Combining Worst-Case Timing Models, Loop Unrolling, and Sttic Loop
Analysis for WCET Minimization *

Paul Lokuciejewski, Peter Marwedel
Computer Science 12
TU Dortmund University
D-44221 Dortmund, Germany
FirstName.LastName@tu-dortmund.de

Abstract the instruction cache (I-cache) and additiosplll code
Thus, the optimization must be used with caution. Several
Program loops are notorious for their optimization po- studies, however, indicated that sophisticated heusitic
tential on modern high-performance architectures. Com- loop unrolling can significantly improve the average-case
pilers aim at their aggressive transformation to achieve execution time (ACET) [24, 8, 13, 5]. The success of loop
large improvements of the program performance. In par- unrolling also highly depends on the knowledge of loop it-
ticular, the optimization loop unrolling has shown in the eration counts and their lack diminishes optimization po-
past decades to be highly effective achieving significant in tential. Thus, an effective loop unroller must have access t
creases of the average-case performance. this parameter [8].

In this paper, we present loop unrolling that is tailored | the last years, different objectives than the average-
towards real-time SyStemS. Our novel Optimization is drive case performance moved into the focus Of Compiler Opti_
by worst-case execution time (WCET) information to effec- mizations. Timing constraints deserve special attention f
tively minimize the program'’s worst-case behavior. To ex- empedded systems that often operate as real-time systems.
ploit maximal optimization potential, the determinatioh 0 \orst-case timing behavior is expressed by the worst-case
a suitable unrolling factor is based on precise loop itera- execution time. Especially for safety-critical applicati
tion counts provided by a static loop analysis. In addition, gomains the WCET bounds must be safe to guarantee that
our heuristics avoid adverse effects of unrolling which re- rea|-time constraints are met. Moreover, the precise knowl
Sult from instruction CaChe OVerﬂOWS and the generation Of edge of this key parameter is mandatoryforvarious schedul-
additional Sp|” COde. Results on 45 real'life benChmarkS |ng a|gorithms_ With the growing Comp|exity of embed-
demonstrate that aggressive loop unrolling can yield WCET ged applications, an effective WCET reduction can be only

reductions of up to 13.7% over simple, naive approachesachieved with aggressive compiler optimizations.

employed by many production compilers. In this paper, we present a WCET-driven loop unrolling

for real-time systems. Standard heuristics which have

shown to be highly effective are integrated into our opti-

1. Introduction mizer. Among others, the most important are related to an
The optimizationloop unrolling [22] has been thor- avoidance of I-cache overflows by means of a controlled

oughly studied in the context of the average-case perfor-code expansion and the estimation of spill code genera-
mance. Most important advantages of this optimization aretion. In contrast to previous works, our novel optimiza-
the reduced loop increment-and-test overhead, increased i tion is completely driven by worst-case timing information
struction level parallelism, and, often most advantageous 0 achieve a maximal WCET reduction. This makes our
the unrolled code establishes additional potential foepth ~@PProach more reliable than previous ACET optimizations
optimizations. However, loop unrolling is also entailediwi ~ '€lying on profiling. Unlike WCET information, profiling

negative side-effects. Examples are an adverse impact oflata might change for different inputs, thus the optimiza-
tion of a program based on this data might be suboptimal

*The research leading to these results has received funtbing the or even have an adverse influence on the performance when
European Community’s Artist Design Network of Excellenoel &#om the inputs change.
European Community’s Seventh Framework Programme FP7/2003
under grant agreement 216008. The main contributions of this paper are as follows:

1. To our best knowledge, this is the first study evaluat- as described in Section 1, profiling information might not
ing the impact of an aggressive loop unrolling on the be reliable. Moreover, profiling is expensive and thus of-
program’s worst-case performance. ten not applicable. To overcome this dilemma, we apply a

2. Our WCET-driven loop unrolling exploits the trade- static loop analysis computing safe and input-invariaoplo
off between performance and code size, being typi- bounds that are valid for all input data.
cal for embedded systems, by optimizing loops that The automatic compiler-based reduction of the WCET,
promise the maximal WCET reduction with a simul- which is a crucial objective in real-time systems, is still a

taneous small code expansion. novel research area. The only work that considers loop un-
3. We exploit a static loop analysis providing the crucial rolling in the context of WCET minimization is presented
knowledge of loop iteration counts. in [30]. However, this work differs in several aspects from

4. Our developed prediction mechanism computes for our approach. Most important, the authors do not develop a
each loop its unrolling profit that allows the determi- WCET-driven loop unrolling but apply standard ACET un-
nation of the most promising unrolling factor. rolling and study its impact on the WCET. Moreover, they

5. The transformation is applied at source code level to do not exploit worst-case iteration counts of loops for an
provide a large optimization potential for subsequent aggressive WCET optimization, but unroll each loop by a
high- and low-level optimizations. constant factor of two. Also, their unrolling is appliedla¢t

The rest of this paper is organized as follows: Section 2 assembly level, and their target architecture has no caches

gives a survey of related work. In Section 3, the standard making an evaluation of cache effects impossible.
optimization loop unrolling is discussed, followed by the Most published works in the domain of WCET mini-
description of our WCET-driven loop unrolling in Section 4. mization operate on assembly level and exploit memory hi-
Section 5 presents our experimental environment, while re-erarchies but not standard compiler optimizations as igdon
sults achieved on real-life benchmarks are discussed in Secin this work. [4] presents an algorithm for static locking
tion 6. Finally, Section 7 summarizes this paper and givesof I-caches based on a genetic algorithm. [29] combines

directions for future work. compile-time cache analysis with static data cache locking
Iterative approaches for I-cache locking that repeategiy u
2. Related Work date the worst-case execution path (WCEP) information are

studied in [11]. In [18], WCET-driven procedure position-
ing optimizations are presented.

Besides cache optimizations, fast scratchpad memories
(SPM) are exploited for WCET minimization. A hybrid ap-
proach combining ILP and an iterative heuristic for WCET-
centric dynamic SPM allocation is presented in [9]. In [26],

a static allocation of data to SPM is based exclusively on an
ILP model. A comparison between scratchpads and locked
caches for real-time systems is presented in [23].

Contrary to these assembly optimizations, WCET-driven
source code optimizations require an additional interme-
diate step making timing information, which are typically
computed at assembly level, accessible at source code level
In literature, this step is calleBlack-Annotatiomnd was uti-
lized in [17] to conduct the optimizatigorocedure cloning
based on WCET data. The latter work, and loop unrolling
which is presented in this paper, are integrated into a com-

gnd-jggnto produce”_corr;]pacft <t:_odte II'Or n_e?ted I(?[_ops. b[141 piler using a detailed WCET timing model [10] provided by
escribes an unrolling heuristic taking information about 4 s timing analyzer aiT [1].

data dependencies, reuse, and machine resources into ac-
count. Heydemann [13] presents an integer linear program- .
ming (ILP) based approach to compute the unrolling factor. 3- Loop Unrolling

In addition, the selection of an appropriate unrolling fac- Loop unrolling is a code transformation that replicates
tor essentially depends on the knowledge of loop iteration the body of a loop a humber of times and adjusts the loop-
counts. In [8], a survey of different aspects of unrolling is control accordingly. The number of replications is called
given. One of the main conclusions is that missing loop theunrolling factor uand the original loop is often termed
bounds considerably decrease optimization potentialy The rolled loop. If the loop iteration count of a rolled loop does
conduct profiling to gather this crucial parameter. Howgver not correspond to an integral multiple of the unrolling €act

Loop unrolling belongs to the class of compiler op-
timizations that has been extensively studied for ACET
reduction. In [25], generalized loop-unrolling methods
were presented that allow the transformation of even badly-
structured loops. A combination of loop unrolling and au-
tomatic scheduling by the compiler was discussed by [15].
The positive effects of loop unrolling concerning an in-
creased instruction-level parallelism were exploitedifior
struction scheduling in [20].

One of the central questions for loop unrolling is how to
find an appropriate unrolling factor. It has been shown that
the consideration of I-cache constraints and register-pres
sure is significant for that computation. The problems of au-
tomatically selecting an appropriate unrolling factor \&es
dressed in [24]. In addition to considering I-caches ane reg
ister availability, the authors use a technique cailadll-

u, then either additional exit conditions must be added into limits the scope of application since it is difficult to obtai
the unrolled loop body or sonieft-overiterations must be reasonable profiles and the generation of this data might
separately handled by an additional loognjainder loop. have high space and time requirements. A sophisticated
Unrolling a loop positively affects the program perfor- static loop analysis is often not available in most compil-
mance for many reasons. The loop overhead comprising theers. Due to the lack of techniques to compute the iteration
increment-and-testinstructions is reduced and the remtuct counts, most compilers use a small and constant unrolling
of jumps mightin particular have a positive influence on ar- factor (typically 2 or 4) [13, 30] which does not sufficiently
chitectures with large control hazard penalties. Unrgllin exploit the optimization potential.
is also a fundamental code transformation for superscalar Some compilers provide a loop analysis that is only able
processors that can only exhibit a high performance whento analyze simple, well-structured loops which are rarely
instruction level parallelism is exploited. In additiorther found in real-life applications. Thus, many loops remain
optimizations following unrolling might profit from the un- unoptimized. We combine our loop unrolling with a power-
rolled code, thus standard literature proposes to execute u ful static loop analyzer that is able to detect and analyze
rolling nottoo late in an optimization sequence [22]. Stud- most loops found in today’s embedded systems applica-
ies also showed that unrolled code might have an improvedtions. To our best knowledge, this is the first study that
memory hierarchy locality [2]. evaluates the effectiveness of a sophisticated loop aralys
Despite the large number of positive effects, it has beenin the context of loop unrolling.
observed that loop unrolling can also have an adverse im-
pact on the program’s performance when the optimizationis Static Loop Analysis
not applied elaborately. Since unrolling is a code-expagdi
transformation, an aggressive loop unrolling can overflow
the I-cache leading to additional capacity cache missds tha
did not arise for the rolled loop [8]. An excessive loop un-
rolling can also lead to additional spill code when the reg-
ister working set in the unrolled loop exceeds the number
of available registers [6]. Remainder loops should be intro
duced with caution. They increase the code size but only
a small fraction of the program execution is spent in this
code [24]. It should be also noted that unrolling can in-
crease the compilation time resulting from more code that
has to be proc.es.sed by supsgquent opt|_m|zat|ons. program’s worst-case behavior.
Thus, sophisticated optimizing compilers should take I- . .
cache constraints and the register pressure into account as Bafsed on the analysis results, context-s_ensmve wqrst-
L . ..~~~ ~Case iteration counts for each loop are provided. Consider
well as avoid jumps in order not to cancel the optimization . .)
) this code snippet:
benefits when loops are unrolled.

Our static loop analysis [19] is based on Abstract Inter-
pretation [7], a theory of a sound approximation of pro-
gram semantics. The analysis is provided with the high-
level intermediate representation (IR) of the program as in
put. Based on Abstract Interpretation, all potential valae
program variable might have at any program point are con-
sidered. Since all possible input data is assumed, the-analy
sis is not sensitive to a particular input set. This makes the
analysis results suitable for a WCET minimization. In con-
trast, profiling information is not applicable since it rette
the program behavior of a particular input data and not the

void food(int n) {
4. WCET-driven Loop Unrolling for(int i =0; i <mn; ++i) {
The central question for loop unrolling is which un- . //_ Loop pody I
rolling factor should be used for each loop. Its computation it mai n(Vf)' d)
depends on several parameters: food(4);]
1. Loop iteration counts of each loop food(10) '
2. |-cache and free program memory constraints food(16); }
3. Approximation of spill code generation As our review on embedded systems applications revealed,
In the following sections, these parameters will be dis- variable loop bounds, i.e. loops that have different itera-
cussed and we show how we exploit them for our WCET- tion counts depending on their execution context, as can be

driven loop unrollig. seen in the code snippet, are common. However, many sim-
ple loop analyzers support only trivial counting loops and
4.1. Worst-Case Loop Iteration Counts are not able to handle the class of loops from our example.

The determination of the unrolling factor requires the Thus, optimization potential is not fully exploited.
knowledge about the loop iteration counts which should be Exploiting the results of our static loop analysis, we have
known at compile time. This information can be provided complete information about the loop behavior in different
either by profiling or by a static analysis. Profiling is the contexts. Our loop unroller would choo&eas unrolling
most common approach. However, the use of profiling datafactor to maximally unroll the loop while avoiding adverse

1.80E+08
1.60E+08
1.40E+08
1.20E+08
1.00E+08
8.00E+07
6.00E+07
4.00E+07
2.00E+07
0.00E+00

WCET [cycles]

100 150 200 250

Number of Expressions

50

Figure 1. Impact of Unrolling

test conditions. A detailed description of the unrolling-fa
tor determination follows in Section 4.4.

For the sake of completeness, it should be noted that it is
also possible to unroll loops when the loop counts are not
known at compile time. This approach requires the insertion
of additional code calculating the iteration counts duthmng
program execution. However, as shown in [8], the cost of
calculating the loop iteration counts does not always amor-
tize leading to a performance degradation. Moreover, this
approach prevents the determination of an unrolling factor
that takes I-cache and spill code constraints into account.

4.2. I-Cache And Memory Constraints

In a second step, an appropriate unrolling factanust
be calculated based on the loop iteration count. A complete
unrolling of the loop is often a bad choice due to several
reasons. First, the size of the unrolled loop might exceed
the available program memory. This is in particular crucial
for embedded systems with restricted memory resources
Second, a too large unrolling factor might lead to I-cache
overflows. In order to control such adverse effects, the op-
timization must be able to estimate the code size of the fi-
nally unrolled loop. This knowledge allows the calculation
of an unrolling factor that restricts the loop size incre@@se
a given |-cache capacity.

The determination of a precise loop size requires knowl-

negative side-effects due to extensive unrolling. However

with this approach also optimization potential is missed.

The influence of the unrolling factor on the WCET
is illustrated in Figure 1 for thefft benchmark from
DSPstone [28] containing two loops that can be unrolled.
Increasing the unrolling limitation, which defines the per-
mitted number of expressions in the final loop bodysto
expressions allows unrolling one of the loops by a factor
of 2, leading to an increase of the WCET since additional
spill code is introduced. With50 expressions, both loops
are further unrolled providing optimization potential for
other optimizations reducing register pressure and eéitnin
ing some spill code. This positive WCET effect is cancelled
when the loops are further unrolled at th40-expression
boundary. At this point, additional spill code is added and
further I-cache misses due to a cache overflow arise.

Our unrolling benefits from advantages of common ap-
proaches while avoiding their drawbacks. First, we apply
loop unrolling at the source code level providing optimiza-
tion potential for subsequent high- and low-level optimiza
tions. To estimate the assembly size of the loop, we trans-
form information from the compiler's back-end into the
front-end where unrolling takes place. This transfornratio
is calledBack-Annotationdescribed in the following sec-
tion. Our unrolling is placed in the applied sequence of
high-level optimizations after all code-expanding tramsf
mations, e. g.function inliningor loop unswitching Op-
timizations following loop unrolling, e. gcommon subex-
pression eliminatiorand redundant load eliminationnat-
urally reduce the code size, thus we are able to provide a
reliable approximation of the loop size based on the source
code. This information is involved in the determination of
the unrolling factor to avoid I-cache misses.

Second, our loop unrolling has access to various infor-
mation about the processor’s physical memory that is pro-
vided by our compiler. On the one hand, the size of the in-

edge about the involved assembler instructions. On the onevolved I-cache can be extracted. Using this parameters, an

hand, when loop unrolling is applied at assembly level, the

appropriate unrolling factor can be chosen reducing the siz

loop size can be easily extracted and used for the I-cachedf the unrolled loop to the given cache size. On the other

constraints. However, due to the late application of thé opt
mization, other optimizations performed previously canno
profit from the unrolled code. On the other hand, unrolling
loops at the source code level offers optimization oppa+rtun
ties for a larger set of following optimizations, but a peeci
estimation of code size at source code level is usually not
possible. Thus, both solutions are not fully satisfactory.

A typical unrolling heuristic, found in many compilers
to restrict the increase of the code size, is to unroll loops

hand, our optimizer is provided with detailed information
about the memory usage of the program under analysis. The
compiler constructs a memory model of the available physi-
cal memories available in the underlying target architectu
During code generation and code modification, this model
is kept up-to-date such that valid information about memory
usage can be extracted at any time.

The amount of free space in the program memory is read
during the calculation of the unrolling factor in order todin

as long as the loop size does not exceed a constant bounda value that does not exceed the available program mem-

ary. Compilers performing unrolling define the size of the

ory when the loop is unrolled. In addition, the user can

unrolled loop by the number of source code expressions orparameterize the memory usage considered during loop un-
assembler instructions depending on the code abstractiomolling. For example, the user might want to use only half

level. This value is typically chosen relatively small taa)/

of the I-cache, or just allow loop unrolling to consume 60%

of the free program memory. With this flexible handling gram. Spill code is introduced when more physical registers
of the memory model, our loop unrolling can be effectively are required than available.
tailored towards particular memory requirements which are To predict the impact of loop unrolling at source code

particularly imposed on embedded systems. level on the register pressure, [24] proposed an approach
that tries to approximate the maximal number of fixed- and
Back-Annotation floating-point values in the unrolled loop that may be simul-

The Back-Annotation serves as a translation of informa- taneously live. However, this approach has two main lim-
tion between the compiler back-end and the front-end. Theltations. First, |t_ is |aneX|bIe_smce its appllcabllltyg‘hly
static WCET analysis takes place at assembly level sincedepends on the involved register allocator. If the register
timing information about the executed instructions is re- locatoris modified or even exchanged by aregister allocator
quired. Within a WCET-aware compiler, the results of the Pursuing another allocation strategy, then the registes-pr
WCET analysis are imported into the compiler back-end SUre approximation might fail. Second, the authors state in
and exploited for WCET optimizations. their paper that the approximation is conservative and may

To develop WCET-driven source code optimizations, unnecessarily limit the amount of permitted unro!ling. _
WCET timing data must be made available at source code Such ad-hoc approaches are required when information
level. Our Back-Annotation establishes a connection be- from the compiler back-end is not present. We propose a
tween the high- and low-level IR of the code during the More realistic prediction of unrolling effects on the spill
code generation of our compiler. This link enables to keep ¢0de exploiting the Back-Annotation. The prediction is
track of which objects in the high-level IR (i. e. source code Pased on a comparison between original loops and their un-
constructs) correspond to which objects in the low-level IR Folled version. During the evaluation, we create a cHgy
(i.e. assembly constructs). The granularity of this magpin ©f the original program? under analysis and unroll loops
is basic block level. Using the Back-Annotation, any infor- N Pevar A comparison between the original and unrolled
mation that is available at the assembly code level can be!0OPS reveals if additional spill code was generated.
easily accessed by the source code constructs. In _deta|!, for each |00P_ iPeva, We COﬂSId§f all possible _

We exploit three different types of information for our loop |tera_1t|on counts derived from the _statlc_ loop analysis
WCET-driven unrolling. Basic data required for any WCET (Cf- Section 4.1). Based on the set of iteration counts, we
optimization is the WCET of source code constructs. We determine thesmallest common prime factqr (SCPley a
exploit this information to find loops to be optimized. More- SetS of possible iteration countsfor a loop L:
over, we use WCET data to compute an unrolling profit that
indicates how successful unrolling was. Details about the
profit computation are provided in Section 4.5.

Moreover, we import data about the assembly size of the

loop header and loop body. Using this information, we are £or example, for a loop with the three (context-sensitive)

able to estimate the size of the unrolled loop for a specific jiaration countg4, 8, 20), theSCPFwould yield2. If in the
unrolling factor. Knowing the I-cache capacity size, an un- 5. casSCPR is’ 1’ L will be not unrolled.

rolling factor is chosen that avoids an I-cache overflow re- the utilization of theSCPF for the prediction of un-
suIting inan adver;e code transformation with aworst-cgseromng effects is motivated by our unrolling strategy that
behavior degradation. Furthermore, the Back-Annotation yies 1o avoid additional conditional jump statements ie th
allows the import of information about the amount of spill - finajly unrolled loops. Jumps are required when loops are
code within a basic block. This information can be used as nrglled with unrolling factors that do not evenly divideth
an indicator for regions with a high register pressure that nymper of iterations. Conditional jumps have several neg-
already suffer from spill code. _ ative effects on the program performance, especially for a
With the exploitation of the Back-Annotation, we oVer- gtatic program (and WCET) analysis. They introduce ad-
come the common problem with the code size estimation atyjtional control pipeline hazards, they might produce high
source code level. In [8], the authors criticized ad-hoc ap- penalty cycles when mispredicted by the processor’s branch
proaches that use a conversion factor to estimate the numpegiction, and their use often results in a loss of preci-
ber of machine-language instructions produced for a sourcegjon, for static analyses that merge data-flow results at CFG

code line. Our approach provides exact size information yerge points. Thus, our optimization unrolls loop such that
that can be exploited as useful cost functions. additional jumps are not required.

Definition 1 With GCIOQ. being the greatest common divi-
sorVieS, the SCPF is the smallest prime factor of GGD
if GCD_ > 1. Otherwise, SCPFis 1.

For a reliable prediction of the spill code, the unrolled
4.3. Prediction of Unrolling Effects loops inP.ya must also avoid jumps. This could be achieved
Besides I-cache overflows, additional spill code can have by employingGCD as unrolling factor. However, this fac-
an adverse effect on the worst-case performance of the protor is often not applicable due to memory resource con-

straints. Some loops have a larGED of their execution
counts. If the loops were unrolled by this factor, they would
possibly exceed the available program memory, whose free begi n

space is often restricted when multiple tasks reside in the i nt sizeHeader := BackAnnotation(L)

1 Input:Loop L

2
3
4

same memory. UsingCPFfor the evaluation, we avoid 5 int sizeBody := BackAnnotation(L)

6
7
8
9

Qut put : i nt Factorgina

jumps in the unrolled loops on the one hand and memory set <i nt > iterations := LoopAnal ysi s(L)
overflows on the other hand since t8EPFis usually sig- int GCD := Fi ndGCD(iterations)
nificantly smaller than th&CD. Moreover, using th&CPF for int ¢ := GCD to 1

has a positive side-effect on the compilation time since the i nt sizeUnrolled := sizeHeader+ix sizeBody
optimization and analysis of minimally unrolled loops is 10 i f((i—1)*sizeBody < freePMem &&
faster than for excessively unrolled loops. 11 sizeUnrolled < cacheSize &&

The prediction of the spill code impact on the program 12 GCD mod i == 0))
performance is implicitly integrated into the predictioh o 13 return i

unrolling effects for each loop. Each loop is unrolled with 14 return 1
the unrolling factow=SCPF The minimally unrolled code 15 end
is translated into assembler code and analyzed in terms of
its WCET. Please note that this evaluation is done once for
the code where all loops are unrolled wBCPFE

Using the Back-Annotation, the comparison of different
cost functions of the original and minimally unrolled loops
allow an evaluation of the effects aESCPFon the worst-
case performance. The results show how the WCET and For the application of our WCET-driven loop unrolling, a
the code size changed. Moreover, comparing the amounfinal unrolling factor for each loop must be computed. The
of spill code for the original and unrolled loop indicates th ~ determination considers constraints imposed by the mem-
impact of unrolling on the register allocation. Our exper- ory system and cost functions that were collected during
iments on a large set of benchmarks showed that this apthe evaluation run using the unrolling fact8CPFon the
proach produces sufficient results for the common alloca-program copyFeva. The final unrolling factor is based on
tion strategies: graph coloring based [3] and optimal [12] theGCD of the loop iteration counts, thus it is usually larger

Figure 2. Algorithm for Unrolling Factor De-
termination

4.4. Determination of the Worst-Case Un-
rolling Factor

register allocation. thanSCPFto allow aggressive unrolling. The algorithm is
Assuming the definition of the amount of spill code shown in Figure 2.
(within a loopL) per unrolling factow: In lines 4 and 5, the header and body size of the original
' _ ' loop L is computed. The greatest common divié&r' D of
_ 2 spill code instructions eL the iteration counts based on the loop analysis is computed.
PuL = . (2) . : : o : . :
unrolling factor u Using this factor, we avoid conditional jump instructions,

as described in Section 4.3, that might decrease the WCET
| th the X il cod . of the loop. In line 9, we compute the estimated size of
oop with the factoiSCPF, 1. e. no extr_a spiitcode was In- e ynrolled loop and check if free program memory and |-
serted, then naturally also no extra spill code Was_lntreduc cache constraints are not violated in lines 10 and 11, respec
foru> SCPF As an example, assume that the original 100p ;1 With this strategy, we avoid an overflow in the pro-
has10 spill code instructions. When the loop is unrolled by gram memory and possibly cache conflict misses. If these

a fact_or of2hand thl? ur(ljrolled '9°p ha% Sp'g com(jje in- constraints are not met, the unrolling factor is decreasdd a
structions, then spill code was just replicated and no extray,q gjze constraints are tested again. If no appropriate un-

spilling was introduced. However, if the number of spilling rolling factor was found] is returned in line 14 meaning
instruction is greater tha0, then in total more instructions that this loop will be not unrolled

must be executed for the unrolled loop.

Using this approach, we are more flexible than [24] since) . ..
our approximation of the spill code is not restricted to a par 43 WCET-driven Unrolling Heuristics
ticular register allocator for which a deep knowledge about ~ Knowing the unrolling factor that promises most WCET
the allocation strategy is required. Using the evaluation r reduction for a loop, the complete algorithm for our WCET-
with the SCPFfactor, a realistic prediction of the spill code driven loop unrolling is depicted in Figure 3.
can be even made when unrolling is followed by further op- In line 4, a copy of the original program is created. Since
timizations. The results of the Back-Annotation gathered our compiler has full control over the code generation, we
during the evaluation run are exploited for the computation can establish a connection between loopE iand the copy
of the unrolling profit as described in Section 4.5. Pevawhich is later required to evaluate the unrolling effects.

we observed that ify, . did not increase for unrolling the

1 Input: Program P final unrolling factor, a profit for unrolling loop can be es-

2 Qutput: optimzed Program P timated. Loops with larger profits promise a higher benefit
3 begin and are thus optimized first. All loops with a negative profit
4 Program Pea := Copy(P) will likely have a negative impact on the WCET and are
5 list<Loop> loopsevai = L0OOPS(Peval) excluded from unrolling.

6 for all Loop Levar € loopseval Finally, for all remaining loops in., loop unrolling is

7 Unrol | SCPF(Levar) /*use SCPFx/ performed (line 14) utilizing the final unrolling factor com

8 Eval uat eSCPFUnrol I i ng(Pevar) puted by the algorithm in Figure 2. Please note that we
9 do not explicitly consider a switch of the worst-case exe-
10 list<Loop> loops := Loops(P) cution path(WCEP) WCEP switches might happen when
11 RenoveSpi | |i nglLoops(loops) a path in the CFG lying on the WCEP is optimized such
12 SortByProfit (loops) that another path becomes the new WCEP. Such effects
13 for all Loop L e loops typically arise for mutually exclusive paths resultingrfro
14 WCETUnrol Iing(L) /*use Factorgina */ i f-t hen- el se statements which have a similar WCET.
15 return P Optimizing one path slightly reduces its WCET such that
16 end the other path becomes the longest path. However, a WCEP
Figure 3. Algorithm for WCET-driven Loop switch is very uncommon for paths containing loops. Usu-
Unrolling ally, a context-sensitive WCET analysis assumes that all

loops in the program are executed at some point of the ex-

Inline 7, for all innermost loops, which are typically comsi ~ ecution and these loops are also considered by our loop un-
ered by loop unrolling since they consume most executionroller. This was also confirmed by our review of the bench-
time, unrolling is performed usin§CPFas unrolling factor ~ mark codes for which no switches of WCEP containing
(cf. Section 4.3). Finally, the copied program with the min- loops occurred. Thus, the high overhead of considering po-
imally unrolled loops is evaluated by performing a WCET tential path switches which usually entails repetitivesroh
analysis and collecting the loops’ cost functions in line 8. the WCET analysis is not mandatory. The only exception is

In line 11, functionRemoveSpilling Loops removes all dead code, i. e. code fragments that are never executed. Un-
original loops for further consideration that turned out to rolling deadloop would not improve the WCET but would
produce extra spill code when unrolled. This evaluation is just waste valuable program memory. These loops are im-

based on the amount of spill code per unrolling faater plicitly excluded from unrolling by Equation 2.

as defined in Equation 1. Whehis larger for the loop un- The profit calculation serves as an estimation of un-
rolled with factorSCPFthany for the corresponding (orig- rolling effects before the actual unrolling. This option is
inal) loop, this loop is excluded from unrolling. missing in most compilers, thus loops are often unrolled

Before finally unrolling all loops collected ifvops, the ~ that decrease program performance. With our profit cal-
loops are sorted by their profit. The profit represents the culation, we detect in advance if a loop should be unrolled
expected WCET reduction and code size increase when ther if its unrolling will likely decrease the worst-case beha
loop is unrolled using final unrolling factor computed by the ior. The correctness of our prediction is emphasized by our
algorithm in Figure 2. The goal of the profit calculation is results. As will be shown in Section 6, for all considered
to unroll those loops first that promise most benefits. Do- benchmarks, WCET reductions were achieved.
ing so, strict memory resource constraints typically found
in embedded systems are taken into account. The remain§, Experimental Environment
ing free program space is consumed with those loops for
which a maximal trade-off between WCET reduction and
code expansion is expected. We define the pgofifor a
loop L for which a final unrolling factotactorgina > 1
was computed:

Our WCET-driven loop unrolling is integrated into
a WCET-aware C compiler for the Infineon TriCore
TC1796 [10]. The processor is equipped with a 16 kByte
I-cache and 2 MByte program Flash that we use for our ex-
periments. The I-cache size can be modified for the WCET
A WCETscprunroling Factorginal analysis to evaluate different cache sizes. The processor
X 2) does not have a data cache. However, unrolling marginally
changes memory reference patterns, thus D-cache misses
The first fraction expresses the ratio between the WCET re-can be ignored for unrolling factor selection [13].
duction and the code size expansion after unrolling the loop The workflow is depicted in Figure 4. The compiler is
with the SCPFunrolling factor. Dividing this fraction by provided with a C file as input data. The program is parsed
theSCPFunrolling factor represents the estimated profit for into the high-level IR, called ICD-C, and further transthte
a single loop body replication. Multiplying this value byeth into the low-level IR LLIR. Using the tight integration ofeh

pL= -
A CodeSizescprunroling Flactorscpe

ANSI-C
| Sources & | ||
Flow Facts

Loop
Analyzer

v %
e
ICD-C | _ | High-Level| — | LLIR Code
Parser ICD-C Selector
Rl 4 {
/ i
J
y Back- .| Low-Level - aiT WCET
:' V LLIR hild Analysis
v
AN
Code
Generator
WCET-
Optimized |||
Assembly

Figure 4. Workflow for WCET-driven Loop Un-
rolling

Flow Fact & |..-*
WCET-aware
Analyses

Memory
Hierarchy |
& Spec.
WCET-driven
Loop

Unrolling

WCET analyzer aiT, WCET timing information is imported
into the compiler back-end which allows the construction of
a timing model. Using the Back-Annotation, information
about the WCET, code size, and spill code is transformed
back into the ICD-C and can be exploited for our WCET-
driven loop unrolling. Additional data is provided by the
loop analyzer operating on the ICD-C and the memory hi-
erarchy specification attached to the LLIR. The register al-
location used for benchmarking was performed by an opti-
mal register allocator [12]. Please note that our analyses a
flow fact-aware Flow facts (e. g. information about loop it-

eration counts and recursion depth) are modelled within the
compiler, and adjusted during optimizations before passed

to the WCET analyzer.

Our WCET-driven loop unrolling was applied to 45 real-
life benchmarks from the DSPstone [28], MRTC [21], Me-
diaBench [16], and UTDSP [27] benchmark suites. The

Relative WCET[%]

05kByte 1kByte 2kByte 4kByte 8kByte 16 kByte

I-Cache Size

Figure 5. Cache-Size Dependent WCET

on different architectures. As expected, the WCET reduc-
tion can be increased from 10.2% for the smallest cache
capacity (512 bytes) to a WCET decrease of 15.4% for the
largest cache (16 kByte). The reason for this increase is ob-
vious. Using larger caches, our approach is offered more
optimization opportunities since extensive unrollingasd
frequently limited by the I-cache constraints. It can beals
seen that for larger caches the WCET reduction becomes
smaller. The reason are smaller benchmarks that can be al-
ready fully optimized for modest cache sizes, thus relaxing
the I-cache constraints due to larger cache capacities does
not result in any further benefit. It should be noted that
for a 16 kByte I-cache, standard ACET loop unrolling, as
employed by many compilers, achieved an average WCET
reduction of 1.7%, thus we outperform the standard opti-
mizations by 13.7%.

Figure 6 answers the question which of our strategies
provided the most benefit. Can the WCET reductions be ad-
dressed to the additional information generated by th&stat
loop analysis, or are our unrolling heuristics the main seur
for the decreased WCET? The results show the WCET for
three different strategies using a 2 kByte I-cache to cap-

code sizes of the considered benchmarks range from 303,re cache effects, with 100% corresponding to the WCET

bytes up to 14 kByte with an average code size of 1.9 kByte

of the benchmarks compiled with the highest optimization

per benchmark. The number of innermost loops considereqeve| and disabled unrolling. For the sake of readability,

for loop unrolling ranges between 1 and 15, depending on
the benchmark complexity.

6. Results

For benchmarking, the code was compiled with opti-
mization level-O3 comprising 42 different high- and low-
level optimizations. Thus, highly optimized code is consid
ered.

Worst-Case Execution Time

we show results on a subset of 19 representative bench-
marks. As can be seen, using our standard ACET loop un-
rolling (LU) with a simple loop analysis and restricting the
size of the finally unrolled loop to 50 expressions has min-
imal positive effects on the WCET. Integrating our sophis-
ticated loop analysis (LA) into standard unrolling, slight
improves the average WCET by 2.9%. Notably improved
results are achieved when loop unrolling is extended by our
novel heuristics. WCET reductions of up to 39.5% are ob-
served. These high WCET reductions achieved e.g. for

Figure 5 shows the results of our optimization on the the benchmarkgdgedetectand fir2dim are the result of
WCET. The bars represent the average WCET reductionunrolling some loops completely. Such straight line code
for all 45 benchmarks when the code was compiled with can be effectively improved by succeeding optimizations.
the highest optimization levelO3 including our WCET- However, our review on the optimized code reveals that it
aware unrolling w.r.t. to the code that was generated usingcannot be said in general which effects are most beneficial.
the highest optimization level and disabled unrolling. For For some benchmarks, liluntnegativethe reduced loop
the results, we modified the I-cache size between 512 bytewverhead was the key factor, while other benchmarks prof-
and 16 kByte to simulate the impact of our optimization ited from enabled optimization potential after unrolling.

B Standard LU [Standard LU + LA EWCET-driven LU

Relative WCET [%)]

Benchmarks
Figure 6. Comparisons of Unrolling Strategies
configurations ranging from 512 bytes up to 16 kByte are
WMWCET W Simulated Time considered. As expected, the code size increase becomes
larger with anincreasing cache size. This is due to the grow-
ing potential of unrolling which can unroll loops more ag-
gressively for larger caches without exceeding their capac
81 ity. It should be noted that the average code size increase
80 is mainly reflecting small benchmarks, while the code size
increase for larger benchmarks is modest. For example, the
OSKBYE e e Program Memory o 101 highest increase was found for the small DSPstone bench-

markmatrixlwith 1261% for the 16 kByte cache, resulting
in a final code size of 4114 Bytes. However, this code size is
Simulated Time still fully acceptable. In contrast, the code size incrfase
To evaluate our program memory heuristic, we simulated the largest benchmarkjndael_encodeffrom MediaBench,

a system for which program memory is restricted. This situ- had only a maximal increase of 6.4%. This is also a typi-
ation is common for embedded systems that execute multi-cal increase for other larger benchmarks. As a conclusion,
ple tasks residing in the same memory. The native 16 kByteour approach produces enlarged code whose size is accept-
I-cache of the TC1796 is assumed to enable a comparisorable for modern processors and if required using the opti-
between WCET and simulated time provided by a cycle- mization parameters the code generation can be restricted
true simulator. Figure 7 shows the results for the WCET to meet even strict code size constraints.
and simulated time when our WCET-driven unrolling is ap-
plied together withO3 for the example MRTC benchmark
ndes 100% correspond again to the WCET f@3 and
disabled unrolling. First, it can be seen that with incregsi
program memory, the reduction of the benchmark’s WCET
is also increasing. This is expected as with more program
memory, unrolling can be applied more aggressively. Sec-

1=}
@

o
IS}

95 1

90 ~

Relative Run Time [%)]

75 4

Figure 7. Impact of Program Size Heuristic

500
450
400
350
300
250 7
200 7
150
100
50

Code Size Increase [%]

ond, from the results it can be inferred that our optimizatio s | e . e o 1oks
is tailored towards WCET minimization. For all memory I-Cache Size
sizes, we achieve a higher reduction of the WCET than the Figure 8. Impact on Code Size

simulated time. One reason for this behavior is that our ap- . .

proach begins to unroll those loops that promise the highestcoml)llatlon Time

WCET reduction. Since the program memory is restricted, Finally, we measured the compilation time of our opti-
not all loops can be unrolled and the transformed loops mostmization on an Intel Xeon 2.4GHz system with 8GB RAM.
beneficial for WCET reduction need not to be implicitly the Compilation of all 45 benchmarks including a single WCET

most beneficial loops for ACET reduction. analysis took 29 minutes when compiling the codes with
. 0O3including the standard loop unrolling with a simple loop
Code Size analysis. In contrast, the compilation time for our optiadiz

Figure 8 shows the impact of our optimization on the av- tion took 390 minutes in total, using an 16 kByte I-cache.
erage code size w.r.t. to the average code size of the benchthis increase mainly results from standard optimizations
marks with disabled loop unrolling. Six different I-cache which have to analyze (in some cases significantly) enlarged

basic blocks. However, since the main objective of embed- [11] H. Falk, S. Plazar, and H. Theiling. Compile-Time De-

ded systems compilers is performance maximization even
at the cost of a longer compilation time, the observed com-

pilation times are considered as fully acceptable.

7. Conclusions and Future Work

This paper is the first to present a WCET-driven loop

unrolling. To be effective, our loop unrolling is applied at
source code level. This early application in the optimzati

process establishes optimization potential for a large-num

[12]

[13]

[14]

ber of other compiler optimizations. By integrating a pre- [15]
cise worst-case timing model into the compiler, unrolling
decisions based on the WCET are taken in order to achieve[16]
a maximal WCET reduction. Moreover, we exploit results

from a static loop analysis, take I-cache and memory con-

straints into account, and are able to approximate adversd 1]
spill code generation. Using our profit calculation, adeers
effects of unrolling a loop can be predicted in advance. The 18]

effectiveness of our approach is demonstrated on 45 real-
life benchmarks for which average WCET reductions of up

to 13.7% are achieved.
In the future, we intend to study the impact of further

source code optimizations on the WCET and possibly ex-
tend their heuristics to make decisions based on WCET
data. Moreover, we plan to extend our framework by further
cost functions, e. g. power dissipation, to enable a develop

ment of multi-objectives optimizations.

References
[1] Absint Angewandte Informatik GmbH. Worst-Case Execu-

(2]

(3]

tion Time Analyzer aiT for TriCore. 2009.

[19]

[20]

[21]

[22]

D. F.Bacon, S. L. Graham, and O. J. Sharp. Compiler Trans- [23]

formations for High-performance ComputindACM Com-
put. Surv, 26(4):345-420, 1994.
P. Briggs. Register Allocation Via Graph ColoringPhD
thesis, Houston, TX, USA, 1992.

[24]

[4] A. M. Campoy, |. Puaut, and A. P. I. et al. Cache Contents [25]

(5]
(6]

(7]

(8]
(9]

(10]

Selection for Statically-Locked Instruction Caches: An Al
gorithm Comparison. liProc. of ECRTS2005.

S. Carrand Y. Guan. Unroll-and-Jam Using Uniformly Gen-
erated Sets. IRroc. of MICRQ 1997.

S. Carr and K. Kennedy. Improving the Ratio of Memory
Operations to Floating-Point Operations in Loop&CM
Trans. Program. Lang. SystLl6(6), 1994.

P. Cousot and R. Cousot. Abstract Interpretation: A duifi
Lattice Model for Static Analysis of Programs by Construc-
tion or Approximation of Fixpoints. If?OPL, 1977.

J. W. Davidson and S. Jinturkar. An Aggressive Approach
to Loop Unrolling. Technical report, 2001.

J.-F. Deverge and |. Puaut. WCET-Directed Dynamic
Scratchpad Memory Allocation of Data. Rroc. of ECRTS
2007.

H. Falk, P. Lokuciejewski, and H. Theiling. Design of a
WCET-Aware C Compiler. IfProc. of ESTIMedia2006.

[26]

[27]

(28]

[29]

[30]

cided Instruction Cache Locking using Worst-Case Execu-
tion Paths. IrProc. of CODES+ISS2007.

D. W. Goodwin and K. D. Wilken. Optimal and Near-
Optimal Global Register Allocations Using 0-1 Integer Pro-
gramming.Softw. Pract. Exper26(8), 1996.

K. Heydemann, F. Bodin, and P. M. W. Knijnenburg. Global
Trade-Off between Code Size and Performance for Loop
Unrolling on Vliw Architectures. Technical report, 2001.

A. Koseki, H. Komastu, and Y. Fukazawa. A Method for
Estimating Optimal Unrolling Times for Nested Loops. In
Proc. of ISPAN1997.

D. M. Lavery and W.-M. W. Hwu. Unrolling-based Opti-
mizations for Modulo Scheduling. Froc. of MICRQ 1995.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems. Pnoc. of MICRQ 1997.

P. Lokuciejewsi, H. Falk, P. Marwedel, and T. Henrik.
WCET-Driven, Code-Size Critical Procedure Cloning. In
Proc. of SCOPES2008.

P. Lokuciejewski, H. Falk, and P. Marwedel. WCET-drive
Cache-based Procedure Positioning Optimization®rde.

of ECRTS$2008.

Lokuciejewski, Paul and Cordes, Daniel and Falk, Heiko
and Marwedel, Peter. A Fast and Precise Static Loop Anal-
ysis based on Abstract Interpretation, Program Slicing and
Polytope Models. IrfProc. of CGQ 2009.

S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, and W.-M. W.
Hwu. Compiler Code Transformations for Superscalar-
based High Performance Systems. Aroc. of Supercom-
puting 1992.

Malardalen WCET Research Group. Malardalen WCET
Benchmark Suite. http://www.mrtc.mdh.se/projects/wcet
20009.

S. S. Muchnick Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers Inc., 1997.

I. Puaut and C. Pais. Scratchpad Memories vs Locked
Caches in Hard Real-Time Systems: a Quantitative Com-
parison. InProc. of DATE 2007.

V. Sarkar. Optimized Unrolling of Nested Loopdnt. J.
Parallel Program, 29(5):545-581, 2001.

L. Song and K. Kavi. What Can We Gain by Unfolding
Loops?SIGPLAN Not.39(2), 2004.

V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET Centric Data Allocation to Scratchpad Memory. In
Proc. of RTSS2005.

UTDSP Benchmark Suite. http:// ww.
eecg. t oront 0. edu/ ~cori nna/ DSP/

i nfrastructure/ UTDSP. ht n , January 2009.

C. S. V. Zivojnovic, J. Martinez and H. Meyr. DSPstone:
A DSP-Oriented Benchmarking Methodology. Pmoc. of
ICSPAT 1994.

X. Vera, B. Lisper, and J. Xue. Data Cache Locking for
Higher Program Predictability. IRroc. of SIGMETRICS
2003.

W. Zhao, W. Kreahling, D. Whalley, et al. Improving WCET
by Optimizing Worst-Case Paths. Rroc. of RTAS2005.

