop bodies of original applications are often
too complex for this static evaluation but after a code
simplification via Slicing, the required prerequisites aremet.
Thus, Program Slicing can be considered as a mandatory
step to establish potential for the application of our extended
loop evaluation described in the following.

V. POLYHEDRA-BASED STATIC EVALUATION

A polyhedron is an N -dimensional geometrical object
defined as a set of linear inequations:

P :=
{

x ∈ Z
N | Ax = a, Bx ≥ b

}

(6)

for A, B ∈ Z
m×N anda, b ∈ Z

m andm ∈ N. A polyhedron
is called apolytopeif

|P | < ∞ (7)

Polytopes are often employed in compiler optimizations
since they can be exploited to represent loop nests and
affine condition expressions. Their formal definition enables
efficient code transformations. Typical fields of application
are program execution parallelization or the optimizationof
nested loops [24].

In this work, polytope models are applied for two pur-
poses. On the one hand, they allow a precise computation
of abstract states after processing acondition node (see
Figure 1) which splits the control flow. On the other hand,
for loops that are modelled by a polytope, its number of
iteration counts can be determined statically. This knowl-
edge is exploited by our non-iterative loop evaluation. The
remainder of this section describes these two issues in more
detail.

A. Efficient Polytope-based Condition Evaluation

The practical use of this approach will be motivated by
an example. Assume that this condition is given:

if((2 ∗ i + 2 ≤ j NAND j > 15))

and that the Abstract Interpretation calculated the following
abstract state before the evaluation of the condition:

Ŝq = {i → [5..15] , j → [10..20]}

The evaluation of the condition2 ∗ i + 2 ≤ j yields
for the stateŜqtrue

and the values ofŜq the condition
[12..32] ≤̂ [10..20]. By definition, the result of the abstract
operator ≤̂ is neither true nor false, thus an explicit
computation is not possible. It must be assumed that both
outgoing edges of theconditionnode are taken. Due to the
missing result of̂≤, the value ranges fori andj in the states
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Figure 3. Polyhedra-based condition evaluation

Ŝqtrue
andŜqfalse

can not be precisely approximated. Thus,
a conservative approximation fori andj in both states is to
assume that their value ranges correspond to those computed
for Ŝq. Such a result is overestimated and often useless for
further computations.

Since an effective determination of variable values is not
feasible with the means of classical Abstract Interpretation,
we make use of polytopes to determine precise values for
the variablesi and j. To compute polytopes, they must be
transformed into the normalized form from Definition 6.
This transformation is performed in several steps which are
described in the following.

Transformation of Conditions

The first step is a transformation of the conditions into
an equivalent form of typeif(C1 ⊕ C2 ⊕ ... ⊕ Cn) where
Cx are conditions. The set of operators⊕ consists of the
elements{∧,∨}. In addition, each expression can be negated
by theNOT operator (x). With the means ofpropositional
calculusand De Morgan’s laws, it is possible to transform
each condition in this equivalent form.

In our example condition, theNAND operator does not
belong to the set⊕ of supported operators and must thus be
eliminated by the transformation:

x NAND y = x ∧ y

Applying this rule to our example, we obtain the transformed
condition:

if((2 ∗ i + 2 ≤ j ∧ j > 15))

According to De Morgan’s laws:

(a ∧ b) = a ∨ b and(a ∨ b) = a ∧ b

the example condition can be further transformed into

if(2 ∗ i + 2 ≤ j ∧ j > 15)

This condition corresponds to the form
if(C1 ⊕ C2 ⊕ ... ⊕ Cn), thus finishing the first
transformation phase.

In a second step, each conditionCi must have the nor-
malized formCx =

∑N

l=1
(cl∗il)+c ≥ 0 for constant values

cl, c with cl, c ∈ Z and il representing variables within the
conditions. Each affine condition using the comparators⊕

∈ {<,≤, >,≥, =}, can be transformed into this normalized
form [25]. Normalizing our example condition results in

if(−2 ∗ i + j − 2 ≥ 0 ∧ j − 16 ≥ 0)

Its form allows the construction of the two polytopes
−2 ∗ i + j − 2 ≥ 0 andj − 16 ≥ 0 which are combined by
the intersection operator∩. These conditions are depicted
in Figure 3 as polytopes and their intersection is marked as
dark area.

The final step is to approximate valid variable values
for the abstract state that is entered if the condition is
evaluated astrue. The final polytope (intersection) encom-
passes all combinations of variable values that satisfy the
condition. A safe approximation of values is defined by the
extrema of the polytope, namely its corner points which are
(5, 16), (7, 16), (9, 20), (5, 20). Performing a join over the
coordinates, the abstract stateŜqtrue

is defined as:

Ŝqtrue
= {i → [5..9] , j → [16..20]}

The stateŜqfalse
is computed equivalently. Compared to the

solution found by the classic Abstract Interpretation which
defines the complete value range fori and j, our approach
significantly increases the precision.

B. Polyhedra-based Non-iterative Loop Evaluation

A weak point of the classic Abstract Interpretation is its
iterative behavior. To overcome this problem, we determine
the number of loop iterations statically based on a polyhedral
model and use this knowledge to infer final values of
variables modified in the loop without iterating over them
repetitively. Another solution to this problem was presented
in [26]. The authors use a graph formulation and adapt
chaotic iteration to propagate information along edges of
the graph until a fixpoint is reached.

The motivation for our new approach comes from the ob-
servation that a large number of loops consists of statements
that do not affect the calculation of loop iterations. A typical
example are applications with initialization procedures found
in many embedded system applications. The main task of
such procedures is the initialization of arrays and other data
structures. After the initialization, this data is involved in
the computation of output data, e. g. an output stream of
an image compression, but is not influencing the execution
frequency of loops. Using Program Slicing as described in
Section IV, those statements are recognized to be mean-
ingless for the loop analysis and are removed for further
evaluation. The result are often loops with almost empty loop
bodies. Unlike Abstract Interpretation that has to simulate
each loop execution with the fixed-point iteration, our static
evaluation requires just a single iteration over the loop body.

Loops that are analyzed using the static evaluation must
meet particular constraints specifying the structure of the
loop and the type of statements within the loop body. Before
the static evaluation begins, loop headers as well as their



bodies are scanned and if all conditions are satisfied, the
evaluation is performed. The goal of the evaluation is to
determine the final state of a variable, which is iteratively
modified within a loop, in a single step. The important
prerequisites for such asingle-step evaluationare discussed
in the following.

Constraints for Single-Step Evaluation

The first class of requirements concerns the structure
of loops including their conditional statements, e. g.if

statements. These restrictions are imposed by the polytope
models and their violation would make a polytope evaluation
infeasible, i. e. it would be not possible to determine how
often a loop iterates and how often loop body statements
within a condition are executed. This inhibits our single-
step statement evaluation. The requirements of this class
concern loop exit conditions which must either depend on
a constant, a non-modified variable within the loop, or
a single variable. Moreover, it must be ensured that all
condition statements are affine expressions. It should be
noted that these constraints are often met by well-structured
loops found in many applications, thus they do no inhibit a
successful application of our non-iterative loop evaluation.

The second class of constraints refers to the loop body
statements. If they are assignment statements, they must be
transformable into the form=, += or -= to ensure that the
variable is increased in each loop iteration by a constant
value. Moreover, structs and pointers are not supported in
our current version. Again, these requirements must be met
to ensure that a single-step evaluation can be performed.
Even though these constraints seem to be highly restrictive,
our experiments have shown that sliced loop bodies often
satisfy them.

Ehrhart Polynomial Evaluation

If the conditions are met, the loop iteration counts required
for the evaluation are statically determined in the next step.
This step serves to determine the execution frequencies of
loop statements in order to allow the evaluation of their
iterative execution in a single analysis step. The problem of
finding the loop iteration counts is equivalent to computing
the number of integer points in a (parametric) polytope. To
efficiently count the integer points,Ehrhartpolynomials [27]
are used. Before counting integer points, the polytopeP of
the dimensionn used to represent a loop is transformed into
a parametric polynomialE:

EP (k) = an ∗ kn + an−1 ∗ kn−1 + ... + a0

for k ∈ Z since a set of integer points is searched.
Taking all integer points of a polytope might yield an over-

approximation for many loops. The total number of integer
points represents the number of loop iterations if the loop
counter is incremented by one. For other modifications to the
counter, the number of counted points must be appropriately
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for(i=1; i<=8; i++) {
for(j=i; j<=15; j++) {
...

}
}

Figure 4. Polyhedra-based loop evaluation

adjusted. Also, additional exit edges that affect the control
flow in the loop body, e. g. in the case ofbreak or continue

statements, must be taken into account. They are modelled
as further polytopes and their intersection with the polytope
representing the loop nest yields the precise solution space.
For some loops found in real-world benchmarks having an
empty loop body after Program Slicing, counting of integer
points was already sufficient to determine the loop iteration
counts statically.

Example: An example for the determination of iteration
counts for a nested loop is depicted in Figure 4. The iteration
space for the inner loop depends on the outer loop and its
corresponding polytope is indicated by the grey area. Using
Ehrhart polynomials, the number of integer points for this
polytope representing the inner loop’s iterations is92. For
the outer loop, the one-dimensional polytope holds8 points.

Based on this knowledge of loop iteration counts, the
execution frequencies of condition-dependent basic blocks,
which might obviously differ from the loop iteration counts,
are determined. The conditions are represented as polytopes
and an intersection with the loop polytope allows the calcu-
lation of their true- andfalse-parts.

Static Statement Evaluation

The last step is the static evaluation of statements within
the loop based on the loop iteration counts and basic block
execution frequencies from the previous step. The goal is
to evaluate modifications of variables within the loop like
b+=a without a repetitive simulation. These final variable
values are used to determine iteration counts for loops that
are analyzed afterwards. For this purpose, a dependence
graph for all variables is constructed and the graph is topo-
logically sorted. Based on this, we can infer a sorted order
of executions indicating in which order variables should be
statically evaluated. For example, if variableb is incremented
by variablea, we first compute a safe approximation fora

before evaluatingb. For more details, please refer to [28].
Example: To illustrate the combination of both tech-

niques, the exploitation of Ehrhart polynomials and the
static statement evaluation, the static analysis of the example
code from Figure 5 is briefly discussed. The code contains
a conditional assignment statement within a nested loop,



for( i =0; i <5; i ++) {
for( j =0; j <10; j ++) {
if ( i > 2 )
a +=2;

}
}

Figure 5. Static polytope-based evaluation

and the abstract statea → [0, 5] before the outer loop
is assumed. From the Ehrhart polynomials we know that
the inner loop is executed50 times, while the basic block
within the if -condition is executed20 times. This means
that variablea is incremented20 times by the constant2
resulting ina → [40, 45] after the outer loop. Using Abstract
Interpretation, the assignment statementa+=2 would have
to be considered20 times and not just once.

The novel static evaluation is embedded into our frame-
work based on the modified Abstract Interpretation. The
extension should be not considered as a new type of a
static loop analysis which is supposed to completely replace
the approach based on Abstract Interpretation described in
Section III-B. Rather, this static evaluation should be seen
as an extension which enables a fast loop analysis and (if
possible) is employed instead of the classical approach. Ifthe
analysis successfully determines loop iteration counts and if
a valid abstract state for the program point following the loop
was found, these results are adopted for further computation
and the loop analysis proceeds with the next node in the
CFG. The determination of a safe and precise approximation
of variable values modified in the loop is crucial since the
variables might be influencing following loops. Otherwise,
if the loop does not meet the aforementioned constraints,
the fast evaluation is omitted and the standard approach is
applied for this loop.

The loop analysis algorithm is sketched in Figure 6. In
the first step, interprocedural Program Slicing is performed
with loop exit conditions as slicing criteria. In the next
step, all global variables are initialized with the value0 as
defined by ANSI-C. In line 6, the program’s entry point
is determined which is typically the first statement of the
main routine. Next, all statements are analyzed in the order
of their execution as long as the entry routine has not
been left. FunctionanalyzeInExecutionOrder returns the
succeeding statement of statementcurrent. Within function
analyzeInExecutionOrder, the abstract state from the
proceeding statement is taken and a modified abstract state
is returned depending on the type of statement passed to
analyzeInExecutionOrder. When the current statement
is a loop or condition statement, a polyhedra-based static
evaluation as described in Section V is performed. The algo-
rithm returns the programP for which each loop statement
is annotated with the determined loop iteration counts.

VI. EXPERIMENTAL ENVIRONMENT

One of the objectives of this paper is to point out that a
static loop analysis is an application of practical relevance,

1 Input: Program P

2 Output: Annotated P with Loop Counts

3 begin

4 performProgramSlicing(P)

5 initializeGlobalVariables(P)

6 IR_Stmt current := getProgramEntry(P)

7 while(curren 6= getProgramExit(P)

8 current:=analyzeInExecutionOrder(current)

9 return P

10 end

Figure 6. Algorithm for loop analysis

i. e. the implementation of its theoretical concepts based on
Abstract Interpretation and polyhedral models performs well
for real-world problems. We show not only that the analysis
can be employed for most benchmarks in an acceptable
time, but also that the majority of considered loops could
be precisely analyzed. As far as we know, this paper is the
first which provides an overview of results of a loop analysis
for a wide range of benchmarks. Other works usually restrict
their evaluation to a small set of benchmarks.

To indicate the efficacy of our static loop analyzer,
evaluations on a large number of different benchmarks
were performed. The benchmarks come from the test
suites MRTC WCET Benchmark Suite [29], DSPstone [30],
MiBench [31], MediaBench [32], UTDSP Benchmark
Suite [33], and our own collection of real-world benchmarks
containing miscellaneous applications, e. g. an H263 coder
or a G.721 encoder. The different types of the suites were
chosen to point out that our loop analysis can successfully
handle applications of different domains.

The 96 considered benchmarks are currently also used
to test our WCET-aware compiler that will be discussed
later. Their complexity ranges between less than one hundred
and several thousands lines of code, e. g. 3178 lines in
case of theGSM encoder. Due to the complexity of some
MiBench and MediaBench benchmarks which can not be
handled by today’s state-of-the-art static WCET analyzers,
those benchmarks are excluded from our compiler test suite
and are also not evaluated with our loop analyzer.

Our loop analysis can be either used as a stand-alone
tool to generate loop information in a human-readable form,
or it can be integrated into a compiler and assist compiler
optimizations or a static WCET analysis. Figure 7 depicts the
workflow for both configurations. After parsing and trans-
forming the C source code into a high-level intermediate
representation (IR), the ICD-C IR [34], the static analysis
is performed. It begins with Program Slicing that marks
statements relevant for loop bound computations. In the
following step, the loop analysis based on the modified
Abstract Interpretation and polytope models using the library
Barvinok [35] is performed. At this point, the loop bound
information concerning the program under analysis can be
generated.
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Figure 7. Workflow for loop analysis

The loop data can be also passed to the optimizer that
exploits it for high-level optimizations. If desired, thisdata
can be also provided to the low-level intermediate represen-
tation which provides it together with the code to a static
WCET analyzer. In our framework, the low-level IR and the
static WCET analyzer are represented by the toolsLLIR [36]
and aiT [37], respectively. It should be noted that our com-
piler framework contains mechanisms to hold loop iteration
counts consistent. Whenever a code transformation modifies
a loop, e. g. Loop Unrolling, the previously determined loop
iteration counts will be automatically adjusted without a
further invocation of the loop analyzer. More details about
the WCET-aware C compiler WCC can be found in [38].

VII. R ESULTS

In this section, we give an overview of the evaluation
of benchmarks from different benchmark suites. The results
show how many loops could be precisely analyzed. We also
measured the processor times required for the purely static
loop analysis (Section III-B), the analysis combined with
Program Slicing (Section IV) and the analysis time for the
most advanced mode combining the basic analysis, Program
Slicing and the polytope-based non-iterative loop evaluation
described in Section V-B. All measurements were performed
on a single core of an Intel Xeon CPU with 2.40 GHz
and 8 GB RAM. In total, 96 benchmarks were extensively
analyzed and evaluated. For the sake of clarity, we provide
a comprehensive overview of the results and discuss more
interesting cases in more detail in the following.

A. Determination of Loop Iteration Counts

As can be seen in Table I, we have evaluated the precision
of our loop analysis. The table indicates for each benchmark
suite the number of benchmarks (in brackets), the number of
contained loops, the relative portion of loops that could be
successfully analyzed (columnAnalyzable) and the relative
portion of loops for which our loop analysis produces exact
non-over-approximated results (columnExact).

The 96 benchmarks contain 707 loops in total. On aver-
age, 99% of those loops could be successfully analyzed. This
means that for those loops the loop analysis produced results

Table I
PRECISION OFLOOPANALYSIS

Benchmark Suite # Loops Analyzable Exact
MRTC (32) 152 100 % 99.3 %

DSPStone (37) 152 98 % 93 %
MediaBench/
MiBench (6) 162 99 % 98 %
UTDSP (14) 88 100 % 88 %

Misc. (7) 153 100 % 100 %
Total (96) / Average 707 99 % 96 %

in terms of loop iteration counts which might however be
over-approximated. The small fraction of 1% loops that
could be not analyzed is mainly due to technical restrictions
of our alias analysis.

The last column of Table I presents the ratio of loops
that could be exactly analyzed, i. e. loops for which precise
loop iteration counts were gathered. On average, our analysis
produced exact results for 96% of the loops. This was
verified by comparing the results with manually determined
loop annotations. For the remaining 4%, which include the
non-analyzable 1% of loops from the previous column, 3%
of the 707 loops could not be exactly analyzed, i. e. the loop
iteration counts were afflicted with an over-approximation.
The main reason for the imprecision comes from the analysis
of pointers which can not always be precisely evaluated in
a static analysis. However, most of the over-approximations
introduced only a marginal error ranging between 8% and
51% w.r.t. the exact results. Thus, the results are still
acceptable. A typical example for an over-approximation
is encountered in the MRTC benchmarkfir. Our analysis
computed as lower and upper loop bounds the interval
[8..26], while the exact loop bounds are[17..26]. In contrast,
other works [11] report that they could only analyze 51%
of the loops in the MRTC Benchmark suite exactly.

Program Slicing could be successfully applied to all
benchmarks. The number of statements irrelevant for the
loop analysis ranges between 23% and 88% showing that
computations in many programs do not affect the loop itera-
tion counts. 21% of the 707 loops could be analyzed with the
polytope-based non-iterative loop evaluation. This number
indicates that the constraints for a successful application of
this evaluation, as described in Section V-B, are not too
restrictive and are often met in real-world applications.

B. Analysis Time

Besides the results about the precision of the analysis,
the second crucial issue for static program analyses is their
complexity expressed by the analysis time. In general, the
analysis times highly depend on the program structure and
the loop iteration counts. If our non-iterative loop evaluation
(see Section V-B) can not be applied, the analysis based
on Abstract Interpretation must consider each loop iteration
separately. On average, smaller benchmarks require a few
seconds for the analysis, while the analysis time for larger
benchmarks such as MiBench’sGSM encodertakes on
average less than 4 minutes.



A time measurement was difficult for some benchmarks,
especially for those with a small number of statements to
analyze and with a few loop iterations. Due to our efficient
implementation of the analysis, which was one of the main
goals during the development phase, the analysis time for
those benchmarks was a fraction of a second. For those
cases, a comparison between different configurations of the
analysis combined with Program Slicing or the non-iterative
loop evaluation is difficult to measure. Thus, significant
speed-ups of the conventional analysis based on the modified
Abstract Interpretation via Slicing and the polytope evalua-
tion become best visible for benchmarks with larger analysis
times.

Table II
ACCELERATEDLOOPANALYSIS

Benchmark Basic Slicing Polytope
matmul - MRTC 8.4 s 28 % 1 %
hamming - Misc. 0.4 s 63.7 % 62.0 %
g721 - DSPstone 80.2 s 88 % 89 %

fft - DSPstone 920.7 s 13 % 12 %
matrix1 - DSPstone 0.8 s 12 % 4 %

mult 10 10 - UTDSP 4.6 s 78 % 80 %

Table II shows for some example benchmarks the influ-
ence of the different techniques on the analysis run time.
The second column of the table represents the run time of
the basic loop analysis based on the modified Abstract Inter-
pretation. The third column depicts the relative analysis run
time after Program Slicing, while the last column indicates
the measured run time after the application of the polytope-
based fast loop evaluation w.r.t. the run time in the second
column. It can be seen that Slicing significantly decreases
the analysis time. In case of thematmulbenchmark from the
MRTC suite, a reduction of 72% was achieved. This bench-
mark also benefits from the polytope approach. It contains
some loops that can be statically evaluated without iterating
over all loop executions leading to a further reduction in
time of 27%. For other benchmarks likemult 10 10 from
UTDSP, Slicing could reduce the analysis time by 21.8%.
For mult 10 10 the test whether the polytope approach can
be applied was negative, thus slightly increasing the analysis
time by 2% and forcing the analysis to switch back to the
basic (iterative) loop evaluation.

Considering all 96 evaluated benchmarks, 40% of the
benchmarks could benefit from Program Slicing which led
to a decreased analysis time. For 13% of these benchmarks,
the analysis time could be further improved by switching
from the iterative approach based on Abstract Interpretation
to the polytope-based non-iterative approach.

A general conclusion that can be drawn based on the
results is that Program Slicing is an approach that yields a
significant reduction in the analysis time. Its success highly
depends on the size of the program slice, i. e. how many
statements can be eliminated without affecting the compu-
tation of loop iteration counts. Slicing is also an enabling
technique for a successful application of the non-iterative

loop evaluation. If the original loop can be sufficiently
simplified, the fast loop evaluation can take place leading
to further remarkable accelerations of the loop analysis.

Our loop analysis computed safe loop iteration counts for
all loops, i. e. we never encountered under-estimations that
are unacceptable for many fields of applications. Taking the
timing results into account, a good strategy is to always
combine the basic loop analysis with the extensions of
Program Slicing and the polytope-based evaluation. The
computation time for these techniques is negligible and most
benchmarks profit from them while we had no cases where
these extensions significantly degrade the analysis.

In summary, it can be said that the results emphasize
the reliability of our analysis. Almost all of the encoun-
tered loops could be precisely analyzed in an acceptable
time producing beneficial information for further analyses.
Besides using the results for compiler optimizations, like
Loop Unrolling, we exploit the results for our WCET-aware
compiler framework. The manual annotation of loops with
iteration counts mandatory for a static WCET analysis is
a tedious and error-prone task. Using our automatic loop
analysis, we were able to verify those values and even
correct some erroneous annotations. Moreover, a static loop
analysis is compulsory to turn a WCET-optimizing compiler
into a fully automatic system. In this configuration, new
programs can be optimized w.r.t. to their WCET without
any further user interaction.

The high number of exactly analyzable loops also shows
that our analysis is not only able to cope with small (toy)
applications but can also be utilized for complex real-world
applications. This indicates its practical use for different
purposes. Motivated by the positive results, we consider our
methodology as a proof of concepts.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we presented concepts for a static loop anal-
ysis which generates useful information about loop iteration
counts for different applications, e. g. compiler optimizations
or a static loop analysis. After introducing the theory behind
Abstract Interpretation, which is the basis for our static
analysis and ensures the correctness of computed results,
our work focuses on techniques aiming at an acceleration of
the loop analysis. This objective is achieved by combining
Abstract Interpretation with interprocedural Program Slicing
which removes statements irrelevant for the computation
of loop iterations. In addition, we developed a static non-
iterative evaluation of loops which is based on mathematical
concepts of polytopes and allows a more efficient computa-
tion of loop iteration counts than the conventional Abstract
Interpretation. Our framework is evaluated with a large
number of real-world benchmarks which contain 707 loops.
For 96% of these loops, precise loop iteration counts were
determined in analysis times ranging from less than one
second up to few minutes in the most cases. This leads us



to the conclusion that our static loop analysis is of practical
use for the adoption in real-world problems.

In the future, we want to exploit the results of the loop
analysis for different compiler optimizations, especially for
those that aim at an automatic WCET reduction. We also
want to extend our polytope-based loop analysis to ease
the constraints described in Section V-B. This would allow
its exploitation for further benchmarks. Another interesting
extension of the current analysis is the exploration of other
abstract domains, e. g. the octogan or convex polyhedra
domain, to study their strengths and weaknesses in the
context of static loop analyses. An interesting compiler
application of our loop analysis is also its exploitation for
a value analysis which might even compute possible values
depending on a particular calling context.
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