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Abstract—A static loop analysis is a program analysis com- external data about execution frequencies gathered at pro-
puting loop iteration counts. This information is crucial for gram run time. A compiler exploits this profiling informario

different fields of applications. In the domain of compilers the to focus its optimization efforts on the most frequently
knowledge about loop iterations can be exploited for aggresve

loop optimizations like Loop Unrolling. A loop analyzer also executed program portllons. An |ncr_eaS|ng academic inter-
provides static information about code execution frequenies €St as well as a growing commercial acceptance of FDO
which can assist feedback-directed optimizations. Anothe  emphasizes the optimizations’ future potential [3]. Hoarev
prominent application is the static worst-case executionitne  the main problem with profiling information is its program
(WCET) analysis which relies on a safe approximation of 100p  m5qe| which is valid for a particular set of input data. Thus,

iteration counts. . . .
In this paper, we propose a framework for a static loop for different input sets, the program must be re-compildd [4

analysis based on Abstract Interpretation, a theory of a tO gather valid profiling information. One solution to this
sound approximation of program semantics. To accelerate problem is the application of a static loop analyzer which
the analysis, we preprocess the analyzed code using Program computes an approximation of possible program values valid
Slicing, a technique that removes statements irrelevant fo g gJ| possible input data. These input-invariant appnoei

the loop analysis. In addition, we introduce a novel polytop- . . . . .
based loop evaluation that further significantly reduces tke tions allow the computation of execution frequencies which

analysis time. The efficiency of our loop analyzer is evaluad ~ are valid for varying input sets.
on a large number of benchmarks. Results show that 99% The third major class of static program analyses which
of the considered loops could be successfully analyzed in an benefits from a reliable loop analysis is the static worseca
acceptable amount of time. This study points out that our  execution time analysis. The WCET is a key parameter for
methodology is best suited for real-world problems. systems that must meet real-time constraints. Especiaily f
safety-critical systems, e.g. in the avionic and autoneotiv
. INTRODUCTION domain, the adherence of the WCET must be ensured to
) _ ) avoid system failure potentially leading to a disaster.0Als
Knowledge about loop iteration counts is mandatory for &y scheduling algorithms and an effective hardware design
large number of different static program analyses. One®f thihe WCET is a crucial issue. A static WCET analysis

most prominent candidates are compiler-based loop trensforelies on safe upper bounds of loop iterations in order to
mations. Since programs spend most of their execution timgerive a finite WCET estimation. The majority of static

in loops, their optimization is considered to be one of theyyceT analyzers tries to detect loops in the object code by
most effective compiler tranformations. This optimizatio pattern matching. However, these pattern-based appreache
class typically relies on the knowledge of how often agre |imited and highly depend on the compiler used for the
loop is executed. Examples for loop transformations arggoge generation. Moreover, they often fail in the analysis
Loop Unrolling [1], Loop Tiling or Software Pipelinind2]. of more complex loops. Thus, WCET analyzers typically
Without knowing the loop iteration counts at compile-time, offer the possibility to provide loop information manuably
these optimizations can not be applied and optimizatioRne yser, In order to overcome this tedious and error-prone
potential is not explored. process, an automatic and universal loop analysis is highly
A related domain of compiler optimizations which profit gesired [5]. The analysis has to meet strict requirements. O
from the availability of loop iteration counts ieedback- the one hand, the results must be safe, i.e. underestimated
directed optimization (FDO)FDOs are typically based on |oop iteration counts are not acceptable since this would
yield an invalid WCET estimation. On the other hand, the
The research leading to these results has received fundiig the  |oop analysis results should be as precise as possible & ord
European Commum_ty”s ArtistDesign Network of Excellencel drom the to keep the overestimation of the estimated WCET minimal.
European Community’s Seventh Framework Programme FP7/2003
under grant agreemen® r216008. In this paper, we present an automatic static loop analysis



for a high-level code representation which can be employedvhich allows the specification of value ranges for unknown
to either assist compiler optimizations or to provide mandavariables making their analysis semi-automatic.

tory information for a WCET analysis. Itis based on atheory The approach developed in [7] has been adapted to
of a sound approximation of the program’s semantics callegorograms written in the high-level langua@eby [8]. Again,
Abstract Interpretation[6] which considers all potential the loop analysis does not automatically succeed for adityp
values a program variable might have at any program poinof loops. Mandatory information that can not be extracted
Since all possible input data is assumed, the analysis is naluring the static analysis must be provided by the user in
sensitive to a particular input set. Thus, it is more rekabl the form of source code annotations.

than profiling information and generates safe parameters fo In contrast to the pattern-based loop analyses, [9] uses an
a WCET analysis. The main contributions of this paper arenterprocedural data-flow based loop analysis at assembly
as follows: level. The advantage of this approach is that the success of

1) We introduce a fast static loop analysis which pro-the static analysis does not strictly rely on pre-definedecod
duces highly precise results about loop iteration countatterns a particular compiler generates but on the seesanti
and execution frequencies of code elements. of the instruction set for a specific target machine. As dtate

2) Our analysis overcomes the restrictions of patternby the authors, their analysis works best for well-strusdur
based approaches by performing an interprocedurdpops and where the loop counter is modified only by a
data-flow analysis on source code level. simple addition.

3) A technique callednterprocedural Program Slicing A different approach for a fully automatic static loop
is applied in order to simplify the analyzed code andanalysis at source code level was described in [10]. The
allow a faster analysis. authors involve a data flow analysis which is based on

4) The analysis exploits mathematical concepts of polythe theory ofAbstract Interpretatiorthat enables an auto-
topes to significantly accelerate the conventional loopmatic extraction of information about all possible program
analyses found in the literature. executions. Their data flow analysis determines a precise

5) For the first time, a static loop analyzer is applied toapproximation of variable values which are exploited to
a wide collection of different real-world benchmarks. calculate the number of loop iterations. The approximation
We show that our analyzer generates precise results it$ achieved by representing actual values as intervalshiBy t
an acceptable amount of time. This can be consideretpss of precision, the concrete program’s semantics become
as a proof of concepts and indicates the loop analyzerdecidable and make an answer to the question about loop
practical use for other projects. iterations possible.

The rest of this paper is organized as follows: Section Il This work was employed in [5] to assist a static WCET
gives a survey of the related work. An introduction to @nalysis. It was extended by supporting a determination of
the theory of Abstract Interpretation which is the basicloop bounds for nested loops as well as a detection of
framework for our loop analysis is presented in Section lI1.infeasible pathsi.e. paths that are not taken in particular
Section IV introduces the concepts of the interproceduragxecution contexts of the program and which should thus
Program Slicing, followed by our novel concepts of thePe excluded from the WCET analysis to avoid WCET
polytope-based loop evaluation in Section V. In Section VIOverestimation.
we describe our experimental environment and show how Furtherimprovements to this loop analysis were presented
the previously described techniques are combined. Result8 [11]. The authors combine different standard program
achieved on different real-world benchmark suites are pre@nalyses likeProgram Slicingand Invariant Analysistech-

sented in Section VII. Finally, Section VIIl summarizessthi Niques in order to accelerate the loop analysis. This pub-
paper and gives directions for future work. lication is close to the work presented in this paper. We

also use Program Slicing to reduce the amount of code to
be analysed. However, we additionally exploit Slicing to
Most of the previous works relying on known loop leverage our novel polytope-based loop evaluation as will
iteration counts implicitly assume the existence of a loopbe described in more detail in Section V. Moreover, unlike
analyzer. However, static loop analysis is only sparsebjftde our loop analyzer the authors state that their analysis oan n
within today’s literature. An overview of related work is handle recursive code and that their analysis fails for more
presented in the following. complex loops.
[7] presents a pattern-based approach to determine the
loop iteration counts for an assembly program. The analy- Il. A BSTRACT INTERPRETATION
sis exclusively evaluates instructions which represeopso Abstract Interpretation is a theory of sound approximation
while other instructions are ignored. In that way, loopsof mathematical structures. In computer science, it is tpain
which rely on function parameters can not be analyzed. Taused to approximate semantic models of computer systems.
overcome this problem, the authors provide a mechanisriihe theory’s main field of application is the static program

Il. RELATED WORK



analysis which exploits the fact that undecidable or veryia the abstraction function must provide equivalent oper-
complex problems can be solved when incomplete resultators. In case of our interval domain, the abstract opesator
are tolerated [6]. are based on interval arithmetics.

In general, the static loop analysis is not decidable since The objective of a static analysis based on Abstract
it includes the proof of termination. Thus, for concrete Interpretation is to assign sets of possible variable alue
program semantics an automatic loop analysis which defabstract states) to edges of a control flow grépRG). The
termines loop iteration counts for any type of loops isCFG consists of five different node types which represent
only feasible for a restricted set of programs. However, byprogram points:
introducing abstract semantics, which is a superset of the 1) A designatedstart and end node representing the
concrete semantics of the program that covers all possible beginning and end point of a CFG.
concrete cases, the loss of information makes the analysis 2) Expression nodegsepresenting different expression
computable. We take advantage of this fact and build our types found in a concrete semantic model.

static loop analysis upon the theoretical concepts of the 3) Condition nodesepresenting forks in a control flow,

classical Abstract Interpretation discussed next. i.e. this type of nodes has one incoming and two
outgoing edges.
A. Classical Abstract Interpretation 4) Join nodesmerging two paths of the CFG, i.e. these
The fundamental idea behind Abstract Interpretation is to nodes have two incoming and one outgoing edge.

find an appropriate compromise between the precision of the Based on the CFG, a transition system is constructed. It
analysis and analysis time. This reduction of informati®n i defines how an abstract state is transfered into another stat
achieved by mapping a possibly infinite set of program stateat program pointP:

typically consisting of the value of the program counter

()r/JI:ogra{n point) angd a set of variables (or rzer?mry locations) 7: P(STATES) — P(STATES) ()
into a finite set ofabstract statesThis mapping is achieved The transition systemr is used to construct a system of
by the functiona called abstraction function equations which define the assignment of abstract states
to program points. A solution is found by a fixed-point
iteration. It begins with the least possible assignment)
where_L is theleast elementepresenting). The fixed-point
iteration continues as long as a further applicatior aoes

not compute a new state:

a:L—-M (1)

while L andM are complete lattices. Typically, computations
on M are less complex than dn The counterpart tay is
the concretization functiony with

y: M — L (2) =" (5)

It maps elements of lattick! into latticeL. During a static The problem of Abstract Interpretation is that a termi-

program analysis, computations are performed on the mordation of the fixed-point iteration can not be guaranteed.
abstract sets being part & before finally transforming Moreover, due to the nature of Abstract Interpretation Wwhic

them into the original (concrete) states via the concréitipa  Iteratively simulates each state transition, the fixedipoi
function. The abstract states which repreddrare specified [t€ration can consume a significant amount of time for loops
by their abstract domain Different domains are known in With large iteration counts. To overcome both problems, the
literature like the convex polyhedra domain [12], the cangr Widening operatoiV’ [6] can be applied. It allows tq? feuNbSt"
ence domain [13] or the octogan domain [14] which providetution of an infinite sequence of abstract statsg(5°)*=")
different representations of the variable values held in a/Pf @ program poelgtq by a finite and safely approximated
abstract state. These domains represent different tréigle-o S€uence(6)™<"). Its application typically enlarges the
between precision and complexity. For our loop analysis, wbstract states during the fixed-point iteration leading to

use the interval domain [6] which represents a set of vagiabl COrTect but also over-approximated solution which might
values by a single interval: become infeasible as result for many applications. Thus,

a narrowing operator/A was introduced by [15] trying to
I={1}U{[z1,22] | z1 < 22} (3)  restrict the over-approximation afterwards.

for z; € ZU{—o0}, 2 € ZU {oo} and L representing an B. Modified Abstract Interpretation

empty interval. The classic widening operator can not be applied for
Besides the representation of values, #fistract opera- our static loop analysis since it yields significantly over-

tors define computations in the abstract domain. As for theapproximated loop iteration counts, in the worst-case even

concrete semantics of a program, which might modify theiroo, which are insufficient for compiler optimizations or a

values with n-ary operators, its abstract domain generatestatic WCET analysis. In addition, the iterative behavior



of the classical Abstract Interpretation might slow down lq“
the analysis such that it becomes impractical. In particula 4 4@» &
this can be observed for the analysis of program loops Wiipound stateial Bifipound statziill}
with high iteration counts for which each loop iteration is (true) } (false) }
separately simulated. This section proposes a solution for |_>
both problems. *
The main innovation of this work is the development
of a static loop analysis that on the one hand exploits the _ ) - . . .
formal framework of Abstract Interpretation but on the athe the evaluation with our more efficient non-iterative static
hand avoids its iterative behavior during the loop analysisapp_roaCh' _ _
We propose a non-iterative static loop evaluation which Figure 1 gives an example for arf - ellse statement
determines loop iteration counts and variable values witP@Sed on our modified model, represent different program
a purely static analysis by iterating through the loop bodyP?iNts: Our analysis starts with the abstract staifg For
exactly once. If this efficient approach succeeds for the>t@t€ Sq. all values fromsS,, which meet the condition
analysis of a loop, the classical Abstract Interpretation i %/ (e > 0) are assigned. Equivalently,, is handled. These
omitted for this loop, otherwise the classical approach idWO abstract states are passed as input to the compound
applied. statement nodes representing the conditianfeen- and
In the following, we first describe the extensions to the®! S€-part, respectively. For these complex nodes, further

basic concepts of the classical Abstract Interpretatioichvh Tules are applied and finally their outputs represented by
are required for the integration of the fast non-iteratvepl ~ the abstract stateS,, andS,, are merged at thipin node
evaluation. The latter will be described in Section V. leading to the computation of the abstract stéje.

First of all, the classical set of five node types described TO determine the number of loop iterations, a counter
previously must be extended by further node types whicyariable is incremented each time our abstract simulation
are required for the analysis of programs written in anénters the first program point within the loop body. If the
imperative high-level language like ANSI-C. The new nodeCFG edge leaving the loop is taken for the first time,
types comprise for example compound statements, functiothe current value of the counter variable represents a safe
calls or loop statements. lower bound for the number of loop iterations. The counter

Moreover, the classical approach begins with the coniS incremented as long as the loop body is entered and
struction of a complete transition system for the five node2 fix point for its abstract states is not achieved. If the
types. This is a closed model for which the solution isfixed-point iteration has found a solution, the value of the
found by one particular approach, the fixed-point iteration counter variable represents a safe approximation for the
In contrast, our analysis requires a more flexible model ot/PPer bound of the loop iterations. When the number of loop
the transition system. We do not consider the analyzed CFderations depends on a variable represented by an interval
as a closed monolithic system but subdivide the graph intdith unequal bounds, e.g. generated byoa node, then
smaller chunks for which a separate transition system i¢he number of loop iterations might be variable in the sense
constructed and solved. This enables an easy exchange @t the lower and upper bounds are different.
the solvers. In our framework, our novel non-iterativeistat
loop evaluation is applied to transition systems that regmée
loops. Program Slicing is a program analysis which finds state-

Like the classical approach, our analysis also begins anents of a program that are relevant for a particular com-
the start node of the CFG and traverses the graph during itgputation. The technique was introduced in [16]. It defines
static program analysis. Depending on the encountered nod®w a given program can be sliced w.r.tsl&cing criterion
type, a particular set of rules which is based on AbstracBy definition, a slicing criterion is defined by a pdjiy, V)
Interpretation is applied. The rules manage the computatiowhere ¢ is a program point, as already described in the
of safe abstract states at the given program point. Alsoemorlast section, and/ is a subset of program variables at
complex node types like those which represent compound. The slice for a given program w.r.{g, V') defines a
statements might consist of nested statements requirgig th subset of the program containing all statements which might
own rules. Thus, our approach can be considered as affect the variables ifV/, i.e. variables that might either
simulation based on Abstract Interpretation which analysebe used or defined a. The fields of applications for
the program in a hierarchical manner. Due to the isolatedlicing are manyfold. Nowadays, Program Slicing is used for
consideration of particular programming language coaséru debugging [17], [18], software maintenance [19], compiler
like loops, the methods used to compute the abstract stategptimizations [20] or for flow analyses [21].
can be freely interchanged. This gives us the freedom to An intermediate program representation that enables an
either evaluate loops with Abstract Interpretation or perf  efficient Program Slicing is thBrogram Dependence Graph

Figure 1. Analysis of anf-else statement

IV. INTERPROCEDURALPROGRAM SLICING



Entry: main in advance, all superfluous statements are eliminated. By
int main( void ) > 5 considering the relevant subset of the program, the fixed-
el i= sum =

point iteration can usually find a solution in a reduced

inti=1;

too complex for this static evaluation but after a code
simplification via Slicing, the required prerequisites aret.
Thus, Program Slicing can be considered as a mandatory

_ ] step to establish potential for the application of our estsh
(PDG) [22]. It is a directed graph that makes both control|00p evaluation described in the following.

and data dependencies visible. Data dependencies represen

essential data flow relationships of a program while the V. POLYHEDRA-BASED STATIC EVALUATION

control dependencies, usually derived from a CFG, serve A polyhedronis an N-dimensional geometrical object

to indicate relevant control flow relationships. Takingtbot defined as a set of linear inequations:

types of dependencies into account allows the efficient N

determination of a program slice with respect to a slicing P:={z€Z" | Az = a, Bz > b} (6)

criterion. for A, B € Z™*N anda,b € Z™ andm € N. A polyhedron
An example for Program Slicing is depicted in Figure 2.js called apolytopeif

The PDG of the program on the left-hand side of the

figure consists of nodes representing statements and edges |P| < oo (7)

modelling data dependencies (dotted arrows) as well 8gqy opes are often employed in compiler optimizations
control dependencies (solid arrows). By definition, eachsi .o they can be exploited to represent loop nests and
PDG_ conta}lns a d|5t|ngwsh_ed entry node thf'ﬂ SEIVES aS &ine condition expressions. Their formal definition ereabl
starting point for the analysis. The program is sliced Witheficient code transformations. Typical fields of applioati

reSPGCt to the"h?l? Ioop exﬁ condition: < 11, . €. tlsa g program execution parallelization or the optimizatibn
variable of the slicing criterion. The corresponding paigr  oqieq loops [24]

slice can be found by r_eversing :_:III edges and performi.ng a | this work, polytope models are applied for two pur-
Depth First Searchalgorithm starting at the node specified poses. On the one hand, they allow a precise computation

by th_e slice criterion. All nqdes thqt are yisited, are pdrt 0 ¢ anetract states after processingcandition node (see
the slice. They.are marked in grey in the figure _and are thos?igure 1) which splits the control flow. On the other hand,
.statements.b_emg relevant for the _Ioop analysis. Stateme_n{or loops that are modelled by a polytope, its number of
in the remaining nodes can be omitted for the loop analySisiteration counts can be determined statically. This knowl-
The main drawback of the PDG s its restriction to an in-gqge is exploited by our non-iterative loop evaluation. The

traprocedural slicing. Since most real applications BIC  remainder of this section describes these two issues in more
consist of numerous procedures, they can not be handled Ryat4i.

PDGs. To overcome this problem, [23] extended the PDG by

concepts which enable to cross the boundaries of procedures. Efficient Polytope-based Condition Evaluation

The interprocedural program representation is cefigstem The practical use of this approach will be motivated by
Dependence Graph (SD@} is based on a PDG and models an example. Assume that this condition is given:
procedure calls as well as the transfer of values via functio ) i : :
parameters and return values. if((2i+2<j NAND j > 15))

In our framework, we apply Program Slicing w.r.t. loop and that the Abstract Interpretation calculated the faithmv
exit conditions. By taking all relevant data and control abstract state before the evaluation of the condition:
dependencies into account, the resulting program slice con A _ _
tains all statements that are involved in the determination Sq ={i — [5..15],j — [10..20]}
of loop iteration counts. Our slicing is accompanied by aThe evaluation of the conditio? x i + 2 < j yields
context-sensitive alias analysis to support pointerst@ds  for the stateS,, .. and the values of5, the condition
introduce a distinction between different calls to a patdc ~ [12..32] <[10..20]. By definition, the result of the abstract
function, thus allowing a more precise analysis. operator < is neither true nor false, thus an explicit

Program Slicing is run before the actual loop analysis withcomputation is not possible. It must be assumed that both
Abstract Interpretation for two purposes. First, like [2dle  outgoing edges of theonditionnode are taken. Due to the
want to accelerate the loop analysis. By slicing the codenissing result oK, the value ranges farand; in the states

return i;

it sum =9 Sy amount of time. Second, the integration of our fast non-
if(i < sum) \ O iterative loop evaluation (see Section V) requires simple
sum =t S loop bodies to infer final abstract states without repetitiv
}++i; iterations. Loop bodies of original applications are often
return i .
.J.'

Figure 2. Example for ProgramTSIicing




i>15 € {<,<,>,>,=}, can be transformed into this normalized

20 form [25]. Normalizing our example condition results in
' if(—2%xi+7—-2>0A7—16 >0)

Its form allows the construction of the two polytopes

1 —2%i+j—2>0andj— 16 > 0 which are combined by
242 <= the intersection operatan. These conditions are depicted
in Figure 3 as polytopes and their intersection is marked as
10 dark area.
0 15 i The final step is to approximate valid variable values
Figure 3. P0|yhedfa based condition evaluation for the abstract state that is entered if the condition is
Sy, and gqfalse can not be precisely approximated. Thus, €valuated agrue. The final polytope (intersection) encom-

a conservative approximation forandj in both states is to  Passes all combinations of variable values that satisfy the
assume that their value ranges correspond to those computg@ndition. A safe approximation of values is defined by the
for S,. Such a result is overestimated and often useless fg#xtrema of the polytope, namely its corner points which are

further computations. (5,16), (7,16), (9,20), (5,20). Performing a join over the
Since an effective determination of variable values is nofoordinates, the abstract stelg,,.,, is defined as:
feasible with the means of classical Abstract Interpretati S = {i — [5..9], 7 — [16..20]}

we make use of polytopes to determine precise values for _
the variables and j. To compute polytopes, they must be The stateS,,, . is computed equivalently. Compared to the
transformed into the normalized form from Definition 6. Solution found by the classic Abstract Interpretation ahic
This transformation is performed in several steps which arélefines the complete value range foand j, our approach
described in the following. significantly increases the precision.

Transformation of Conditions B. Polyhedra-based Non-iterative Loop Evaluation

The first step is a transformation of the conditions into A weak point of the classic Abstract Interpretation is its
an equivalent form of typef(C; ® Cs @ ... ® C,,) where  iterative behavior. To overcome this problem, we determine
C, are conditions. The set of operatarsconsists of the the number of loop iterations statically based on a polyaledr
elementg A, VV}. In addition, each expression can be negatednodel and use this knowledge to infer final values of
by the NOT operator §). With the means opropositional  variables modified in the loop without iterating over them
calculusand De Morgan’s laws it is possible to transform repetitively. Another solution to this problem was present
each condition in this equivalent form. in [26]. The authors use a graph formulation and adapt

In our example condition, th&/ AN D operator does not chaotic iteration to propagate information along edges of
belong to the set of supported operators and must thus bethe graph until a fixpoint is reached.
eliminated by the transformation: The motivation for our new approach comes from the ob-

- servation that a large number of loops consists of statesment
» NAND y =z Ay that do not affect the calculation of loop iterations. A tyadi
Applying this rule to our example, we obtain the transformedexample are applications with initialization procedurasfd
condition: in many embedded system applications. The main task of
: - —— such procedures is the initialization of arrays and othéa da
f(2+i+2<7A7>15)) structﬂres. After the initialization, this datg is invotlvén
According to De Morgan’s laws: the computation of output data, e.g. an output stream of
an image compression, but is not influencing the execution
frequency of loops. Using Program Slicing as described in
the example condition can be further transformed into Section 1V, those statements are recognized to be mean-
ingless for the loop analysis and are removed for further
evaluation. The result are often loops with almost emptploo
This condition corresponds to the form bodies. Unlike Abstract Interpretation that has to sinilat
if(CieCy® ... C,), thus finishing the first each loop execution with the fixed-point iteration, ouristat
transformation phase. evaluation requires just a single iteration over the loogybo

In a second step, each conditiafy must have the nor- Loops that are analyzed using the static evaluation must
malized formC,, = Zi\il(cl*il)+c > 0 for constant values meet particular constraints specifying the structure & th
1, ¢ With ¢;, ¢ € Z andi; representing variables within the loop and the type of statements within the loop body. Before
conditions. Each affine condition using the comparatbrs the static evaluation begins, loop headers as well as their

(anb)=avband(aVvb)=aAnb

if(2%i+2<jAj>15)



bodies are scanned and if all conditions are satisfied, the
evaluation is performed. The goal of the evaluation is to
determine the final state of a variable, which is iteratively
modified within a loop, in a single step. The important
prerequisites for such single-step evaluatioare discussed

in the following.

Constraints for Single-Step Evaluation

15

for(i=1; i<=8; i++) {
for(j=i; j<=15; j++) {

}

}

The first class of requirements concerns the structure
of loops including their conditional statements, eid.
statements. These restrictions are imposed by the polytope
models and their violation would make a polytope evaluation

infeasible, i.e. it would be not possible to determine hOWadjusted. Also, additional exit edges that affect the @dntr
often a loop iterates and how often loop body statementf§ow in the loop body, e. g. in the case lafeak or continue
within a condition are executed. This inhibits our single-statements, must be taken into account. They are modelled
step statement evaluation. The requirements of this classs further polytopes and their intersection with the pgigto
concern loop exit conditions which must either depend onyepresenting the loop nest yields the precise solutionespac
a constant, a non-modified variable within the loop, orpor some loops found in real-world benchmarks having an
a single variable. Moreover, it must be ensured that a"empty loop body after Program Slicing, counting of integer
condition statements are affine expressions. It should bgoints was already sufficient to determine the loop iteratio
noted that these constraints are often met by well-stradtur coynts statically.
loops found in many applications, thus they do no inhibit a  Example: An example for the determination of iteration
successful application of our non-iterative loop evahmti  counts for a nested loop is depicted in Figure 4. The itenatio
The second class of constraints refers to the loop bod¥pace for the inner loop depends on the outer loop and its
statements. If they are assignment statements, they must bgrresponding polytope is indicated by the grey area. Using
transformable into the form, += or - = to ensure that the Enrhart polynomials, the number of integer points for this
variable is increased in each loop iteration by a constanbolytope representing the inner loop’s iteration9)#s For
value. Moreover, structs and pointers are not supported ighe guter loop, the one-dimensional polytope halgmints.
our current version. Again, these requirements must be met Based on this knowledge of loop iteration counts, the
to ensure that a single-step evaluation can be performegxecution frequencies of condition-dependent basic Islock
Even though these constraints seem to be highly restrictiveyhich might obviously differ from the loop iteration counts
our experiments have shown that sliced loop bodies oftere determined. The conditions are represented as po/tope
satisfy them. and an intersection with the loop polytope allows the calcu-
lation of theirtrue- and false-parts.

0 5 10
Figure 4. Polyhedra-based loop evaluation

Ehrhart Polynomial Evaluation

If the conditions are met, the loop iteration counts reguire Static Statement Evaluation
for the evaluation are statically determined in the nexpste  The last step is the static evaluation of statements within
This step serves to determine the execution frequencies dlfie loop based on the loop iteration counts and basic block
loop statements in order to allow the evaluation of theirexecution frequencies from the previous step. The goal is
iterative execution in a single analysis step. The problém oto evaluate modifications of variables within the loop like
finding the loop iteration counts is equivalent to computingb+=a without a repetitive simulation. These final variable
the number of integer points in a (parametric) polytope. Tovalues are used to determine iteration counts for loops that
efficiently count the integer pointghrhartpolynomials [27]  are analyzed afterwards. For this purpose, a dependence
are used. Before counting integer points, the polytépef  graph for all variables is constructed and the graph is topo-
the dimensiom used to represent a loop is transformed intologically sorted. Based on this, we can infer a sorted order
a parametric polynomiak: of executions indicating in which order variables should be
statically evaluated. For example, if variablies incremented
by variablea, we first compute a safe approximation for
for k € Z since a set of integer points is searched. before evaluating. For more details, please refer to [28].

Taking all integer points of a polytope might yield an over- Example: To illustrate the combination of both tech-
approximation for many loops. The total number of integerniques, the exploitation of Ehrhart polynomials and the
points represents the number of loop iterations if the loopstatic statement evaluation, the static analysis of thenpia
counter is incremented by one. For other modifications to theode from Figure 5 is briefly discussed. The code contains
counter, the number of counted points must be appropriatelst conditional assignment statement within a nested loop,

Ep(k) =an*k™+an_1*k" 1+ .. +ao



for(i=0;i<5; i ++){ I nput: Program P

for( j =0; j <10;j++){ Qutput: Annotated P with Loop Counts
it(i>2) begi n
a+=2;

per f or nProgr ansl i ci ng( P)
initialized obal Vari abl es( P)
IR _Stmt current := get Progranentry( P)
whi | e( curren # get ProgranExit ( P)
current:=anal yzel nExecut i onOr der ( current)
return P
end

}
}

Figure 5. Static polytope-based evaluation

and the abstract state — [0,5] before the outer loop
is assumed. From the Ehrhart polynomials we know that
the inner loop is executed) times, while the basic block
within the i f-condition is execute@0 times. This means
that variablea is incremented20 times by the constar Figure 6. Algorithm for loop analysis
resulting ina — [40, 45] after the outer loop. Using Abstract
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h ] i. e. the implementation of its theoretical concepts based o
Interpretation, the assignment statemant=2 would have  apstract Interpretation and polyhedral models performt we
to be considered0 times and not just once. for real-world problems. We show not only that the analysis

The novel static evaluation is embedded into our l‘rame—Can be employed for most benchmarks in an acceptable

work based on the modified Abstract Interpretation. Thejme phyt also that the majority of considered loops could
extension should be not considered as a new type of B¢ precisely analyzed. As far as we know, this paper is the
static loop analysis which is supposed to completely réplacy ot \yhich provides an overview of results of a loop analysis

the approach based on Abstract Interpretation described ify 5 yige range of benchmarks. Other works usually restrict
Section IlI-B. Rather, this static evaluation should bensee \qir evaluation to a small set of benchmarks.

as an extension which enables a fast loop analysis and (if - . .
. ) . : To indicate the efficacy of our static loop analyzer,
possible) is employed instead of the classical approathelf . :
. . . . . evaluations on a large number of different benchmarks
analysis successfully determines loop iteration coundsifin
were performed. The benchmarks come from the test

T Sufes NRTC WCET Benchark S (23], DSPstone (30
' P P MiBench [31], MediaBench [32], UTDSP Benchmark

and the loop anqu&_s proceeds with the .next node_ n t.h%uite [33], and our own collection of real-world benchmarks
CFG. The determination of a safe and precise approximation

of variable values modified in the loop is crucial since thecontamlng miscellaneous applications, e.g. an H263 coder

variables might be influencing following loops. Otherwise,Or a G.721 encoder. The different types of the suites were

. . - _'chosen to point out that our loop analysis can successfull
if the loop does not meet the aforementioned constralntﬁ1anolle appl?ications of different c?omainys y

the fast evaluation is omitted and the standard approach is :
The 96 considered benchmarks are currently also used

applied for this loop. X ) .

The loop analysis algorithm is sketched in Figure 6. IntC test our WCET-aware compiler that will be discussed
the first step, interprocedural Program Slicing is perfatme later. Their complexity ranges between less than one hdndrg
with loop exit conditions as slicing criteria. In the next a1d several thousands lines of code, e.g. 3178 lines in
step, all global variables are initialized with the valuias case of theGSM er)coderDue to the complexny of some
defined by ANSI-C. In line 6, the program’s entry point MiBench and MediaBench benchmarks which can not be

' handled by today’s state-of-the-art static WCET analyzers

is determined which is typically the first statement of the . _
main routine. Next, all statements are analyzed in the ordef0S€ benchmarks are excluded from our compiler test suite

of their execution as long as the entry routine has nofnd are also not evaluated with our loop analyzer.

been left. FunctiomnalyzelnExecutionOrder returns the Our loop analysis can be either used as a stand-alone
succeeding statement of statememtrent. Within function ~ t00l to generate loop information in a human-readable form,
analyzeInExecutionOrder, the abstract state from the Of it can be integrated into a compiler and assist compiler
proceeding statement is taken and a modified abstract sta@®timizations or a static WCET analysis. Figure 7 depiags th
is returned depending on the type of statement passed workflow for both configurations. After parsing and trans-
analyzeInExecutionOrder. When the current statement forming the C' source code into a high-level intermediate
is a loop or condition statement, a polyhedra-based statifePresentation (IR), the ICD-C IR [34], the static analysis
evaluation as described in Section V is performed. The algolS Performed. It begins with Program Slicing that marks
rithm returns the prograrn® for which each loop statement Statements relevant for loop bound computations. In the

is annotated with the determined loop iteration counts. ~ following step, the loop analysis based on the modified
Abstract Interpretation and polytope models using thelijpr

VI. EXPERIMENTAL ENVIRONMENT Barvinok [35] is performed. At this point, the loop bound
One of the objectives of this paper is to point out that ainformation concerning the program under analysis can be
static loop analysis is an application of practical rele@egn generated.



Table |

Static Loop PRECISION OFLOOPANALYSIS
Analysis n
stract Benchmark Suite | # Loops | Analyzable Exact
(ST nterpretation
Prog e MRTC (32) 152 100 % | 99.3 %
Slicing Models DSPStone (37) 152 98 % 93 %
."V~ MediaBench/
MiBench (6) 162 99 % | 98 %
L/ENSI ﬂ ICD-C ILlngIl)l éeﬂ LLIR Code UTI,?MSSZ ((174)) 1%:83 %88 g;z 1%% (éz,
ource P. Si l tor :
o S Total (96) / Average 707 99 % 96 %
L 4 LLIR <__ M ¥ in terms of loop iteration counts which might however be
""" over-approximated. The small fraction of 1% loops that
M m (()Y)thnﬁ;)d could be not analyzed is mainly due to technical restrigtion
Generatoy Assembly | of our alias analysis.
Figure 7. Workflow for loop analysis The last column of Table | presents the ratio of loops

The loop data can be also passed to the optimizer thdhat could be exactly analyzed, i.e. loops for which precise
exploits it for high-level optimizations. If desired, thitata  00p iteration counts were gathered. On average, our asalys
can be also provided to the low-level intermediate represerProduced exact results for 96% of the loops. This was
tation which provides it together with the code to a staticverified by comparing the results with manually determined
WCET analyzer. In our framework, the low-level IR and the loop annotations. For the remaining 4%, which include the
static WCET analyzer are represented by the thhlR [36] ~ non-analyzable 1% of loops from the previous column, 3%
and aiT [37], respectively. It should be noted that our com-0f the 707 loops could not be exactly analyzed, i. e. the loop
piler framework contains mechanisms to hold loop iterationiteration counts were afflicted with an over-approximation
counts consistent. Whenever a code transformation modifieEhe main reason for the imprecision comes from the analysis
a loop, e.g. Loop Unrolling, the previously determined loop©Of pointers which can not always be precisely evaluated in
iteration counts will be automatically adjusted without a@ static analysis. However, most of the over-approximation
further invocation of the loop analyzer. More details aboutintroduced only a marginal error ranging between 8% and

the WCET-aware C compiler WCC can be found in [38]. 51% w.r.t. the exact results. Thus, the results are still
acceptable. A typical example for an over-approximation

VII. RESULTS is encountered in the MRTC benchmdik Our analysis

In this section, we give an overview of the evaluationcomputed as lower and upper loop bounds the interval
of benchmarks from different benchmark suites. The result$s..26], while the exact loop bounds af¥r..26]. In contrast,
show how many loops could be precisely analyzed. We alsother works [11] report that they could only analyze 51%
measured the processor times required for the purely statiaf the loops in the MRTC Benchmark suite exactly.
loop analysis (Section IlI-B), the analysis combined with Program Slicing could be successfully applied to all
Program Slicing (Section 1V) and the analysis time for thebenchmarks. The number of statements irrelevant for the
most advanced mode combining the basic analysis, Progralnop analysis ranges between 23% and 88% showing that
Slicing and the polytope-based non-iterative loop evadmat computations in many programs do not affect the loop itera-
described in Section V-B. All measurements were performedion counts. 21% of the 707 loops could be analyzed with the
on a single core of an Intel Xeon CPU with 2.40 GHz polytope-based non-iterative loop evaluation. This numbe
and 8 GB RAM. In total, 96 benchmarks were extensivelyindicates that the constraints for a successful applicatio
analyzed and evaluated. For the sake of clarity, we providéhis evaluation, as described in Section V-B, are not too
a comprehensive overview of the results and discuss monestrictive and are often met in real-world applications.

interesting cases in more detail in the following. B. Analysis Time

A. Determination of Loop Iteration Counts Besides the results about the precision of the analysis,

As can be seen in Table I, we have evaluated the precisiotihe second crucial issue for static program analyses is thei
of our loop analysis. The table indicates for each benchmarkomplexity expressed by the analysis time. In general, the
suite the number of benchmarks (in brackets), the number ainalysis times highly depend on the program structure and
contained loops, the relative portion of loops that could bethe loop iteration counts. If our non-iterative loop evaioa
successfully analyzed (columinalyzablg and the relative (see Section V-B) can not be applied, the analysis based
portion of loops for which our loop analysis produces exacton Abstract Interpretation must consider each loop iterati
non-over-approximated results (colurBxac). separately. On average, smaller benchmarks require a few

The 96 benchmarks contain 707 loops in total. On averseconds for the analysis, while the analysis time for larger
age, 99% of those loops could be successfully analyzed. Thisenchmarks such as MiBenchGSM encodertakes on
means that for those loops the loop analysis produced sesulaverage less than 4 minutes.



A time measurement was difficult for some benchmarksjoop evaluation. If the original loop can be sufficiently
especially for those with a small nhumber of statements tsimplified, the fast loop evaluation can take place leading
analyze and with a few loop iterations. Due to our efficientto further remarkable accelerations of the loop analysis.
implementation of the analysis, which was one of the main Our loop analysis computed safe loop iteration counts for
goals during the development phase, the analysis time faall loops, i.e. we never encountered under-estimationis tha
those benchmarks was a fraction of a second. For thosare unacceptable for many fields of applications. Taking the
cases, a comparison between different configurations of thiéming results into account, a good strategy is to always
analysis combined with Program Slicing or the non-iteetiv combine the basic loop analysis with the extensions of
loop evaluation is difficult to measure. Thus, significantProgram Slicing and the polytope-based evaluation. The
speed-ups of the conventional analysis based on the modifiembmputation time for these techniques is negligible andtmos
Abstract Interpretation via Slicing and the polytope e@alu benchmarks profit from them while we had no cases where
tion become best visible for benchmarks with larger analysithese extensions significantly degrade the analysis.

times. In summary, it can be said that the results emphasize
Table Il the reliability of our analysis. Almost all of the encoun-
ACCELERATEDLOOPANALYSIS tered loops could be precisely analyzed in an acceptable
Benchmark | Basic | Slicing | Polytope time_ produqing beneficial informatior_1 for fu_rth_er gnaly.sgs
rr]natmyl - M,\I}TC 8.2 S 6322;?’//0 62%)%/; Besides using the resuI'Fs for compiler optimizations, like
g%?lm-mgspstlgﬁ' 805 z o8 %‘)’ 55 OA‘)’ Loop .Unrolhng, we exploit the results for our WCET—aware
fit - DSPstone| 920.7 s| 13 % 12 % compiler framework. The manual annotation of loops with
matrix1 - DSPston 0.8s 12 % 4 % iteration counts mandatory for a static WCET analysis is
mult 10 10 - UTDSP|  4.6s| 78 % 80 % a tedious and error-prone task. Using our automatic loop

Table Il shows for some example benchmarks the influ-analysis, we were able to verify those values and even
ence of the different techniques on the analysis run timecorrect some erroneous annotations. Moreover, a stafit oo
The second column of the table represents the run time danalysis is compulsory to turn a WCET-optimizing compiler
the basic loop analysis based on the modified Abstract Inteiinto a fully automatic system. In this configuration, new
pretation. The third column depicts the relative analysis r programs can be optimized w.r.t. to their WCET without
time after Program Slicing, while the last column indicatesany further user interaction.
the measured run time after the application of the polytope- The high number of exactly analyzable loops also shows
based fast loop evaluation w.r.t. the run time in the secondhat our analysis is not only able to cope with small (toy)
column. It can be seen that Slicing significantly decreaseapplications but can also be utilized for complex real-@orl
the analysis time. In case of tiheatmulbenchmark from the applications. This indicates its practical use for diffdre
MRTC suite, a reduction of 72% was achieved. This benchpurposes. Motivated by the positive results, we consider ou
mark also benefits from the polytope approach. It containsnethodology as a proof of concepts.
some loops that can be statically evaluated without itegati
over all loop executions leading to a further reduction in
time of 27%. For other benchmarks likeult 10 10 from In this paper, we presented concepts for a static loop anal-
UTDSP, Slicing could reduce the analysis time by 21.8%.ysis which generates useful information about loop iterati
For mult_10_10 the test whether the polytope approach cancounts for different applications, e. g. compiler optintiaas
be applied was negative, thus slightly increasing the amaly or a static loop analysis. After introducing the theory Inehi
time by 2% and forcing the analysis to switch back to theAbstract Interpretation, which is the basis for our static
basic (iterative) loop evaluation. analysis and ensures the correctness of computed results,

Considering all 96 evaluated benchmarks, 40% of theour work focuses on techniques aiming at an acceleration of
benchmarks could benefit from Program Slicing which ledthe loop analysis. This objective is achieved by combining
to a decreased analysis time. For 13% of these benchmark&bstract Interpretation with interprocedural Prograncialy
the analysis time could be further improved by switchingwhich removes statements irrelevant for the computation
from the iterative approach based on Abstract Interptati of loop iterations. In addition, we developed a static non-
to the polytope-based non-iterative approach. iterative evaluation of loops which is based on mathemhtica

A general conclusion that can be drawn based on theoncepts of polytopes and allows a more efficient computa-
results is that Program Slicing is an approach that yields &éon of loop iteration counts than the conventional Abdtrac
significant reduction in the analysis time. Its successliigh Interpretation. Our framework is evaluated with a large
depends on the size of the program slice, i.e. how manpumber of real-world benchmarks which contain 707 loops.
statements can be eliminated without affecting the compuFor 96% of these loops, precise loop iteration counts were
tation of loop iteration counts. Slicing is also an enablingdetermined in analysis times ranging from less than one
technique for a successful application of the non-iteeativ second up to few minutes in the most cases. This leads us

VIII. CONCLUSIONS ANDFUTURE WORK



to the conclusion that our static loop analysis is of prattic [16] M. D. Weiser, “Program Slices: Formal, Psychologicahd

use for the adoption in real-world problems.

In the future, we want to exploit the results of the loop

analysis for different compiler optimizations, espegidtr

(17]

those that aim at an automatic WCET reduction. We also
want to extend our polytope-based loop analysis to easgS8]

the constraints described in Section V-B. This would allow

its exploitation for further benchmarks. Another intenegt

(19]

extension of the current analysis is the exploration of bthe,q;
abstract domains, e.g. the octogan or convex polyhedra
domain, to study their strengths and weaknesses in the
context of static loop analyses. An interesting compilerl21]

application of our loop analysis is also its exploitatiom fo

a value analysis which might even compute possible valuepzz]

depending on a particular calling context.
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