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Abstract. We apply network flow techniques to find good exit selections
for evacuees in an emergency evacuation. More precisely, we present two
algorithms for computing exit distributions using both classical flows and
flows over time which are well known from combinatorial optimization.
The performance of these new proposals is compared to a simple shortest
path approach and to a best response dynamics approach by using a
cellular automaton model.

1 Introduction

Emergency evacuations are a very important and complex field that has been
heavily discussed lately. Still, there are a lot of open questions such as how to
model human behavior in dangerous situations, how to design a building in a
manner that supports fast evacuations or how to optimize evacuation strategies.
We make a contribution to the latter question.

A central step towards developing a good evacuation plan for a given building
is to find an appropriate assignment of each evacuee to the exit through which
he shall leave the building. In the following we call this an exit assignment. The
intuitive idea would be sending everybody to his nearest exit. As depicted in
Fig. 1(a), this can lead to significantly bad results even if the structure of the
building is very simple. More advanced techniques, based on approaches from
game theory, have been presented in [5] and lead to better results. We present
a completely new approach that uses network flow algorithms, well known from
combinatorial optimization. In particular, we analyze the possibilities to use
earliest arrival flows that provide an accurate model of evacuations because
they consider their temporal aspect. Additionally, we investigate an approach
using classical static network flows, namely mazimum flows and minimum cost
flows.

*This work was supported by DFG Research Center MATHEON “Mathematics for
key technologies” in Berlin.



We evaluate the new approaches with a cellular automaton based simula-
tion. The computational results show a clear advantage of the new techniques.
Moreover it turns out that they are practically fast.

All tests are made using the ZET evacuation tool® that implements all ap-
proaches and the cellular automaton.
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(b) The computational results: The diagram depicts the number of safe
evacuees for each point in time. The curve of the shortest path approach
flattens after 17 seconds.

Fig. 1. For about half of the evacuees the narrow exit is nearer than the wide exit so
that a shortest path approach will send them there and a jam emerges.

2 Network Flows

We begin by introducing the basic definitions and concepts of network flows
required by the exit assignment calculations presented in the sections below.
Note that the following definitions are tailored to our purposes to some extent
as flow representing evacuees has additional requirements not shared by more
general settings.

2.1 Basic Definitions

A directed graph G = (V, A) consists of a set of nodes V and a set of arcs
A CV xV\{(v,v)| veV}. For a directed graph G = (V,A) and a node
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veV,dt(v) and 6§~ (v) denote the set of outgoing and ingoing arcs of node v,
respectively. A network consists of a directed graph G = (V, A) and a capacity
function v : AUV — N and either a set of sources ST C V and a set of sinks
S~ C V or a balance function b : V' — Z. If a balance function is used, we refer
to nodes v with b(v) > 0 as sources and to nodes v with b(v) < 0 as sinks. For a
node v we call |b(v)| its supply if b(v) > 0 and its demand if b(v) < 0. A dynamic
network is a network with a transit time function 7 : A — N and a time horizon
T.

A static flow z assigns a flow value z(e) to each edge a € A. For reasons of
brevity, we define the following notations for a flow function x : A — Np:

rt(v) = Z x(e) x” (v) = Z z(e) YveV

e€dt(v) e€d— (v)

A dynamic flow assigns a flow value z(e, t) to each arc a € A at each time ¢t € Ny.
Likewise, we define for a dynamic flow function x : A x Ny — Ny:

t—7(a)

r(v,t) = Z Zx(e,&) x” (v,t) = Z z(e,0) YveV

e€dt(v) =0 e€d—(v) 60=0

A flow on a network (G,u,ST,S™) with sources and sinks is a function
x : A — Ny that satisfies the capacity constraints z(a) < u(a) for all a € A as well
as the flow conservation constraints % (v) —z~(v) = 0 for allv € V\ (STUS™).
A transshipment on a network (G,u,b) with a balance function is a function
x: A — Ny fulfilling the capacity constraints z(a) < u(a) for all @ € A and the
balance constraints 7 (v) — 2z~ (v) = b(v) for all v € V.

A dynamic flow or flow over time on a dynamic network (G,u,7,S*,S~,T)
with sources and sinks is a function x : A x Ny — Ny that satisfies

the time horizon constraints x(a,t) =0 for all a € A and all t > T — 7(a),
— the edge capacity constraints x(a,t) < u(a) for all a € A and all ¢ € Ny,

— the node capacity constraints 2~ (v,t) —z T (v,t) < u(v) forallv € V, t € Ny,
— the flow conservation constraints 7 (v,t) <z~ (v,t) forallv € V\S™, ¢ € Np.

The value z(a, t) assigned to an edge a at time ¢ can be interpreted as the amount
of flow entering the edge a at time ¢. Note that we allow storage in nodes as long
as the capacity of the node is not exceeded.

A dynamic transshipment or transshipment over time on a dynamic network
(G,u,7,b,T) with a balance function is a function = : A x Ny — Ny satisfying
the time horizon and the edge capacity constraints as specified for flows over
time. Furthermore, it satisfies

— the node capacity constraints max {b(v),0} + 2~ (v,t) — 27 (v,t) < u(v) for
all v € V and all t € Ny,

— the flow conservation constraints =™ (v,t) — 2~ (v,t) < max{b(v),0} for all
v €V and all t € Ny,

— the balance constraints z+(v,T) — 2~ (v,T) = b(v) for allv € V.



2.2 Flow Problems with or without time dimension

In this section we will consider several problems based on flows and transship-
ments (over time). We will begin with the simpler flow and transshipment prob-
lems that do not use transit times.

Maximum Flow The mazimum flow problem proposed by Ford and Fulkerson
[6] consists of finding a flow z of maximal value for a given network (G, u, S*,S57)
with sources and sinks. The value of a flow z is defined as the number of flow
units sent from the sources to the sinks, or more formally:

value(z) = Z x” (v) — Z T (v)

veES— vES™

We use the preflow-push algorithm with the highest-label selection rule and the
global- and gap-heuristics described by Cherkassky and Goldberg [3] to compute
a maximal flow.

Note that the maximum flow problem does not take distances or transit
times into account. Nonetheless, it is able to provide useful information for our
exit assignments: we can use the maximum flow problem to identify bottlenecks
and gauge their capacities. For example, we can use the areas where a group of
evacuees resides as sources and the safe regions for them as sinks. By computing
a maximum flow based on this we are able to locate bottlenecks slowing the
evacuation of these people down. Furthermore, it provides us with the number
of evacuees that can pass through the bottleneck at the same time, which assists
us in determining capacities of escape routes.

Minimum Cost Flow Given a network (G, u, b) and a cost function ¢ : A — Z,
which assigns costs to the edges, the minimum cost flow problem consists of
finding a transshipment x of minimal cost. A transshipment pays for each flow
unit sent through an edge the price determined by the cost function. Therefore,
the cost of a transshipment z is defined as follows:

cost(x) := Z c(a)x(a)

a€A

Several approaches exist to compute a solution to this problem, e.g. cycle can-
celling and successive shortest path based techniques. We found successive short-
est path based algorithms to be particularly well suited to our instances due to
the fact that the number of evacuees is usually much smaller than the number of
nodes and edges in the network, which favors the successive shortest path based
techniques.

If we consider the transit times of our building networks as costs we can
use minimum cost flow problems to incorporate the transit times in our flow
calculations without having time as an explicit dimension in our calculations.
On the one side this makes our calculations significantly easier but on the other



side it is a rather large idealization. Still, in conjunction with the maximum
flow problem, the minimum cost flow problem is able to provide interesting exit
assignments: by estimating the capacities of the building’s exits we can derive
demands for each exit and use these to compute a minimum cost flow whose
result can then be used to generate an exit assignment, as we will see in the next
section.

Until now, we have only considered flow problems without an explicit time
dimension. In the following we will abandon this restriction and examine flow
over time problems that have an explicit time dimension. These problems are
typically harder to solve than their counterparts without a time component, but
they are able to model evacuation scenarios much more closely.

Maximum Flow Over Time Problem The mazimum flow over time problem
consists of finding a flow over time x of maximal value for a given dynamic
network (G,u,7,S5%,87,T) with sources and sinks. The value of a flow over
time z is defined as the number of flow units sent from the sources to the sinks
during the specified time interval, or more formally:

value(x) := Z = (v,T) — Z (v, T)

vEST veES—

We do not use this problem directly, though.

Quickest Transshipment The quickest transshipment problem asks for the
minimal time horizon T necessary to find a transshipment that sends all supplies
to the demands in a dynamic network (G, u,7,b,T). Expressed differently, this
problem basically asks for the time needed to evacuate a certain number of
people from a building. While this is certainly an interesting question, the next
problem leads to an even more interesting one.

Earliest Arrival Transshipment The earliest arrival transshipment problem
consists of finding a transshipment over time for a given dynamic network with
balances (G,u,7,b,T) that has the earliest arrival property, which is defined as
follows: for every time ¢t € Ny the value of the flow units sent from the sources
to the sinks (as defined by the balance function) in the interval [0, ¢] is maximal.
The value of the flow units sent in the interval [0, ¢] is defined analogously to the
maximum flow over time problem:

value(x,t) := Z x” (v, t) — Z (v, 1)

vEST veES™

In order to solve this problem we use the algorithm proposed by Tjandra [9)].
The earliest arrival property guarantees that we have evacuated the maximal
amount of people at every point in time. This is especially helpful if the amount
of time available for the evacuation is not known — regardless of the amount
of time we actually have, the earliest arrival property guarantees that we have
saved as many people as possible.



3 Owur Approach

Our primary goal in this section is to compute a mapping of evacuees to exits
(an exit assignment) that minimizes the simulated evacuation time. We approach
this problem by reducing the building to a network and apply results from net-
work flow theory.

3.1 Reducing a Building to a Network Model

To reduce the building to a network we essentially partition the building into
almost-square rectangles and treat every rectangle as a node. We use transit
times and capacities that are proportional to the euclidian distance and to the
shared borders of the rectangles, respectively.

By computing a transshipment on this network we can now map the supplies
on the sources to the sinks, i.e. we can find a mapping of evacuees to exits
by transfering the results of an arbitrary (static or dynamic) transshipment
algorithm to an exit assignment. This improves on the intuitive approach that
assigns each evacuee to his nearest exit.

3.2 Exit Assignments by Maximum Flows & Minimum Cost Flows

Our first approach transfers the results from a minimum cost transshipment.
We first calculate a mazimum flow for every sink in the network to estimate the
capacities of the sinks. The network for the following minimum cost computation
uses these estimated capacities for the sinks and has infinite capacity on all edges.
More precisely, our procedure is as follows: Let (G = (V, A),u, 7,b) be a network,
with ST and S~ denoting the sources and sinks, respectively, as defined by the
balance function. We proceed in five steps:

1. Calculate the shortest path with respect to transit times between each source-
sink pair (s,t) € ST xS~ in G, i.e. look for paths with minimal transit time.
This can e.g. be achieved by using Dijkstra’s algorithm [4]. We denote the
distance with respect to transit times between s and ¢ by dist(s,t).

2. Estimate the capacity capacity(t) of each exit t € S~ by calculating a maxi-
mum flow from all sources to ¢t. As noted above, we recommend the preflow-
push algorithm with the highest-label selection rule and the global- and
gap-heuristics for this purpose.

3. Create a complete bipartite graph G’ := (V’, A’) using ST and S~ as first
and second subset of the partition, respectively:

V'ii=8tus~ A ={(st)| seST,te S}
Add costs ¢ : A’ — Ny, capacities v’ : A’ — Ny and a balance function
b V' —Zto G"

d(a) := distance(s,t) u'(a):=o0c0 Va=(s,t)e A

Vo) — {b(v), if v e st

capacity(v
Zwesf capya(cizy(w) (ZwESJr b(w)) ’ clse




4. Calculate a minimum cost flow on G’. To do so, we suggest using a successive
shortest path based technique. We use a slightly relaxed minimum cost flow
problem to achieve better results: we treat the demand of a node as an upper
bound for the amount of flow sent to it. Thereby we can impose a limit to
the number of people evacuated through a specific exit without imposing too
rigid constraints.

5. Extract the exit assignment from the computed transshipment.

3.3 Exit Assignments by Earliest Arrival Transshipments

Our second approach uses an earliest arrival transshipment to compute an exit
distribution. Contrary to the minimum cost approach, we do not place demands
on the sinks: Instead, we add a super sink to our network and connect all sinks
to it using edges with infinite capacity and zero transit time. Finally, we set the
demand of the super sink to the number of all evacuees. Since the earliest arrival
transshipment problem uses capacities, transit times and has a concept of time
we can use the network instances we are deriving from a building directly as an
earliest arrival transshipment problem.

4 Computational Results

In this section we discuss the performance of the different approaches to calcu-
late exit assignments. To gain computational results we use a simulation that
computes the behavior of the evacuees when they get a certain exit assignment
as input. The following subsections describe this simulation in detail and discuss
the quality of the solutions computed by our network flow based approaches.

4.1 Cellular Automaton Model

In order to evaluate our new approaches we use a cellular automaton to simulate
the behavior of the evacuees. This approach is very efficient and can produce a
lot of effects of pedestrian dynamics with only local interactions of the simulated
persons. The model is very similar to cellular automatons presented in [2], [7].
We implemented a very simple model, so that no special simulation features can
influence the result.

Discretization of the Building The cellular automaton basically consists of
a matrix of squared cells with the dimenson 40cm x 40cm. Each cell represents
room that can be occupied by at most one evacuee thus leading to a maximum
density of 6.25 persons per square meter which is also used by [7] and seems
to be quite practical in most cases according to [10]. The building is rasterized
so that it can be represented by the cells and therefore the model is discrete in
space.

The cells are of different types: beside general cells an exit cell represents an
evacuation area which is a safe place and should be reached from the starting
position. Other cells can be used to simulate obstacles blocking the evacuees.



Movement The cellular automaton is a v, = 1 model, that means it is
discrete in time and every evacuee can move to one of the 8 neighbor cells in
each step. Different walking speeds are realized by compulsory breaks after each
step, the evacuees also have to wait to compensate longer covered distances in
the case they move diagonally.

The evacuees use a potential assigned to the cells to decide in which direction
they move, as explained in [7]: the cells with the lowest potential are the exit cells
and the potential is increasing if the distance is larger. The evacuees always try to
reach cells with a lower potential value and thus use shortest paths implicitly. It
is decided randomly with respect to the potential difference to which neigbored
cell an evacuee moves.

Each cell has a potential for every reachable block of exit cells, so an evacuee
can have a special exit assigned that it wants to reach. Thus the evacuees do
not necessary follow the shortest path to any exit, but the shortest path to a
specified exit.

During the simulation the persons do not move simultaneously, as it would
create some problems with evacuees wanting to use the same cell, but one after
the other. In order not to favor any evacuee, the order in which the persons move
is randomized in each step of the cellular automaton.

A special case occurs, if two persons want to switch positions. The simulation
algorithm can detect such situations and allows the two evacuees to swap posi-
tions. As the space for the swap is very limited, the swap will lead to a longer
waiting period before the next move can happen.

Simulation Algorithm The simulation runs a set of local rules for each person
in every step. The set of rules includes rules for finding the target cell and to
remove persons from the simulation if they have reached an exit cell. This design
contributes to the modularity of our cellular automaton because single rules can
easily be replaced or extended if necessary.

4.2 Results

In this section we briefly discuss the advantages and disadvantages of the pro-
posed approaches. As we have already seen in the introduction, the main disad-
vantage of using the nearest exit for all evacuees is the fact that exit capacities
are ignored. The minimum cost approach does not only consider the exits but
also computes the width of the bottleneck when reaching an exit from a partic-
ular starting point. Thus it can not only handle examples as described in Fig.
1(a) but also buildings that include structures such as small staircases.

However, the minimum cost approach does not care about the distances
between evacuees and exits and thus may fail if there are wide exits very far
away. It also struggles if a lot of exits share the same bottleneck because it does
not take into account that all people that want to go to one of these exits may
meet while passing the bottleneck.

The earliest arrival approach uses an optimal flow over time and thus does
not suffer from these problems. By taking the temporal aspect into account it
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(b) Computational results: The min cost approach loses.

Fig. 2. This example demonstrates the influence of distances on the minimum cost
approach. As both exits have the same capacity, the min cost approach sends about
half of the people to the right exit although they could reach the left one in significantly
shorter time.

detects bottlenecks and exactly balances between the capacity and the distance
of an exit. Figure 4 and 2 show the superior performance of the earliest arrival
approach in the situations described as critical for the minimum cost approach.

In some sense, the exit assignment computed by the earliest arrival approach
is even optimal: if all people in the simulation (and in reality, too) would behave
exactly as the earliest arrival transshipment assumes then the evacuation would
be as fast as possible. Anyway, the only information the agents in our simulation
receive is the exit they should take. In the cellular automaton model (and prob-
ably also in reality) people try to get to their desired exit as fast as possible and
choose the shortest path to get there. If the earliest arrival transshipment has
decided that a lot of people should go to an exit reachable by different ways of
different length, all people will take the shortest one. That can take significantly
longer than the earliest arrival transshipment expected. Figure 3 shows that the
minimum cost approach should be preferred for situations like this.
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(b) Computational results: The earliest arrival transshipment counts too much on the
foresight of the evacuees.

Fig. 3. Evacuees going to the right exit will jam at the bottleneck between the pillars
because they do not take the longer but more clever way around the pillars. The earliest
arrival approach does not take this into accout and does not perform as well as before.

5 Discussion

We have seen that network flows greatly help to compute good exit assignments
but the approaches are still in an early state of development and thus have
some disadvantages. To reach the best results, one should apply all approaches
and choose the best exit assignment by testing all assignments in a simulation.
The gained exit assignments can also be used as start distributions for iterative
heuristics like the best response dynamic approach to decrease the number of
necessary iterations. Another idea to improve the performance of existing ap-
proaches by using network flow techniques is to include the capacity calculation
described in section 3.2 to gain better approximations of the real capacity of
exits. In our tests with the best response dynamics approach this significantly
improved the results.

Our research on the use of network flows to set up evacuation plans is far
from complete. It is a very interesting question whether our approaches could
be combined to reduce the disadvantages of each. Furthermore, the approach
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(b) Computational results: The diagram depicts the number of safe evacuees for every
point in time.

(c) A screenshot of the jam that emerges at the shared bottleneck when using the shortest
path approach.

Fig. 4. A building with a shared bottleneck on the right exit: Only the earliest arrival
approach has no problems with the shared bottleneck.



using earliest arrival flows could be improved by restricting the algorithm from
choosing unlikely routes for evacuees.

Even more interesting is the question whether there is a more direct way to
derive evacuation plans from network flows than to calculate exit assignments
and use them to develop a good plan. A big step into this direction is the compu-
tation of personal evacuation routes, i.e. of a detailed plan telling exactly which
way each person should take in a perfect evacuation. The latter can be done by
computing an earliest arrival transshipment and finding a mapping of flow units
to the evacuees. However, as people usually do not behave perfectly, additional
ideas are needed to fully use the strength of network flow computations. A new
idea which tries to respect human behavior is the use of Nash Flows over Time
8]
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