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Abstract

The worst-case execution time (WCET) being the upper
bound of the maximum execution time corresponds to the
longest path through the program’s control flow graph. Its
reduction is the objective of a WCET optimization. Un-
like average-case execution time compiler optimizations
which consider a static (most frequently executed) path, the
longest path is variable since its optimization might result
in another path becoming the effective longest path.

To keep path information valid, WCET optimizations typ-
ically perform a time-consuming static WCET analysis af-
ter each code modification to ensure that subsequent op-
timization steps operate on the critical path. However, a
code modification does not always lead to a path switch,
making many WCET analyses superfluous. To cope with
this problem, we propose a new paradigm called Invariant
Path which eliminates the pessimism by indicating whether
a path update is mandatory. To demonstrate the paradigm’s
practical use, we developed a novel optimization called
WCET-driven Loop Unswitching which exploits the Invari-
ant Path information. In a case study, our optimization re-
duced the WCET of real-world benchmarks by up to 18.3%,
while exploiting the Invariant Path paradigm led to a reduc-
tion of the optimization time by 57.5% on average.

1. Introduction

Embedded systems must often meet real-time con-
straints. Especially for safety-critical systems like in the
avionic and automotive domain, the adherence of the worst-
case execution time must be ensured to avoid system failure
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potentially leading to a disaster. The precise knowledge of
this key parameter is also required for scheduling or the de-
velopment of hardware platforms which have to satisfy crit-
ical timing constraints.

Due to the complexity of today’s embedded systems, the
software development relies on both a high-level language,
predominantly C, and a compiler. State-of-the-art compil-
ers offer a vast variety of optimizations with the objective
to minimize the average-case execution time(ACET) [10]
or energy dissipation [15]. On the contrary, a compiler-
guided reduction of the WCET is still a novel research area.
WCET-driven compiler optimizations require the integra-
tion of a static WCET analyzer into a compiler framework
providing timing information taken into account to effec-
tively minimize the program’s WCET.

A well-known problem of a sophisticated static WCET
analysis for today’s embedded system applications is its
complexity. Due to this reason, the major portion of the
time required for a compiler-based WCET-driven optimiza-
tion is spent for timing analysis while the contribution of the
remaining parts of the optimization process is negligible.
Moreover, an effective WCET-aware optimization typically
relies on multiple invocations of the static WCET analyzer
which substantially increase the optimization run time.

The static WCET analysis computes the worst-case be-
havior for a given program that is valid for all inputs with-
out running the program but by performing a static pro-
gram analysis. The WCET which is the upper bound of the
maximum execution time corresponds to the longest path
through the program’s control flow graph(CFG), called
the worst-case execution path(WCEP). Real applications
typically consist of more than one path, however only the
WCEP is relevant for the program’s WCET and compiler
optimizations aim at its reduction. The modification of
WCEPWP may lead to a path switch, i. e. after reducing
the length ofWP , a new pathWP ′ may become the longest
path in the CFG. To enable a continuous WCET reduction,



the WCET-aware optimization must ensure that it does not
proceed on the outdatedWP but performs further transfor-
mations on the pathWP ′. In the approaches presented in
the past, this is usually achieved by updating the internal in-
formation via another WCET analysis of the modified code.
This necessity for repeated analysis is a well known prob-
lem and was frequently addressed in the literature.

In this paper we present a novel paradigm which allows
a substantial decrease of the number of WCET analyzer in-
vocations during WCET minimization. The main contribu-
tions of this paper are as follows:

1. We introduce theInvariant Pathparadigm which de-
tects subsets of a CFG that arealways part of the
WCEP, thus making an update of the WCEP superflu-
ous after the modification of these sets.

2. We show how the Invariant Path information can be
exploited in compiler-based WCET optimizations to
drastically reduce the compilation time.

3. To show the practical use of the Invariant Path infor-
mation, a novel optimization, theWCET-driven Loop
Unswitching, is presented which exploits the new data
to accelerate its optimization process.

The rest of this paper is organized as follows: Section 2
gives a survey of the related work. The concepts of the In-
variant Path paradigm are presented in Section 3. Section 4
introduces the WCET-aware optimization Loop Unswitch-
ing, followed by a description of our experimental environ-
ment and results achieved on real-world benchmarks in Sec-
tion 5 and Section 6, respectively. Finally, Section 7 sum-
marizes this paper and gives directions for future work.

2. Related Work

Recently, the minimization of energy dissipation as an
optimization goal of compilers has moved into the focus
of research. However, WCET minimization by compiler
optimizations is only sparsely dealt within today’s litera-
ture. All these approaches rely on a static WCET analy-
sis. A sophisticated analyzer, used also in this work, is the
tool aiT [1] developed by the company AbsInt. [2] presents
an approach to compute valid upper bounds for the WCET
in the context of a system with preemptive scheduling. In
[7], the authors present predictable code and data paging in
order to enable a WCET analysis of systems using virtual
memories.

A compiler guided trade-off between WCET and code
size for an ARM7 processor was studied by [9]. They use
a simplified timing analyzer to obtain WCET information
employed in their code generator to produce code that ex-
ploits this trade-off and uses the two instruction sets (16-and
32-bit instructions) for different program sections.

In [3], an algorithm for static locking of I-caches based
on a genetic algorithm is presented. [16] combines compile-
time cache analysis with static D-cache locking. Both
works aim at the minimization of the WCET and have in
common that changes of the WCEP during the optimization
are not considered. Thus, these algorithms are non-optimal.
In contrast, the works of [4, 6, 14] propose to move parts of
a program’s code and data into the scratchpad memory or
into a software-controlled cache while taking care that their
optimizations always operate on the WCEP.

In [18], a code-positioning optimization driven by worst-
case path information was presented. By rearranging the
memory layout of basic blocks, branch penalties along the
WCEP are avoided. To cope with the altering worst-case
execution path, the authors perform a new WCET analysis
after each block rearrangement.

A WCET-driven procedure positioning optimization was
presented in [11]. We achieve an improved instruction
cache behavior by reordering procedures in memory to re-
duce the number of cache conflict misses. In order to ensure
that subsequent optimization steps after a previous mem-
ory layout modification operate on a valid WCEP, the static
WCET analyzer updates the path information.

Most of these approaches have in common that they
successively optimize the WCEP by modifying the code
while keeping the WCEP up-to-date. This update is
achieved by performing time-consuming static WCET anal-
yses which mainly account for the long optimization time.
To shorten the optimization time, we propose the Invari-
ant Path paradigm which indicates whether an update of
the WCEP is mandatory after a code modification. Since
the found path isinvariant to WCEP switches, redundant
WCET analyses can be omitted without suffering a loss of
significant information. The paradigm will be described in
the next section.

The high-level compiler optimizationLoop Unswitching
is a well-known control-flow transformation. It moves a
loop-invariant condition branch outside the loop. In case
of anif -else statement the loop body is duplicated and the
modified version is placed inside the condition’sthen- and
else-block [13]. The benefits of the optimization are the
reduced number of executed branches and more opportu-
nities for parallelization of the loop. The drawback is the
increased code size. In Section 4 this standard ACET opti-
mization will be extended by WCET concepts.

3. Invariant Path Paradigm

In general, the number of different mutually exclusive
paths in a CFG results from branches in the program. They
represent potential candidates for a WCEP switch and must
be accounted by a WCET optimization. To cope with this
problem, we introduce the Invariant Path:
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Figure 1. if statement on WCEP

Definition 1 The Invariant Path is a sub-path of the WCEP
which will always remain part of the WCEP independent of
the applied code modifications.

Any code that lies on the WCEP and is not part of
any mutually exclusive paths obviously lies on the Invari-
ant Path. The challenging issues concern different types of
control-flow branches that will be discussed next.

The methods for a split of the control flow path de-
pend on the abstraction level of the program. High-level
programming languages use so-calledselection statements
like if , if -else or switch (general form ofif -else) state-
ments to model mutually exclusive paths. They perform a
conditioned execution dependent on a condition expression.
Low-level programming languages model mutually exclu-
sive paths using conditional jump instructions. Other types
of statements/instructions which alter the program’s control
flow like call statements are not considered by the Invariant
Path paradigm since they are irrelevant for a path switch.
In this paper, the focus lies on the high-level language con-
structs but the ideas of the Invariant Path can be translated
to low-level languages in a straightforward manner. For the
sake of clarity we use the terminology of the programming
languageC, but the presented concepts are independent of
the language.

To understand the concepts behind an Invariant Path
computation, some details about a static WCET analysis
must be introduced. Generally, a WCET analysis handles
conditional statements that split the control flow as follows:
if the condition can be statically evaluated, it is known
which path will be taken during execution and this path
contributes to the WCET. Otherwise, the static analysis as-
sumes the longer path to be the WCEP. This assumption is
safe but might lead to a WCET overestimation.

Moreover, we assume that the static WCET analysis is
context-sensitive. Contexts represent either calling con-
texts, i. e. the analysis distinguishes between different calls
to a particular function, or they can be used to consider each
loop iteration separately. Sophisticated WCET analyzers
support this technique to increase the precision of the com-
putation since it introduces a dynamic view of the program
during a static program analysis. By considering context-
dependent program variable values for repetitively executed
code fragments like functions or loops, context-dependent
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Figure 2. Both parts of if -else statement on
WCEP

CFG paths can analyzed separately.
Based on this knowledge, the Invariant Path paradigm

distinguishes between three different classes of selection
statements leading to a generation of mutually exclusive
paths which are potential candidates for a path switch. They
are described in detail in the following.

3.1.IF with feasible WCEPs

An if statement represents a conditional execution.
Depending on the conditional expression either the path
through thethen-part is executed or the mutually exclusive
path omitting thethen-part is followed as can be seen in
Figure 1. The edge labels denote the frequency of execut-
ing one of the two paths in the worst case, calledexecu-
tion counts, which means that both parts contribute to the
WCEP.

If an optimization aiming at the reduction of the WCEP
encounters anif statement, two possible cases must be dis-
tinguished during a context-sensitive WCET analysis. Ei-
ther the WCEP goes along thethen-part or thethen-part
does not contribute to the WCET.

In terms of the Invariant Path paradigm, a WCEP that tra-
verses thethen-part is also part of the Invariant Path since
a modification of the code in thethen-part is not crucial for
path switching. This is due to the reason that the other fea-
sible path of theif statement does not contain any code that
might become the new WCEP.

3.2.IF -ELSE with feasible WCEPs

This case occurs when the context-sensitive WCET anal-
ysis determined that the WCEP traverses thethen- and
else-part of a particularif -else statement in different con-
texts as can be seen in Figure 2.

Compiler optimizations typically do not take different
contexts into account since transformations are applied to
the static code where dynamic aspects of the program exe-
cution are not available. Thus, most WCET optimizations
evaluate selection statements statically by accumulatingthe
context-sensitive WCET information over all contexts and
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Figure 3. then-part of if -else statement on
WCEP

annotate the possible paths with these overall WCET val-
ues. In case of theif -else statement, thethen- andelse-
part would be annotated with the accumulated WCETs.

For a WCET optimization that must be aware of a valid
WCEP, anif -else statement, for which the WCEP goes ei-
ther through thethen- or else-part in different contexts, is
not crucial since a path switch can not emerge. By treat-
ing this selection statement in a static manner, it is known
from the WCET analysis that both parts always contribute
to the program’s WCET. Thus, this selection statement can
be declared as part of the Invariant Path.

We call this type of branches as well as branches re-
sulting fromif statementsgood-naturedsince they are not
prone to a path switch. This is the typical situation found
in most applications, thus a large portion of the code can be
declared as Invariant Path.

3.3.IF -ELSE with an infeasible WCEP

The last class of selection statements differs from the
previous one in terms of the WCEP flow. For allif -else
statements belonging to that class, the WCET analysis as-
sumes that for all contexts the WCEP traverses exactly one
of the mutually exclusive paths, i. e. either through the
then- or theelse-part. This situation might arise for two
different cases. Either the value analysis, which is part of
a sophisticated WCET analysis, evaluated the condition of
the if -else statement to be alwaystrue or false, thus ex-
cluding one of the two paths. Or the condition could not be
statically evaluated and one of the two mutually exclusive
parts was determined to be always the longer path.

For the first case, the fact that one of the two branches
is never executed(dead code)can be exploited. Since a
WCET optimization would never consider a transforma-
tion of a non-executed code fragment, this code can be ex-
cluded and the other mutual path is declared as Invariant
Path. Thus, this type of branches can be reduced to agood-
naturedif statement.

In the second case, the WCEP exclusively flows for all
execution contexts either through thethen- or theelse-part.
In addition, the branch not lying on the WCEP is not dead
code. This combination is the only situation where a path

switch can occur. These types of conditional statements are
not declared as Invariant Path. An example is shown in Fig-
ure 3 where thethen- but not theelse-part (depicted by dot-
ted arrows) lies on the WCEP. An optimization might opti-
mize thethen-part such that the path through theelse-part
becomes the new WCEP. To make sure that the next step
of the optimization does not operate on an outdated path, a
validation of the path information by a WCET analysis is
required.

We call this type of branches described in this section
ill-natured since they are prone to a WCEP switch.

3.4. Construction of the Invariant Path

The construction of the Invariant Path is performed re-
cursively based on the assumptions from the previous sec-
tions. The computation begins with the entry point of the
program’s CFG, typically the first statement or instruction
of themain function, and traverses the graph in a top-down
manner.

All blocks lying on the WCEP that are not part of a
branch (i. e. straight line code not control dependent of
some branch statement) are declared by our algorithm as In-
variant Path. Their transformation does not entail the riskof
a path switch, thus they can be classified as Invariant Path.
For good-natured selection statements, the Invariant Pathis
recursively computed for all feasible branches. Thus, all
blocks that are part of the considered branch are taken into
account. When function calls are encountered on the In-
variant Path, their bodies are analogously analyzed. In that
way, the Invariant Path is constructed also for nested selec-
tion statements.

3.5. Validation

To check that our assumptions about the Invariant Path
are correct, i. e. a path switch never happens on the Invari-
ant Path, we performed a validation of this paradigm on 42
real-world benchmarks from the MRTC WCET Benchmark
Suite [12] and MediaBench suite [8]. The validation phase
consists of two steps and was performed on the source-code
level. First, is was verified whether the Invariant Path of
a program lies on the WCEP. For this purpose, real-world
benchmarks were compiled with the WCET-aware C com-
piler WCC [5], which will be described in detail in Sec-
tion 5, with optimization levels O0 - O3. Next, using the
WCET analyzer aiT and the compiler’s high-level interme-
diate representation (IR) of the code annotated with WCET
information, it was verified that code declared as Invariant
Path is also lying on the WCEP.

The annotation of the high-level code with WCET data,
which is originally computed at the low-level of the pro-
gram, is calledBack-Annotation. This process establishes a



connection between the high- and low-level IR of the em-
ployed WCET-aware compiler and translates worst-case ex-
ecution data from the low-level to corresponding high-level
constructs. Thus, WCET information are made accessible
to high-level analyses and optimizations.

In the second step of the validation, it was tested whether
the Invariant Path is prone to a path switch. For this pur-
pose, branches in the program were explored since branches
are the source for path switches that arise when the code
is transformed such that the original longest past becomes
outdated and another path in the CFG becomes the new
longest path. For this step, each of the benchmarks under
test was compiled within the WCET-aware compiler with
optimization levels Oi (i∈ {0, 1, 2}). Afterwards, the same
benchmark was compiled with a higher optimization level
Oj (j∈ {1, 2, 3}, j > i). Using different optimization levels
can be considered as a simulation of potential code transfor-
mations that might yield a path switch.

Finally, we verified if none of thegood-naturedbranches
compiled with Oi converted into anill-naturedbranch after
compilation with Oj. A violation of this condition would
mean that (a part of) the WCEP was incorrectly classified
as Invariant Path since a WCEP switch between mutually
exclusive paths was encountered, i. e. the Invariant Path
became outdated. In contrast, anill-natured branch might
convert into agood-naturedbranch. This might happen
when an optimization removes one of the two paths that
turned out to be never taken, thus practically converting an
if -else statements into anif statement. For all tests per-
formed on the 42 different benchmarks, the validation was
successful.

3.6. Invariant Path Ratio

The concepts of the Invariant Path are generic (not re-
stricted to any programming languages) and can be com-
bined with most WCET optimizations that are aware of the
WCEP. Sub-graphs of the WCEP which are declared as In-
variant Path can be modified without invalidating the WCEP
information. To get an impression of how sensitive bench-
marks are to WCEP switches, we computed the fraction of
the code that is part of the Invariant Path. The computation
was performed on the same benchmarks that were used for
the validation.

We computed thestaticanddynamicratio of code on the
Invariant Path. The static value represents the number of
basic blocks that are on the Invariant Path w.r.t. the total
number of basic blocks in the program. The dynamic ra-
tio indicates how many WCET cycles were consumed on
the Invariant Path w.r.t. the total number of cycles on the
WCEP, and were computed as follows:

∑
block

WCETest(block) · IP (block)
∑

block
WCETest(block)

(1)

for(i=0; i<100; i++) { if (w)

x[i] = x[i] + y[i]; for(i=0; i<100; i++) {

if (w) x[i] = x[i] + y[i];

y[i] = y[i] * 2; y[i] = y[i] * 2; }

else else

y[i] = 1; } for(i=0; i<100; i++) {

x[i] = x[i] + y[i];

y[i] = 1; }

Figure 4. Example for Loop Unswitching

whereWCETest represents the WCET estimation for
each basic block, whileIP (block) indicates ifblock is on
the Invariant Path or not, i. e. it might have the value0 or 1.

Our results show that the static ratio of blocks on the In-
variant Path ranges between 74.1% and 77.9% for code op-
timized with optimization levels O0 - O3. For the dynamic
ratio of cycles on the Invariant Path we observed that be-
tween 85.4% and 88.8% of the WCET cycles are spent for
the execution of the code declared as Invariant Path. It is
obvious that the ratio for the Invariant Path cycles is gener-
ally larger than the ratio for the blocks on the Invariant Path
since iteratively executed code (e. g. in loops or functions)
lying on the Invariant Path enlarges the dynamic ratio.

These results underline the optimization potential of the
Invariant Path paradigm. Since approximately3

4
of the code

is always lying on the critical WCEP without being sensitive
to any path switches, the exploitation of this fact can signif-
icantly decrease the analysis time of WCET minimizations
w.r.t. conservative approaches that, unaware of the Invari-
ant Path, must run a costly WCET analysis after each code
transformation to update their WCET information.

To demonstrate the practical use of our Invariant Path
paradigm, we have implemented a WCET-driven Loop
Unswitching that significantly benefits from that auxiliary
information as shown in the next section.

4. WCET-driven Loop Unswitching

Loop Unswitching is a typical ACET compiler optimiza-
tion where a trade-off between the execution time improve-
ment and the resulting code size increase must be taken into
account. It shifts loop-invariant conditions out of the loop at
the cost of loop body duplications. Due to this reason, this
optimization can not be applied to all possible loop candi-
dates if strict code size constraints, as often found in the em-
bedded system domain, must be met. Rather, potential can-
didates should be evaluated before optimized, thus enabling
a successive improvement in the execution time through
unswitching of most promising candidates while keeping
the code size increase minimal. However, most compilers
lack execution frequencies and timing information about the
code to be optimized which makes a sophisticated preced-



1 Input: Program P, size increase MAX

2 Output: optimized Program P

3

4 begin

5 performWCETAnalysis(P)

6 set<Loop> S := FindUnswitchCand(P)

7 while(S 6= ∅ && ∃s ∈ S : WCET (s) > 0) do

8 boolean allOnIP := CheckInvariance(S)

9 repeat

10 Loop bestCand := FindBest(S)

11 LoopUnswitching(bestCand)

12 DeleteCandidate(S,bestCand)

13 if(CodeSizeIncrease(P) ≥ MAX)

14 return P

15 fi

16 until(S 6= ∅ && allOnIP == true)

17 performWCETAnalysis(P)

18 od

19 return P

20 end

Figure 5. WCET-driven Loop Unswitching al-
gorithm

ing evaluation impossible. In this work, we focus on an ef-
fective WCET reduction and solve this dilemma by exploit-
ing information from a static WCET analyzer for a prior
evaluation before optimizing the loop which promises the
highest decrease in the WCET.

An example of Loop Unswitching is given in Figure 4.
Standard Loop Unswitching, which was up to now em-
ployed to reduce the ACET, works in two steps. In the
first step, it iterates over all statements of a function and
searches for loop-invariant selection statements. If a proper
candidate was found, its loop is unswitched by moving the
if /if -else statement outside the loop and copying the loops
inside thethen- andelse-parts. Since most compilers are
unaware of the execution frequency of the selection state-
ments, a common but also ineffective heuristic used for
Loop Unswitching is to transform loops in the order as
given in the source code until a restriction to the code size
increase is reached.

In contrast to previous works, we have extended the stan-
dard Loop Unswitching as follows:

• We exploit Unswitching to automatically reduce the
WCET and not the ACET.

• Our novel optimization is based on more sophisticated
heuristics based on worst-case execution frequencies
and the WCET.

• To accelerate the WCET optimization, we combine it
with the Invariant Path paradigm.

• To keep the increase of the code size small, most
promising loops for the WCET minimization are trans-
formed first.

Before describing the optimization steps in detail, the
use of the Invariant Path information should be motivated
in the context of unswitching. The danger for a WCEP
switch comes from the code restructuring and the sensitiv-
ity of today’s processors to any memory layout modifica-
tions. The reasons are twofold. On the one hand, instruction
caches might show a different behavior w.r.t. incurred cache
misses. By shifting the selection statement, thethen- and
else-parts are mapped to different addresses in the memory
and the cache. This might lead to new cache misses on the
non-WCEP which becomes the new longest path. On the
other hand, many processors incur a penalty when perform-
ing a fetch to a misaligned target instruction (also called
line crossing). By shifting code during unswitching, addi-
tional misaligned instructions on the non-WCEP might be
introduced making this path the longest path [17]. Exploit-
ing the Invariant Path information, we can distinguish be-
tween loops which might entail a WCEP switch after Loop
Unswitching and those where a path switch can be definitely
excluded making the updating WCET analysis redundant
and thus accelerating the optimization.

The algorithm for the extended unswitching is depicted
in Figure 5. It expects the program to be optimized and the
maximal code size increase as input. After performing a
WCET analysis and Back-Annotation (line 5), all possible
candidates in the source code are collected in setS (line
6) together with their execution frequencies and WCETs.
Note that all loops which are not on the WCEP, i. e. their
WCET is equal zero, are excluded and not added toS. The
outer loop iterates as long as candidates for Loop Unswitch-
ing are found and at least one of the candidates lies on the
WCEP (line 7). In line 8, it is determined if all of the col-
lected loops are on the Invariant Path and the result is store
in allOnIP .

Next, loop unswitching is performed iteratively in a loop
(lines 9-16) without updating the program’s timing model
by an expensive WCET analysis. This step is done as long
as unprocessed unswitching candidates are found inS and
all of them are lying on the Invariant Path.

The candidates are evaluated in functionFindBest (line
10). As a heuristic for finding the most promising candi-
date we consider the worst-case execution frequencies of
the selection statements in the collected loops. The loop
holding the selection statement which is executed most fre-
quently on the WCEP will be unswitched (line 11) and
deleted from the list of candidates (line 12). If two selection
statements have the same worst-case execution frequency,
the one with the larger WCET is chosen. In the rare case
of equal WCETs, the selection statement with the smaller
(assembly) code size provided by the Back-Annotation is
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Figure 6. WCEP switch in different segments

chosen for the optimization. If the maximal code size in-
crease has been reached after unswitching, the optimization
is terminated (line 14).

The condition whether all collected unswitching candi-
dates are on the Invariant Path (line 16) is mandatory for an
effective WCET minimization since changes in one CFG
segment might influence the WCEP in another segment.
This situation is depicted in the CFG in Figure 6 as could be
possibly found at the beginning of our WCET-aware Loop
Unswitching. For simplicity, nodes represent either single
basic blocks or loops and the edge labels represent relevant
worst-case execution counts. Nodes that are represented by
circles are lying on the Invariant Path. The WCEP traverses
all nodes but nodeh (path marked by dotted line). Further,
it should be assumed that nodesc, d andh represent loops
that are candidates for unswitching (marked by dark nodes).
Our algorithm would begin with nodec which has the high-
est execution count (40). However, the transformation of
this node in segment1 can potentially have an influence on
segment2 leading to a WCEP switch from the left to the
right branch (toh). Thus, in the next step, not the previously
collected loopd but h should be considered for unswitch-
ing. Obviously, this information is provided after another
WCET analysis following the first transformation.

In our algorithm, variableallOnIP is responsible for
the indication of potential WCEP switches among differ-
ent CFG segments by forcing a new WCET analysis (line
17) to keep relevant unswitching candidates updated. At
first glance, this condition might seem restrictive prevent-
ing an extensive exploitation of the Invariant Path. How-
ever, as shown in Section 3.6, a large portion of the code
lies on the Invariant Path, thusallOnIP can be expected
to be oftentrue. As will be seen later in Section 6, this
assumption could be also validated for real-world bench-
marks for which a large number of redundant WCET anal-
ysis could be avoided. If the Invariant Path information was
not available, each Loop Unswitching would be followed
by a WCET analysis to ensure further optimization steps to
operate on a valid WCEP.

It should be also noted thatallOnIP is only relevant
for code size critical optimizations that aim at a reduction

of the WCET while keeping the increase of the code size
minimal. In that case, as also for our WCET-driven Loop
Unswitching, always the most promising candidate (e. g. a
loop for unswitching) for a WCET minimization should be
chosen to improve the program’s worst-case performance
with a minimal number of transformations that increase the
code size. In contrast, when a maximal WCET reduction
is the exclusive goal of an optimization, Invariant Path in-
formation can be fully exploited. Since the optimization of
the Invariant Path always reduces the WCET, the compiler
can iteratively optimize this part of the code without per-
forming further WCET analyses. Afterwards, the WCET
information must be once updated for the transformed code
to check if possibly new optimization candidates, due to a
WCEP switch in the remaining code, occurred that can be
optimized next.

Our algorithm in Figure 5 returns an optimized program.
However, due to the potentially omitted WCET analyses
during the optimization, no reliable assumptions about the
WCET of the transformed code can be made. Thus, to get
a safe WCET estimation of the optimized program, a final
WCET analysis should be performed. These estimations are
also the results presented in Section 6.

5. Experimental Environment

Benchmark #Cand. Code Size Description
transupp 13 7224 B JPEG transformation

wrbmp 4 682 B JPEG conversion
block 7 16050 B H264 decoding

macroblock 5 18520 B H264 decoding

Table 1. Benchmark Characteristics

To indicate the efficacy of Invariant Path information and
the WCET reductions achieved with our Loop Unswitch-
ing, tests were performed on real-world benchmarks. The
benchmarks come from the widely used MediaBench suite
representing different applications typically found in the
embedded systems domain. They contain typical routines
that are frequently used in larger benchmarks, e. g. the
JPEG-2000 image and the H.264 video compression. Due
to the high complexity of the original benchmarks which
can not be handled by today’s state-of-the-art static WCET
analyzers, some major kernel routines were used instead as
described in Table 1. The second column of the table indi-
cates the number of candidates for the WCET-aware Loop
Unswitching.

The techniques presented in Sections 3 and 4 are fully
implemented. The workflow is depicted in Figure 7. For
the computation of the Invariant Path information and the
integration of our WCET-driven Loop Unswitching, we use
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our WCET-aware C compiler WCC for the Infineon Tri-
Core TC1796 processor [5]. The general structure of our
compiler consists of a high-level IR, the ICD-C IR, and a
low-level IR, called the LLIR, which is coupled to AbsInt’s
WCET analyzer aiT. Parsing of the C source code, the trans-
formations into the corresponding intermediate representa-
tions, and the automatically performed static WCET analy-
sis are depicted by solid arrows.

After the WCET analysis performed with an unlimited
number of distinguished contexts, information about the
execution frequencies and the WCETs provided by aiT
are imported into the LLIR. Since Loop Unswitching is a
high-level optimization, this data must be transformed from
the LLIR into the ICD-C IR using the compiler’s Back-
Annotation. In parallel, the calculation of the Invariant Path
exploiting Back-Annotation data is performed. The ICD-C
annotated with timing information is finally used as input
for our WCET-driven Loop Unswitching. The flow of these
steps is marked by dashed arrows in Figure 7.

For our experiments, we disabled all compiler optimiza-
tions except dead code elimination. With this scenario,
the impact of the WCET-driven Loop Unswitching on the
WCET can be best studied. By applying dead code elim-
ination, we make sure that our optimization does not opti-
mize unswitching candidates that represent traditional dead
code and as such could be easily eliminated before WCET
analysis. In this paper, we also decided not to perform our
unswitching within an optimization sequence since other
optimizations performed before or after might hide its im-
pact on the code preventing a clear interpretation.

6. Results

6.1. Worst-Case Execution Time

Figure 8 presents the timing results, with 100% corre-
sponding to the WCET estimation of the original code after
dead code elimination. The tests were performed with en-
abled 8 kB I-cache of the TriCore processor. Note that the
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Figure 8. Relative WCET after Unswitching

default cache capacity of 16 kB was reduced to take cache
effects for the benchmarks under test into account. It can
be seen that for all benchmarks on average a WCET mini-
mization of 10.4% was achieved. The maximal WCET re-
duction of 18.3% was achieved for theblockbenchmark. It
contains 7 loop-invariant selection statements executed be-
tween 4 and 16 times in the worst-case. By unswitching,
their execution frequencies could be significantly reduced.

6.2. Optimization Run Time

To indicate the effectiveness of the Invariant Path
paradigm, we measured the optimization time of our
WCET-driven Loop Unswitching with and without exploit-
ing Invariant Path information. The optimization time en-
compasses the entire optimization process from parsing the
source code to the generation of the optimized assembly
code. However, since the WCET analyses consume the
most optimization time, the results reflect the core of a typ-
ical WCET analysis.

The results given in Figure 9 were generated on an
Intel Xeon 2.13GHz system with 4GB RAM. The 100%
mark corresponds to the optimization time of standard Loop
Unswitching without any WCET heuristics. The diagram
shows that for all benchmarks the optimization time could
be drastically reduced when the Invariant Path informa-
tion is exploited. On average, the optimization time using
the Invariant Path information could be reduced by 57.5%.
The conventional WCET optimization without employing
the new paradigm was 872.7% of the optimization time for
the standard ACET Unswitching. Taking the Invariant Path
into account reduces the optimization time to 379.0% of the
standard Loop Unswitching.

These significant optimization time reductions result
from the reduced number of performed WCET analyses.
For example, the number of mandatory WCET analyses to
update the WCEP which was performed for the benchmark
macroblockcould be reduced from seven analyses to two
analysis (including the final mandatory aiT run), reducing
the optimization time from more than 75 minutes to less
than 19 minutes.
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6.3. Code Size Increase

The drawback of Loop Unswitching is the code size in-
crease. For the four benchmarks we measured an average
increase of 19.7%. To bound the code size increase, the
WCET-driven Loop Unswitching might be terminated as
soon as a desired WCET reduction or the maximally per-
mitted code size increase is achieved. The diagram in Fig-
ure 10 shows the relationship between the WCET reduc-
tion and the code size increase for each optimization step of
unswitching for the benchmarktransupp. The solid curve
represents the measurements for the WCET-driven Loop
Unswitching, while the dotted curve depicts the measure-
ments for standard unswitching. The points, which were
used to construct the curves, represent the relative WCET
and relative code size w.r.t. code (after dead code elimi-
nation) which was measured after each unswitching trans-
formation. Based on the solid curve representing measure-
ments for the WCET-driven Loop Unswitching, the param-
eters for the desired optimization objective can be extracted
and used to terminate the optimization when the desired ob-
jective is achieved.

Moreover, a comparison between the solid curve and the
dashed curve shows that our WCET-driven approach contin-
uously reduces the WCET with each optimization step. In
contrast, the standard approach does not guarantee to min-
imize the WCET after unswitching a selection statement.
For example, a code size increase to 105.2% with standard
unswitching results in a relative WCET of 95.1%. After
unswitching two further selection statements, the code size
increases to 110.1% having a negative effect on the WCET
which is increased to 97.1%. This points out that our new
optimization is tailored towards an effective WCET reduc-
tion and outperforms the standard Loop Unswitching for
this objective.
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Figure 10. Comparison of standard and
WCET-driven Unswitching for transupp

7. Conclusions and Future Work

One of the major challenges of WCET-driven optimiza-
tions is to keep track of valid information about the worst-
case execution path. After a code modification, the path in-
formation might, however, become outdated and typically
a time-consuming WCET analysis must be performed for
update purposes. These updates drastically increase the op-
timization time and might make a WCET optimization even
impractical. To cope with this problem, we introduce the
Invariant Path paradigm indicating which parts of the code
will always be lying on the WCEP independently of the per-
formed code modifications. To point out the practical use
of the Invariant Path, it is combined with our newly devel-
oped optimization called WCET-driven Loop Unswitching
which reduces the WCET of real-world benchmarks by up
to 18.3% and the exploitation of Invariant Path information
allows an optimization time reduction by 57.5% on average.
In the future, we would like to assist further WCET-driven
optimizations with Invariant Path information to reduce the
optimization time. Moreover, we work on an application of
the Invariant Path information at the low-level code repre-
sentation.
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