
WCET-aware Register Allocation based on Graph Coloring
∗

Heiko Falk
Computer Science 12

Technische Universität Dortmund
D - 44221 Dortmund, Germany

Heiko.Falk@tu-dortmund.de

ABSTRACT

Current compilers lack precise timing models guiding their
built-in optimizations. Hence, compilers apply ad-hoc heu-
ristics during optimization to improve code quality. One
of the most important optimizations is register allocation.
Many compilers heuristically decide when and where to spill
a register to memory, without having a clear understanding
of the impact of such spill code on a program’s run time.

This paper extends a graph coloring register allocator such
that it uses precise worst-case execution time (WCET) mod-
els. Using this WCET timing data, the compiler tries to
avoid spill code generation along the critical path defining a
program’s WCET. To the best of our knowledge, this paper
is the first one to present a WCET-aware register allocator.
Our results underline the effectiveness of the proposed tech-
niques. For a total of 46 realistic benchmarks, we reduced
WCETs by 31.2% on average. Additionally, the runtimes of
our WCET-aware register allocator still remain acceptable.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Compilers; Optimiza-
tion; C.3 [Real-time and embedded systems]; B.3.3
[Memory Structures]: Worst-case analysis

General Terms

Algorithms, Performance

Keywords

WCET, Register Allocation

1. INTRODUCTION
Embedded systems are often real-time systems whose cor-

rectness depends on both the logical results and on the time
at which the results are produced. A program’s worst-case

∗Funded by the European Community’s 7th Framework Pro-
gramme FP7/2007-2013 under grant agreement no 216008.

execution time (WCET) is used to guarantee that real-time
constraints are safely met. But besides safety, the market
demands high performance, energy efficiency and low cost.
Hence, designing such products implies solving a complex
optimization problem with multiple optimization criteria.
Compilers play an important role during real-time system
design since they are able to apply automated optimizations
improving the quality of the generated executable code.

Unfortunately, even modern optimizing compilers are of-
ten unable to quantify the effect of an optimization since
they lack precise timing models [8]. Hence, simple ad-hoc
heuristics are applied during optimization in the hope that
these finally improve code quality. But it is well-known that
this is not always true: due to the absence of precise models,
optimizations may have a negative impact on code quality.

Among all optimizations studied in the past, register al-
location is considered the most important one. It intends to
use a processor’s registers most efficiently in order to min-
imize slow main memory accesses. Due to the increasing
speed gap between processors and memories, accesses to
physical processor registers (PHREGs) are orders of mag-
nitudes faster than memory accesses. However, memory ac-
cesses can not be totally avoided during register allocation,
since the amount of temporary variables (aka. virtual regis-
ters, VREGs) at a certain place in a program can exceed the
number of available PHREGs. In such a situation, spill code
is inserted swapping a register out to memory and back.

Currently, register allocators usually decide heuristically
where to insert spill code. Due to a lack of precise models,
the compiler is unaware of the impact of generated spill code
on a program’s execution time. Especially in the area of
real-time system design and optimization, badly placed spill
code can have a dramatic impact on a program’s WCET.

This paper is the first one to present a technique for a
WCET-aware graph coloring register allocator. The main
contributions of the proposed register allocator are that it
• explicitly uses WCET data during optimization,
• automatically updates its WCET data in the course

of the optimization in order to cope with the inherent
instability of the critical path defining the WCET,

• reduces average WCETs by 31.2% for 46 benchmarks
while requiring only moderate optimization runtimes.

Section 2 gives a survey of related work on register alloca-
tion, WCET optimization and compilers using formal mod-
els during optimization. Section 3 presents graph coloring
which is the standard technique for register allocation, fol-
lowed by the WCET-aware register allocator in Section 4.
Section 5 describes the benchmarking results, and Section 6
summarizes this paper and gives an outlook on future work.

42.2

732726

42.1

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

2. RELATED WORK
Graph coloring is the standard technique for register allo-

cation nowadays. Due to its importance for compilers and
for this paper, it is discussed in more detail in Section 3.

An optimal register allocator using integer-linear program-
ming (ILP) is presented by [7]. As opposed to the motiva-
tion given in Section 1, [7] does not apply any heuristic dur-
ing register allocation since ILP produces optimal results.
The ILP minimizes code size, i. e. the total amount of gen-
erated spill code. Since code size is a criterion not requiring
sophisticated models in a compiler, optimal results can be
produced. Nevertheless, the absence of timing models im-
plies that the impact of [7] on WCETs is fully unknown.
How to make this ILP WCET-aware is unclear up to now.

A third standard register allocation technique is linear
scan [11]. Using a linear order of all operations of a pro-
gram, a life time interval is computed for each VREG. Reg-
ister allocation is done by mapping each life time interval
to a PHREG and by applying a simple spill heuristic if all
PHREGs are in use. Compared to graph coloring, linear
scan is fast but produces results of inferior quality. In addi-
tion, the code quality resulting from linear scan heavily de-
pends on the chosen operation order and on the spill heuris-
tic. Hence, linear scan allocation is a typical example of an
optimization not guided by actual models.

Profile feedback optimization is discussed in [10] as a work-
around for lacking formal models. Here, information about
a program’s run-time behavior is supplied to the compiler,
which is collected by applying code instrumentation and run-
time profiling. The profile-based register allocator of the
Sun Studio compiler finally uses basic block counts from this
profile data. In contrast to such profile-based approaches,
our approach relies on timing models tightly integrated in a
compiler making profiling runs obsolete.

One of the very few compilers featuring an actual model
used during optimization is the energy-aware C compiler
encc [13]. Its energy model reflects the energy dissipation
of each operation of the ARM thumb instruction set, plus
the energy consumed during various memory accesses. Us-
ing this energy model, encc exploits memory hierarchies by
moving program code or data onto scratchpad memories and
minimizes a program’s energy consumption.

The compiler WCC [5] is the first fully functional compiler
explicitly designed for WCET minimization. WCET timing
models are integrated into WCC by coupling its backend
with the static WCET analyzer aiT [1]. This way, WCC can
apply static WCET analysis while optimizing and can use all
the WCET-related data computed by aiT for optimization.
WCC serves as technical infrastructure for the WCET-aware
register allocator presented in this paper.

Compiler optimizations minimizing WCET are an emerg-
ing area of research where only few related works currently
exist. In [9], a combination of procedure cloning and proce-
dure positioning to improve worst-case I-cache performance
is proposed. The authors of [4, 6, 12] propose to move parts
of a program’s code and data onto a scratchpad memory
or onto a software-controlled cache. These papers focus on
exploiting memory hierarchies outside a processor core to
minimize WCETs. Exploiting the register file – which is
that part of a memory hierarchy being closest to a processor
– in a WCET-aware way has not yet been considered in any
publication to the best of our knowledge.

3. TRADITIONAL GRAPH COLORING
Due to its relevance, traditional graph coloring is pre-

sented in-depth in this section. The overall structure of
graph coloring is discussed first in Section 3.1, followed by a
selection of typical spill heuristics in Section 3.2.

3.1 Overall Algorithm
Traditional graph coloring based register allocation was

originally published in [3] and later improved in [2]. Its
basic data structure is the interference graph G = (V, E).
For each VREG of a function and for each of the C available
PHREGs, a node is added to V . An undirected edge e =
{v, w} is added to E whenever nodes v and w interfere. v

and w interfere either if they represent VREGs which are
simultaneously alive and thus should not share the same
PHREG, or if a VREG v must not be allocated to PHREG
w for architectural reasons.

Graph coloring assigns one of C colors representing the
physical registers to each node v ∈ V such that no two
adjacent nodes have the same color. According to [2], this
is done as follows:

Build: Construct the interference graph G = (V, E).

Simplify: Successively remove each v ∈ V from G having
a degree < C, push v onto stack S. This step removes
all nodes from G which are always colorable due to the
small amount of adjacent nodes.

Spill: After simplify, each node v has degree ≥ C. Select
one node v ∈ V , mark v as potential spill, remove v

from G, push v onto S.
If V �= ∅, continue with simplify.

Select: Successively pop nodes v from S and re-insert them
into G. If v is not a potential spill, assign a free color
c to v. If v is a potential spill, there may be a free
color c available for v. If this is the case, assign c to
v. Otherwise, don’t assign a color to v and mark v as
actual spill.

Start over: If there are actual spills v ∈ V , insert a load
operation before each use of v and a store operation
after each definition of v and continue with build.

By inserting spill operations before uses and after defini-
tions of an actual spill v during start over, the lifetime of v

is split into smaller intervals in the hope that these smaller
intervals will only interfere with lifetimes of fewer VREGs in
the next iteration of the above algorithm. This register allo-
cator has proven to produce results of high quality and has
an overall complexity of O(n log n), where n is the number
of instructions in the program to be allocated.

3.2 Spill Heuristics
A crucial issue of the allocator sketched above is the ques-

tion which node v to select and to mark as potential spill
during the spill phase. In the related literature, several
heuristics to select a potential spill are proposed:

• Select nodes according to the order in which registers
occur in the compiler’s intermediate code.

• Select the node v with highest degree, since spilling
this node reduces the degree of many other nodes in
G so that it is more likely to maximize the number of
nodes with degree < C after spilling v.

733727

• Select a node v depending on the degree of v, on the
number of operations o using or defining v, on the reg-
ister pressure around o and on the loop nesting level
of each such operation o.

From the description of these spill heuristics, it becomes
obvious that no formal timing model is used to take a spilling
decision. Due to a lack of such models, these heuristics try
to estimate the impact of a spilling decision on code qual-
ity. It is not surprising that in some cases, one heuristic is
better, whereas another heuristic might be more appropri-
ate in other cases. Nowadays, spill decisions are not steered
by actual timing data so that their estimates may guide a
register allocator into a wrong direction.

4. WCET-AWARE GRAPH COLORING
The discussion of the spill heuristics in Section 3.2 re-

veals that current register allocators have no direct control
over where spill code is generated, since only simplified mea-
sures are used. This can have severe effects on a program’s
WCET. The WCET of a program P is equal to the length of
the longest possible execution path from the start node to an
end node in P ’s control flow graph (CFG). For such a path,
its length is the sum of the products of WCET and worst-
case execution frequency for all basic blocks of the path.
This longest path is also known as Worst-Case Execution
Path (WCEP). Traditional spill heuristics may now lead to
spill code generation along this WCEP, thus increasing the
WCET considerably.

Since it is intractable to compute a program’s WCET in
general, upper bounds of the actual WCET of P need to
be estimated. The state-of-the-art technique to obtain safe
and tight WCET estimates is to apply static analyses to
the executable machine code of P , taking into account the
influence of P on memories, caches, processor pipelines etc.
Static WCET analyzers like e. g. aiT [1] basically estimate
a) the WCET per basic block of P and b) how many times
each basic block of the CFG is executed in the worst-case
(i. e. the worst-case execution frequency per node). Using
this data, the WCEP can be determined, since any block
with non-zero worst-case execution frequency belongs to the
WCEP. In the remainder of this paper, the shortcuts WCET
and WCETest are used synonymously – we always refer to
the WCET estimates produced by a static WCET analyzer
in the following.

This section presents our WCET-aware graph coloring
approach. Section 4.1 discusses properties of WCETs and
WCEPs that heavily influence compiler optimizations aim-
ing at WCET reduction. Section 4.2 shows the overall work-
flow of our WCET-aware register allocator, followed by the
discussion of our WCET-aware spill heuristic in Section 4.3.

4.1 Instable Worst-Case Execution Paths
The WCET of a program P is the maximal time P ’s exe-

cution can ever take. The CFG of P , whose nodes represent
basic blocks and whose edges tell that one basic block can
be reached from the other, reflects all possible ways of exe-
cuting P . Among all paths from P ’s start node in the CFG
to some end node, there is one longest path. This path is
the WCEP and its length is equal to P ’s WCET.

A compiler aiming at WCET minimization must thus re-
duce the length of the WCEP. Assume p1 is P ’s current
WCEP and some disjoint path p2 is the second longest path

in the CFG. If a compiler optimization is successful in short-
ening p1 by more than |p1| − |p2| time units (where |p| stands
for the length of p), p2 becomes the new WCEP after this
optimization.

However, if the optimization is unaware of the WCEP
change from p1 to p2, the compiler keeps on reducing the
length of p1. Unfortunately, this effort may be in vain since
it not necessarily leads to any further WCET reduction, be-
cause the new WCEP p2 might not be affected.

As a consequence, the following requirements have to be
met by compilers aiming at WCET minimization. They
must

• have detailed knowledge about the WCEP,

• apply optimizations exclusively to those parts of P ly-
ing on the WCEP, since optimizing parts of P not lying
on the WCEP don’t reduce the WCET at all, and

• be aware of switches of the WCEP in the course of
applied optimizations.

These requirements are very challenging, because they show
that it is not sufficient to equip a compiler with WCET
models to obtain a WCEP, but that the influence of an op-
timization on the model needs to be tracked steadily. A
WCET-aware register allocator is even more challenging as
will be shown in the next section.

4.2 A Chicken-Egg Problem
In order to design a WCET-aware register allocator, the

worst-case execution frequencies per CFG node need to be
known. Unfortunately, static WCET analysis can not be
applied to the program P serving as input for register allo-
cation to obtain this data. This is because P is not an exe-
cutable program since it uses VREGs instead of PHREGs.
Static WCET analysis relies on executable and thus register-
allocated code in order to correctly take the mutual influ-
ences of P and the processor hardware into account. Hence,
there are cyclic dependencies between register allocation and
WCET analysis – in addition to the requirements discussed
in Section 4.1 – which need to be broken in order to obtain
a WCET-aware register allocator.

Conventional register allocators follow the strategy to keep
as many VREGs in PHREGs as possible, and to move a
VREG to memory only if this is really necessary. The tra-
ditional way of thinking thus assumes optimistically that all
VREGs fit into the physical register file and that only ex-
ceptionally, a VREG is allocated to memory. This way of
thinking is also reflected by the graph coloring algorithm
presented in Section 3, since it first tries to remove all col-
orable nodes from the interference graph, and only after
that, a decision on one single potential spill is taken.

However, this traditional approach is not applicable for
a WCET-aware register allocator. The intermediate code
produced in the course of all the steps and iterations of tra-
ditional graph coloring is not executable and thus, no WCEP
can be determined. The first stage where traditional graph
coloring produces executable and thus WCET analyzable
code is when register allocation is just finished. And at the
end of the entire procedure, it does not make sense to reason
about WCEPs, since all spill decisions are already taken.

For WCET-aware graph coloring, we propose the opposite
way of thinking: we assume pessimistically that all VREGs
are kept in memory. During register allocation, we thus

734728

1 IR WCET-GC-RA(IR P) {

2 while (true) {

3 IR P
′ = P.copy();

4 P
′.spillAllVREGs();

5 set<basicBlock> WCEP = computeWCEP(P ′);

6 if (getVREGs(WCEP) == ∅)

7 break;

8 basicBlock b′ = getMaxSpillCodeBlock(WCEP);

9 basicBlock b = getBlockOfOriginalP(b′);

10 list<virtualRegister> vregs = getVREGs(b);

11 vregs.sort(occurrences of VREG in b);

12 traditionalGraphColoring(P, vregs);

13 }

14 traditionalGraphColoring(P, getVREGs(P));

15 return P;

16 }

Figure 1: Algorithm for WCET-Aware Graph Col-

oring

move VREGs from memory to PHREGs. This approach
has the advantage that the intermediate code generated in
the course of register allocation is always executable so that
WCEPs can be determined.

4.3 A WCET-Aware Spill Heuristic
The WCET-aware spill heuristic we present in this paper

bases on the following two key characteristics:

• Due to the instability of the WCEP, it has to be re-
computed regularly. Since it is practically infeasible to
recompute the WCEP after each individual spill deci-
sion, we propose to recompute WCEPs after deciding
on the allocation and spilling of one single basic block.

• For a given WCEP, that basic block b leading to the
highest execution of spill code in the worst case is cho-
sen for allocation. All VREGs v of b are sorted by to
the number of occurrences of v in b. This precedence
list of VREGs is passed to a standard graph coloring
register allocator selecting that register with least oc-
currences in the list as potential spill, if necessary.

The overall algorithm for WCET-aware graph coloring is
depicted in Figure 1. It executes an optimization loop pro-
cessing one basic block per iteration (lines 2 - 13). For an
intermediate representation (IR) of a program P being in-
put to register allocation, the algorithm maintains a copy P ′

which is fully spilled, i. e. where all VREGs of P are marked
as actual spills and load / store operations are inserted for
spilling (lines 3 and 4). This fully spilled IR is passed to a
static WCET analyzer to obtain the current WCEP, which
is feasible since P ′ does not contain any VREGs (line 5).

Among all basic blocks on the current WCEP, that block
b′ with the highest execution of spill code in the worst case
is selected. Worst-case execution of spill code is computed
by multiplying the number of inserted spill operations per
basic block with the worst-case execution frequency per ba-
sic block as determined by the WCET analyzer (line 8). For
b′ within the fully spilled IR P ′, its counterpart b within the
IR P still containing VREGs is determined (line 9).

This basic block b of P is the most critical one within
the current iteration of the WCET-aware register allocator.
Hence, the allocator should try to keep all VREGs of b in
PHREGs. However, if register pressure is too high and some
VREGs of b must be spilled, this should be done such that
only a minimal amount of spill code will be executed in b in
the worst case. For this purpose, all VREGs v of b are sorted
by their number of occurrences within b (line 11). Since spill
code generation always inserts a load operation before each
use of v and a store after each definition of v, the number
of occurrences of v in b correlates with the amount of spill
code required in b to spill v. This sorting order models a
precedence which VREGs are better spill candidates and
which ones not. This precedence list of VREGs is passed
to a standard graph coloring allocator (cf. Section 3) which
performs the actual work of mapping these virtual to physi-
cal registers (line 12). After that, b′ is put in a black-list to
prevent it from being selected again by line 8. For the sake
of simplicity, this black-listing is omitted in Figure 1.

If the current WCEP does not contain VREGs any more,
the optimization loop terminates (lines 6 and 7). However,
the IR P may still contains VREGs after leaving the opti-
mization loop. This happens for basic blocks on other paths
within the CFG which have never been the WCEP – such
blocks were never considered by the optimization loop. How-
ever, they still need to be allocated. For this purpose, all
remaining VREGs within P are passed to a final run of the
traditional graph coloring register allocator in order to ob-
tain a fully allocated IR (line 14).

For this final run of the standard register allocator, the ap-
plied spill heuristic does not matter. This is because even in
the worst case where all remaining VREGs would be spilled,
the basic blocks still containing VREGs in line 14 will never
ever lie on the WCEP and thus will never influence the global
WCET of P . If they lay on the WCEP, they would have been
captured by the optimization loop which is in contradiction
to the loop’s termination condition in lines 6 and 7. Hence,
it is fully sufficient to provide the standard graph coloring
allocator with some arbitrary precedence list of VREGs. For
the sake of simplicity, we make the allocator select nodes for
spilling just in the order in which VREGs occur in P .

To sum up, the algorithm sketched in Figure 1 imple-
ments a WCET-aware spill heuristic for a traditional graph
coloring register allocator. It sorts VREGs using a criterion
depending on worst-case execution frequencies of spill code,
stemming from static WCET analysis. This way, our spill
heuristic tries to avoid spill code generation along the WCEP
and especially within those blocks lying on the WCEP which
are most frequently executed in the worst case.

5. EVALUATION
This section presents results obtained by applying the

proposed WCET-aware graph coloring allocator to real-life
benchmarks. Section 5.1 describes the experimental environ-
ment used to perform benchmarking. Sections 5.2 and 5.3
discuss benchmarking results in terms of worst-case and
average-case execution times, respectively.

5.1 Experimental Environment
Our WCET-aware register allocator is integrated into a

compiler for the Infineon TriCore TC1796 processor. This
processor features a relatively large register file having 16
data and 16 address registers. However, not all of these 32

735729

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

ad
pcm

_v
er

ify

cj
peg

_t
ra

nsu
pp

co
m

pr
es

s cr
c

dijk
st

ra
duff

ed
ge_

det
ect ed

n
ep

ic

ex
pin

t
fd

ct

fft
_1

02
4

fft
_2

56 fir

fir
2d

im
gsm

gsm
_e

nco
de h26

3

h26
4d

ec
_b

lo
ck

h26
4d

ec
_m

ac
ro

iir
4

64

iir
_bi

quad
_N

jfd
ct

in
t

la
tn

rm
_3

2_
64

lm
sf

ir_
8_

1

lm
sf

ir_
32

_6
4 lp

c

lu
dcm

p

m
at

m
ult

m
at

rix
2_

fix
ed

m
at

rix
2_

flo
at

m
d5

m
in

ve
r

m
ult_

10_
10

m
ult_

4_4

ndes

prim
e

qm
f_

re
ce

iv
e

qm
f_

tr
an

sm
it

qurt

rij
ndae

l_
en

c

se
le

ct
sh

a

sp
ec

tr
al

st
ar

tu
p

v3
2_

be
nc

A
ve

ra
ge

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

Figure 2: Relative WCET Estimates after WCET-aware Register Allocation

Conversion
LLIR2CRL

Conversion
CRL2LLIR

ICD-C
Parser

LLIR Code
Selector

aiT WCET
Analysis

ANSI-C
Sources

High-Level
ICD-C

Code
Generator

Low-Level
LLIR

Generated
CRL2

CRL2 &
WCET Est.

Analyses &
Optimizations

WCET-
Optimized
Assembly

Figure 3: WCET-aware C Compiler WCC

registers can be used freely by a register allocator. Several
registers are dedicated e. g. to implement function calling
conventions, as stack pointer or as return address pointer.

Figure 3 depicts the structure of the WCET-aware C com-
piler WCC [5] used for benchmarking. Its key feature is the
tight integration of the static WCET analyzer aiT into the
compiler’s backend. This way, WCET timing data is avail-
able at the compiler’s assembly code representation (ICD-
LLIR). Both at C and at assembly level, code optimizations
are applied. One of these optimizations, applied at assem-
bly level, is the register allocation algorithm discussed in this
paper. The compiler features a total of 42 different optimiza-
tions. For benchmarking, all of them are activated such that
register allocation is always applied to already highly opti-
mized code. In all experiments, spilling uses the TriCore’s
scratchpad memory having 1 cycle access latency.

5.2 Worst-Case Execution Time Estimates
Figure 2 shows the impact of our WCET-aware register

allocation algorithm on the WCET estimates (WCETest)
of 46 different applications from the MRTC, MediaBench,
UTDSP and DSPstone benchmark suites. These bench-
marks are very different: some of them are quite small fil-
ter and sorting routines, others are large and complex au-
dio / video codecs. Their basic block counts range from 7 to
808. However, all benchmarks have in common that regis-
ter pressure within their assembly code is high so that spill
code needs to be generated. Figure 2 shows the WCETest

of all benchmarks resulting from our WCET-aware register
allocator as a percentage of the WCETest resulting from the

traditional graph coloring allocator described in Section 3.
Traditional graph coloring is performed function-wise. Se-

lecting the node with maximal number of occurrences in an
entire function would make the traditional allocator opti-
mize code size since the total amount of spill code per func-
tion is minimized. This would lead to an unfair comparison
in favor of our WCET-aware register allocator. Instead, the
traditional allocator spills the node with highest degree in
our case. This spill heuristic tries to optimize execution time
since usually, the node with highest degree interferes with
other nodes in some innermost loop. Thus, this spill heuris-
tic avoids spill code in the innermost loop which is a very
similar criterion as that one used for WCET-aware register
allocation, leading to a fair comparison of both allocators.

As can be seen, our WCET-aware register allocator is able
to reduce the WCETest considerably for all benchmarks. For
qurt, the WCETest after WCET-aware register allocation is
93.1% of the original WCETest, i. e. a WCETest reduction
of 6.9% was achieved. For all other benchmarks, even higher
gains were observed. The largest gain in terms of WCETest

was measured for spectral where the WCETest after our
register allocation amounts to only 24.1% of the original
WCETest, leading to savings of 75.9%.

On average over all 46 considered benchmarks, we were
able to obtain a WCETest of 68.8% of the original worst-case
execution time estimate, corresponding to a total average
WCETest reduction of 31.2%.

Even though our WCET-aware register allocator performs
a WCET analysis for the allocation of each basic block along
the WCEP, thus leading to 1,979 WCET analyses during
allocation of all 46 benchmarks, the runtimes of our algo-
rithm are still moderate. WCET-aware register allocation
of all benchmarks took a total of 12:15 CPU-hours on an
Intel Xeon machine running at 2.4 GHz, with an average al-
location time of 16 minutes per benchmark. Of course, this
is much longer than the average 10 CPU seconds per bench-
mark required by graph coloring, but it is still acceptable if
high code quality for hard real-time systems is required.

5.3 Average-Case Execution Time & Code Size
Figure 4 shows the impact of our register allocator on

average-case execution times (ACET) of the selected bench-
marks. ACETs were measured using a commercial instruc-
tion set simulator for the TC1796. Once again, ACETs after
WCET-aware register allocation are depicted as a percent-
age of the ACETs resulting from the traditional allocator.

736730

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%

ad
pcm

_v
er

ify

cj
peg

_t
ra

nsu
pp

co
m

pr
es

s cr
c

dijk
st

ra
duff

ed
ge_

det
ect ed

n
ep

ic

ex
pin

t
fd

ct

fft
_1

02
4

fft
_2

56 fir

fir
2d

im
gsm

gsm
_e

nco
de h26

3

h26
4d

ec
_b

lo
ck

h26
4d

ec
_m

ac
ro

iir
4

64

iir
_bi

quad
_N

jfd
ct

in
t

la
tn

rm
_3

2_
64

lm
sf

ir_
8_

1

lm
sf

ir_
32

_6
4 lp

c

lu
dcm

p

m
at

m
ult

m
at

rix
2_

fix
ed

m
at

rix
2_

flo
at

m
d5

m
in

ve
r

m
ult_

10_
10

m
ult_

4_4

ndes

prim
e

qm
f_

re
ce

iv
e

qm
f_

tr
an

sm
it

qurt

rij
ndae

l_
en

c

se
le

ct
sh

a

sp
ec

tr
al

st
ar

tu
p

v3
2_

be
nc

A
ve

ra
ge

R
e
la

ti
v
e

A
C

E
T

[%
]

Figure 4: Relative ACETs after WCET-aware Register Allocation

A comparison of Figures 2 and 4 shows that the measured
ACETs behave completely different than the WCETs re-
sulting from our WCET-aware register allocator. For some
benchmarks, our register allocator increases ACETs whereas
significant WCET reductions were reported. The most pro-
minent example is the gsm family of benchmarks, where
WCET reductions between 51.5% – 66.2% were obtained,
but ACETs degrade by 6.8% – 12.7%. In general, the WCET
reductions achieved by the proposed register allocator are or-
ders of magnitude larger than all measured ACET changes.
On average for all 46 benchmarks, our register allocator
leads to a total average ACET reduction of only 13.8% which
is far below the obtained average WCET reduction of 31.2%.

These differences between WCETs and ACETs can be ex-
plained by the fact that our register allocator keeps on op-
timizing along the WCEP which is usually not identical to
the path that is executed in a typical average-case scenario.
Hence, our register allocator inserts spill code at positions
within the CFG where it is uncritical for the worst-case per-
formance, but may impair average-case performance. It can
be concluded that optimizing for WCET is a completely dif-
ferent issue than optimizing for average-case performance.

For all 46 benchmarks, we observed an average increase
of the benchmarks’ text section of 29.8%, with a maximal
increase of 298% for dijkstra. However, this is the only
benchmark with such extreme increases. dijkstra is a very
small benchmark kernel so that the insertion of only few
additional spill instructions leads to excessive code size in-
creases. These code size increases can be explained by the
fact that our WCET-aware register allocator generates more
spill code if this helps in keeping the WCEP free of spill code.

6. CONCLUSIONS
This paper is the first one to present a WCET-aware reg-

ister allocator. It introduces a precise WCET model for this
important compiler optimization and makes detailed WCET
data available during allocation. WCET-aware register allo-
cation is done by providing a standard graph coloring algo-
rithm with a WCET-aware spill heuristic. The effectiveness
of our approach is shown by average WCET reductions of
31.2% for 46 different real-life benchmarks. Since the pro-
posed register allocator is explicitly tailored towards WCET
minimization, it is not surprising that it reduces ACETs by
only 13.8%. Code sizes increase by 29.8% on average.

Since the proposed approach to extend a traditional graph
coloring allocator with a WCET-aware spilling mechanism

is a heuristic trying to avoid spill code generation along the
worst-case execution path, no statements can be made about
the optimality of our register allocator. For this reason, our
future work will concentrate on developing an integer-linear
programming based WCET-aware register allocator.

Acknowledgments

The authors would like to thank AbsInt Angewandte Infor-
matik GmbH for their support concerning WCET analysis
using aiT (www.absint.com/ait).

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case

Execution Time Analyzers. www.absint.com/ait, 2009.
[2] P. Briggs. Register Allocation via Graph Coloring. PhD

thesis, Rice University, Houston, Apr. 1992.
[3] G. J. Chaitin, M. A. Auslander, et al. Register allocation

via coloring. Computer Languages, 6, 1981.
[4] J.-F. Deverge and I. Puaut. WCET-Directed Dynamic

Scratchpad Memory Allocation of Data. In Proceedings of
ECRTS, Pisa, July 2007.

[5] H. Falk, P. Lokuciejewski, and H. Theiling. Design of a
WCET-Aware C Compiler. In Proceedings of ESTIMedia,
Seoul, Oct. 2006.
ls12-www.cs.tu-dortmund.de/research/activities/wcc.

[6] H. Falk, S. Plazar, and H. Theiling. Compile Time Decided
Instruction Cache Locking Using Worst-Case Execution
Paths. In Proceedings of CODES+ISSS, Salzburg, Oct.
2007.

[7] D. W. Goodwin and K. D. Wilken. Optimal and
Near-optimal Global Register Allocation Using 0-1 Integer
Programming. Software: Practice and Experience,
26(8):929–965, Aug. 1996.

[8] E. A. Lee. Absolutely Positive On Time: What Would It
Take? IEEE Computer, July 2005.

[9] P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-driven
Cache-based Procedure Positioning Optimizations. In
Proceedings of ECRTS, Prague, July 2008.

[10] G. Mandalika. Building Enterprise Applications with Sun
Studio Profile Feedback.
developers.sun.com/solaris/articles/building.html, 2007.

[11] M. Poletto and V. Sarkar. Linear Scan Register Allocation.
ACM TOPLAS, 21(5):895–913, Sept. 1999.

[12] I. Puaut and C. Pais. Scratchpad memories vs locked
caches in hard real-time systems: a quantitative
comparison. In Proceedings of DATE, Nice, Apr. 2007.

[13] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An
Accurate and Fine Grain Instruction-Level Energy Model
Supporting Software Optimizations. In Proceedings of
PATMOS, Yverdon-Les-Bains, Sept. 2001.

737731

