Automatic WCET Reduction by Machine Learning
Based Heuristics for Function Inlining *

Paul LokuciejewsKi, Fatih Gedikli, Peter Marwedé| Katharina Morik

1 Computer Science 12 (Embedded Systems Group)
2 Computer Science 8 (Artificial Intelligence Group)
TU Dortmund University
D-44221 Dortmund, Germany
Fi r st Nanme. Last Nane@ u- dor t nund. de

Abstract. The application of machine learning techniques in comgilame-
works has become a challenging research area. Learningthige are exploited
for an automatic generation of optimization heuristics ahhoften outperform
hand-crafted models. Moreover, these automatic appreazreeffectively tune
the compilers’ heuristics after larger changes in the oigtition sequence or they
can be leveraged to tailor heuristics towards a particutarigectural model. Pre-
vious works focussed on a reduction of the average-caserpafce.

In this paper, learning approaches are studied in the cootex automatic min-
imization of the worst-case execution tifj¢/CET)which is the upper bound
of the program’s maximum execution time. We show that expfitaking the
new timing model into account allows the construction of pder heuristics
that effectively reduce the WCET. This is demonstratedtierwell-known opti-
mization function inlining. Our WCET-driven inlining heistics based on a fast
classifier calledandom forest®utperform standard heuristics by up to 9.1% on
average in terms of the WCET reduction. Moreover, we poittloat our classi-
fier is highly accurate with a prediction rate for inliningchdates of 84.0%.

1 Introduction

Today’s embedded systems are characterized by both efficrequirements and crit-
ical timing constraints. Average-case performance, pawasumption and resource
utilization are objectives describing the efficiency of ateyn. Timing constraints are
expressed by the worst-case execution time. Especiallgdfaty-critical application
domains such as automotive and avionics, the satisfacfittedVCET must be guar-
anteed to avoid system failure. Moreover, the precise kedgg of this key parameter
is mandatory for various scheduling algorithms and is nexgliior an efficient develop-
ment of hardware platforms which have to meet real-time traims.

To cope with the complex requirements imposed by modern dddzksystems,
software developers rely on a high-level language and amaihg compiler. Typi-
cally, the goal of state-of-the-art compilers is the autten@duction of the average-
case execution timéACET)or the energy dissipation. In contrast, a compiler-based
reduction of the WCET is still a novel research area with alsmanber of published
approaches. Similar to feedback-directed compilatioyimglon profiling information
to optimize the average-case performance, WCET-drivenpdemoptimizations re-
quire the integration of a static WCET analyzer into a coerditamework. The ana-
lyzer provides worst-case timing information that allowsdelling of the longest path
in the control flow graph (CFG), the so-called worst-casecefien path WCEB. The

* The research leading to these results has been partiathgduby the European Community’s
ARTIST2 Network of Excellence and by the European Commisgventh Framework Pro-
gramme FP7/2007-2013 under grant agreeme2116008.

objective of a WCET optimization is the minimization of ttpath which implicitly
reduces the program’s WCET.

The development of heuristics for compiler optimizatiortsah efficiently reduce

a given objective for a broad range of applications is a teslimsk which requires
both a high amount of expertise and an extensive trial-ara-gining. The reasons are
twofold. First, the advent of complex computer architeetucomplicates the develop-
ment of heuristics. Optimizing compilers base their decision abstract architecture
models. However, the construction of precise models is @-tamsuming process, thus
compiler writers are often constrained to employ inac@iaéistractions not able to cap-
ture all relevant architectural features. The result i aseniversal compiler heuristics
that are not capable of exploiting a particular target anghinéven have a negative im-
pact on the program to be optimized. Second, compiler opétitins are not performed
separately but within a sequence of interfering optimaagi Since optimizations might
have conflicting goals, disadvantageous interactions eanlserved. However, for-
mal models expressing interactions between optimizatoasardly known. Compiler
writers are forced to either tune a heuristic for a givenmjation sequence that must
not be changed, or their heuristics are based on consexasumptions which do not
allow the exploration of the program’s optimization potaht

A solution to this dilemma is the application of machine teag (ML) approaches
to automatically generate heuristics. The key advantadeanfing techniques is their
capability to find relevant information in a high dimensibspace, thus helping to un-
derstand and to control a complex system. Providing a ds&mmi of the parts of the
program to be optimized, so-calletiatic featuresa machine learning algorithm au-
tomatically learns a mapping from these features to hecnpgrameters. Using the
learning result enhances the flexibility of a compiler fravoek. Exchanging the tar-
get architecture or modifying the optimization sequencly oequires an automatic
re-learning to adjust heuristics. Thus, machine learniglpsito reduce the efforts of
developing compiler optimizations which is crucial in tgtarapidly evolving market.

In this paper, we exploit machine learning techniques foaatomatic WCET re-
duction. To our best knowledge, this is the first study apg\ysupervised learning to
construct heuristics for a WCET-driven compiler optimiaat We consider the well-
known optimizatiorfunction inliningwhich can have strong effects on the WCET. An
inappropriate decision to inline a function might degraue worst-case performance
of the program. We improve standard heuristics for inlinftygsupervised learning of
a classifier that decides whether inlining of a particularction promises a WCET
reduction and should thus be applied.

The main contributions of this paper are as follows:

1. In contrast to other works, we explicitly consider a dethtiming model based
on the WCET which allows the extraction of features desnghihe program’s
temporal behavior.

2. Based on this data, we develop a novel high-level WCEJedrfunction inlining
that is tailored towards an effective WCET minimization.

3. Our machine learning classifier is highly accurate sihissiased on an advanced
technique calledandom forestshat deliver a collection of decision trees.

The rest of this paper is organized as follows: Section 2sgavsurvey of the related
work. The standard optimization function inlining is pressd in Section 3. Section 4
introduces our WCET-driven function inlining as well as tachine learning tech-
niques used for the automatic heuristic generation. A gwsmn of our experimental
environment is given in Section 5, followed by results acbdeon real-world bench-
marks in Section 6. Finally, Section 7 summarizes this papergives directions for
future work.

2 Related Work

Typically, compiler optimizations aim at the reduction b&tACET. With the growing
importance of embedded systems, new optimization goalsneinimization of energy
dissipation or code size reduction, have moved into thefofuvesearch. In contrast, an
automatic compiler-based reduction of the WCET, which isuzial objective in real-
time systems, is still a novel research area. All the appgresicely on feedback data, the
WCET, from a static analyzer. Thus, timing information i®yided for the low-level
intermediate representation (IR) of the program. In thiskware use the sophisticated
WCET analyzeniT [1].

To reduce the worst-case performance of a program, the $bipa¢h must be opti-
mized. Most published works operate on a low-level IR andakmemory hierarchies.
[2] presents an algorithm for static locking of instructmathes based on a genetic algo-
rithm. [3] combines compile-time cache analysis with stdtita cache locking. In [4],
WCET-driven procedure positioning optimizations are presd. All these approaches
rely on a static cache analysis which is an essential partWICET estimation for
cache-based processors.

In [5], a genetic algorithm performing different low-levatiandard compiler opti-
mizations to the program under test is applied. The objedsvto find an effective
optimization sequence that yields the largest reductigheémprogram’s WCET. Zhao's
paper is most related to our work since it also combines ambres from the domain
of machine learning to reduce the WCET. However, the maiieidihce is that we use
supervised learning while [5] exploits an evolutionaryaalthm. Furthermore, the op-
timizations are applied at different abstraction levelthefcode.

A compiler guided trade-off between WCET and code size fohBM7 processor
was studied by [6]. They use a simplified timing analyzer taobWCET information
employed in their code generator to produce code that azptuis trade-off and uses
the two instruction sets (16-and 32-bit instructions) fiffiedent program sections.

Contrary to these low-level optimizations, WCET-driveglinlevel optimizations
require an additional intermediate step which transfoiimég information into the
high-level IR and makes them accessible to the optimizatitm literature, this step
is calledBack-Annotatiorand was utilized in [7] where we exploit the high-level op-
timization procedure cloningo improve the precision of the WCET estimation. Also,
the WCET-driven function inlining presented in this papean optimization operating
on the program’s high-level IR. All of our optimizations anéegrated into the WCET-
driven C compileMCCwhich is discussed in [8].

The application of machine learning techniques for the gpgtien of compiler heuris-
tics has been studied for the reduction of the average-aafarmance. [9] uses super-
vised learning to generate heuristics lmop unrolling Since the transformation might
have a negative impact on the program execution, their gésheuristic serves as a
classifier which decides if a loop should be unrolled. Loopollimg is also considered
by [10]. The authors employ supervised learning techniqogsedict an appropriate
unroll factor. The utilization of genetic algorithms for argeration of compiler heuris-
tics for the optimizations hyperblock formation, regisabocation, and data prefetching
are discussed in [11]. Machine learning techniques (eetpforcement learning) in the
context of instruction scheduling are presented in [12, 13]

Neural networks and decision trees are used in [14] to prbcanich behavior based
on static features associated with each branch. In [15g¥6]utionary algorithms are
used in an iterative adaptive compiler to find effective cdemphase orderings.

The influence of the optimization function inlining on the BT has been studies in
different publications. In [17], equations representing éxecution time performance
of inlined versions of the programs have been formulatedatiwg which factors affect
the speed of inlined code. The effectiveness of inlininglieen also evaluated in [18].

From the experiments, the authors of both works concludetts optimization was
not always beneficial for the program performance. Inlinivas also studied in the
context of evolutionary algorithms. [19] uses genetic athms to tune the parameters
of a dynamic Java compiler’s inlining heuristics. This poation is close to the work
presented in this paper, but also differs in several impbitays. Most importantly, our
goal is the minimization of the worst-case and not average performance. Further-
more, the authors employ a genetic algorithm while our apghaitilizes supervised
learning of a classifier. In order to receive understandedsialts which can easily be
converted inta f - t hen- el se rules we have chosen the learning of random forests.

3 Function Inlining

Function inlining is a well known transformation replacitige function call with the

body of the callee while storing the arguments in varialth@s torrespond to function
parameters [20]. The optimization can be either appliedhgydompiler at the high-
level or low-level IR, or by the linker. Typically, inlinings applied to reduce the ACET.

It has several positive effects on the program executionc®yying the callee’s
function body into the caller, the calling overhead is rextlsince the function call and
return instructions as well as the parameter handling ioveh. Moreover, the control
transfer entailed with a call instruction is avoided, thmpioving the pipeline behavior.

However, the most significant improvements result from taldal optimizations
that could not be applied to the original code, since theyewestricted by function
boundaries, but become possible after inlining. For exanthke optimizatiortonstant
propagationcan replace all parameter variables with constant valueg as arguments.
This enables a static evaluation of conditions which candiewed by dead code
eliminationremoving code within conditions evaluated to be alway<fdis addition,
inlining generates code for the callees which can be talltw¢he context of a particular
call site. This code specialization usually provides farthptimization potential.

The evaluation of the impact of function inlining on the praigp execution is chal-
lenging since the transformation influences different congmts, e. g. register alloca-
tion, instruction scheduling, and the usage of the memaayainchy. Thus, its conse-
guences are not directly visible but are noticed as sidetsff@his complicates the de-
cision of whether a function should be inlined. Althougtsitiidely believed that func-
tion inlining substantially improves the program run-tingéferent studies like [18]
came to the conclusion that its application is not alway<beial.

One of the main drawbacks of this optimization is the inceglaggister pressure.
By inserting additional variables from the inlined functimto the caller, possibly more
registers are required. If the callee is inserted in an aidaam already high register
pressure, the register allocator is afterwards forced tbspill code. These additional
accesses to the memory degrade the performance. Anothdeprthat function inlin-
ing entails is a possible degraded cache behavior. Withaeasing code size, critical
sections may not remain in the instruction cache but areesVioy the inlined func-
tion. The resulting cache conflict misses slow down the @ogexecution. Further-
more, cache performance may suffer from inlining since toality of references is
decreased.

The decision if a particular function should be inlined isdedoy compiler heuris-
tics. They try to predict if the application of the optimizat will be beneficial. The
most common heuristic found in literature and many compiiethe consideration of
the callee size. This parameter can be expressed as the nofrhizgh-level expressions
or machine instructions. If a predefined value is exceedguattion inlining is omitted.
Usually, this heuristic is conservative and allows inlgpiof only small functions.

However, due to the complex interaction between functidiniimy and other opti-
mizations as well as the architecture, a simple heuristeth@n the callee size is not

180
160
140
120 7
100

E O3 with inlining

80 1
60 1
40 1
20

Relative WCET [%]

Benchmarks

Fig. 1. Negative Impact of Function Inlining on WCET

sufficient for an effective run-time optimization. Even wer the simple heuristic may
inline inappropriate functions which substantially detgahe system performance.
This is illustrated in Figure 1 showing the influence of fuantinlining of selected
real-world benchmarks. The bars represent relative WCHimasons for the code
compiled with the highest optimization level (O3) and emrahhlining using the sim-
ple heuristic based on the callee size which is bounded txpfessions, while 100%
corresponds to the WCET for O3 with disabled inlining. It ¢enseen that the WCET
was increased by up to 59.1% for thé21 encodebenchmark. This figure shows that
the optimization is highly dangerous and might adversdlcathe program.

Hence, it is important to correctly decide whether to applydtion inlining, or not.
The decision should be based on empirical observation,|dtlmmueasily understand-
able, and easily be put to practice. Machine learning tegles demand a fraction of
effort compared to the hand-crafted heuristic generafibe.task is then to extract fea-
tures that characterize a function call, thus establistiiegobservations to choose an
appropriate learning algorithm, and to integrate the legrresult into the compiler.

4 WCET-driven Function Inlining

In this section, we begin with a brief introduction to supsed learning and discuss a
technique called random forests which is employed for thestraction of our inlining
classifier. Next, we present our approach to gather stadicffes for the WCET-driven
heuristic. Finally, we show how the heuristic is integratet our optimizing com-
piler and how the WCET-driven function inlining is applieslachieve a high WCET
minimization while keeping the code expansion as small asipte.

4.1 Supervised Learning
Figure 1 emphasizes the problem encountered with functitming. When inappro-
priate functions are optimized, the resulting maximal paog run time can substan-
tially increase. The reasons are non-trivial interactibatveen interfering optimiza-
tions as well as the memory system. These complex interectidhich represent a
high-dimensional space can hardly be analyzed manualiyntbdisuitable combina-
tion of parameters that helps to make good decisions aboighwhnctions should
be inlined without degrading the system performance. Iritah] the simple heuris-
tic presented in Section 3 is conservative and does not exfiie entire optimization
potential. Thus, it would be desirable to find an inlining hstic that on the one hand
prevents negative inlining decisions leading to a perforceadegradation, but on the
other hand performs inlining for all functions that promé&s@/CET reduction.
Machine learning techniques provide a flexible, automatit @daptive framework
to effectively handle a large number of parameters whiadwadlan evaluation of com-
piler optimizations in specific scenarios. The applicatdriunction inlining poses a

typical classification problemi. e. we are interested in a classification rule that decides
if a particular function in a particular context should bériad or not.

Classifier learning is performed on observatiens = 1, ..., N that were gathered
in the past, together with their binary classificationlédel) y; € {0,1},i =1, ..., N.
Due to the given classifications, this learning task is dalgpervisedAn example is a
pair(z;, y;). The set ofN examples used for learning is called thening set Another
set of examples, thealidation setis used for the evaluation of the learning result: the
learned classifier is applied to observations and its oughgls are then compared to
the true labels. If the true label and the one outputted byahmed classifier are the
same, the observation was classified correctly, otherwisean error. Theaccuracyof
a learning result is simply the ratio of all correctly cldigsl observations divided by
the total number of observations in the validation set.

Here, an observatian; is represented byfaature vectorThe features are extracted
from the source code as well as information obtained frofWIBET analysis. Labe};
denotes whether a function caltharacterized by, should be inlined. For the training
and validation set, the labels were determined by a stati€W&halysis. We measured
the global WCET twice, for the program compiled with O3 witidawithout inlining
function calli. If the WCET was decreased after performing the optimizeatiocall ;,
the label was set td indicating that a call with the characteristicsyields a WCET
reduction, otherwise the label was sebto

The task of training a classifier is to find a mapping from featectors to labels
such that the classification error is minimal or the accuiaaypaximal, respectively.
This model is used afterwards for the classification of neangxes that were not
considered during the training phase. For our WCET-awdirgrig the trained classifier
predicts for inlining candidates in new programs if theiliimg promises a WCET
reduction omitting an evaluation via a costly WCET analysis

There are several algorithms for supervised learning. Wheear models which
determine a hyperplane in the feature space separatintvpasid negative examples
often deliver highly accurate results even in high-dimenal spaces, their learning re-
sult is hard to understand and, hence, its plausibility adlly be checked. In contrast,
partitional approaches like decision trees can easilyteepneted. A decision tree splits
the set of examples according to the values of one featurectavcomponent). In each
subspace, this step is recursively repeated until all elestip a subspace belong to the
same class (i. e., have the samgalue). In other words, a decision tree consists of a
sequence of decisions represented by a tree. Each node petferms a test on the val-
ues of a single or several features, splitting the path basqubssible outputs. Leaves
in decision trees represent the final output, which is theipted class. To classify an
object, the tree is traversed on a particular path from tbémode to a leaf depending
on the test results based on the values of the feature vector.

Ensemble techniques which combine several learning seantt classify according
to the majority have shown to be robust. Hence, an ensembdie@sion trees is a
promising approach for our task.

Random Forests

Random forests consist of mamypruneddecision trees constructed from different
bootstrapsamples which are obtained from a training sebf size N by sampling
examples fromD uniformly and with replacement. In contrast to standardgnehere
node splits are based on all features from the trainingaetiom forests use a randomly
chosen subset of features to find the best split for each Atdkecounterintuitive strat-
egy turned out to be highly accurate and generates resultparable with other state-
of-the-art algorithms likeSupport Vector Machinesr Adaboos{21]. Other important
advantages of random forests are their speed, their redssstgainsbverfitting and

their user-friendliness since just two parameters (nunaberonsidered features for
node splitting and number of trees in forest) have to be define

To predict novel data, the object under consideration ssifi@d by each of the trees
in the forest and the outputs are aggregated by a majority, ua. the most frequently
predicted class is the final output.

Random forests provide an unbiased estimation of the Gilzetson error. For each
constructed decision tree based on the bootstrap samplepdes not in the bootstrap
sample, calledut-of-bagdata, are predicted. In a second step, these predictions are
aggregated to calculate the error rate. The probabilitypémtstrapping of sampling a
particular example from a set of sizeV is 1/N, while the probability of not to sample
iis 1 —1/N. Thus, the probability thatis not sampled afteN iterations is

1 N
<1 — N) ~e 1 =0.368 (1)

This means that the training set contains approximateB6f examples. Thus 36.8%
of examples are not used in the training phase and the etiorag®n is pessimistic.

Combining understandability, efficiency, and robustness |ed to the decision to
apply random forests to learning heuristics for functidming.

4.2 Feature Extraction for WCET Minimization

Before machine learning can be applied, the training setdlas established. In partic-
ular, an appropriate description of the inlining candidateed to be determined. Which
features capture the main function characteristics ttiltgnce the WCET on a modern
processor? How to extract these features from the program?

The feature extraction is based on the high-level interatedepresentation (IR) of
the program. In addition, further features are obtainemhfacstatic WCET analysis. As
will be discussed in more detail in Section 5, WCET inforraatihat is provided by the
static analyzer at the low-level is automatically transfed into the high-level IR and
made accessible to the feature extraction. We present atsuitibe 22 features used in
this paper that are considered to be most significant for ldesification, as indicated
by the results of th&ariable Importance Measumiscussed later in Section 6.

First, integer features, generally having a value rangé,pfire presented. It should
be noted that all relative features are given as percentatpeseas WCET estimations
are measured in cycles. Furthermarellee denotes the function to be inlined, while
caller represents a function containing a call to the inline caaigid

e Caller/callee size Size of caller/callee measured in number of expressions

e Calls in caller: The number of function calls within the caller

e Caller/callee WCET: Accumulated WCET of the caller/callee over all calling
contexts, i. e. for all invocations

e Call-related WCET: The WCET of a function related to a particular function call
i. . the product of the function’s WCET for a single invooatiand the execution
frequency of the corresponding call

e Call execution frequency Worst-case execution counts for a particular call ex-
pression derived from the WCET analysis

o Relative caller/callee WCET. The relative WCET of the caller/callee considered
for all calling contexts w.r.t. the overall program WCET

Next, two important binary features are introduced.

e One-Call function: This feature indicates if the considered function is iretky
exactly one call expression.

e Callin loop:When a call to the inline candidate is contained in a loois, fiature
is assigned the valuges.

This selection of features indicates that our approacthifgigntly differs from previous
works. Monsifrot [9] or Stephenson [10] aim at a ACET redoctand exclusively con-
sider features that are extracted from the source codenimasi, we focus on heuristics
for a WCET minimization. Besides the consideration of feasubased on the source
code, our approach additionally includes valuable featthrat are provided by a static
WCET analyzer. These key parameters allow a constructionliofng heuristics for
an efficient WCET minimization.

Register Pressure Analyzer

As discussed in Section 3, function inlining can potengialcrease the register pres-
sure. Calling a functiorcaller-savedegisters are saved before the callee is entered and
restored after returning to the caller. This context savabtas the usage of saved reg-
isters in the callee. Performing function inlining and ephg the call by the callee’s
function body makes the context save redundant. Howevarcaasequence, the num-
ber of registers that can be exploited in the inlined funci®decreased, leading to a
higher register pressure in the caller.

Increasing the register pressure can potentially lead tereemgtion of spill code
which has a negative effect on the program run time. IdealWCET-driven inlining
heuristic should be able to predict whether inlining a fimttields spill code in or-
der to prevent the application of this optimization and tt@pate an increase in the
WCET. For this purpose, thegister pressure analyzer (RP#Aps developed.

The RPA takes those registers into account that can be padterspilled, i. e. all
address and data registers for which the compiler can peosipitl code. In our case,
input for the RPA is the program under analysis in its loneleepresentation after the
register allocation. Since our compiler incorporates laoligh- and a low-level IR, we
have full control of the generated code and the mapping batweth code represen-
tations. Thus, results provided by the RPA can be easilgasdito the corresponding
high-level constructs.

For the feature extraction, the RPA provides significanbiimfation for the clas-
sification of inline candidates based on the register thstion. Following additional
features are taken into account:

e Number of live address/data registers across callIhese are registers that must
be preserved across a call, i. e. their lifetime spans aloéilling of calls crossing
a high number of lifetimes increases the probability folls.

e Max. number of address/data registers with co-existing létimes The maximal
number of registers that are simultaneously live within iction. This feature is
also an indicator for potential spill code. Even functiontghva small number of
registers with a lifetime crossing a call may be potentidllisg candidates when
the inlined function has a high register pressure.

Further features characterizing the call to functforepresent the execution fre-
quency of the basic blocks containing the call expressidi tiee number of call ex-
pressions irff, the number of call expression foand the number of call expressions to
functionf lying on the worst-case execution time path.

4.3 Label Extraction

The second phase of establishing the training set is thergore of labels for the cor-
responding feature vectors. The labels are automaticatigrchined. For this purpose,
our compiler WCC is run twice. In a first run, the analyzed pamg is compiled with
the highest optimization level (O3) with disabled compdestandard function inlin-
ing. For this program, the overall program WCETC ET,..; is computed and serves
as reference value. In a second run, the same program is @wajniled with O3 and
function inlining disabled for all function calls exceptfiunction calli. Function call

1 is the currently considered inlining candidate for whicheample in the learning
set is generated. For this generated code where exclushelfunction at call was
inlined (independent of the function’s size), the prog@WCET W CET; is deter-
mined. Thus, a comparison between both WCETSs indicatesntheence of inlining
function call: on the WCET. The value dfibel; is determined as follows:

_if WOET100g, < g9y
label; = {yes WCET,.; /0= 9970 @

no, otherwise

The value of 100% means that inlining of function @dilad no influence on the WCET.
If the value is less than 100%, a WCET reduction was achiestbéywise inlining had
a negative impact on the worst-case performance. We setitbghiold to 99% , i. e. if
inlining at calli reduced the program’s WCET by at least 1%, this call is caneid as
being beneficial. This strategy is motivated by the poténtide expansion which is a
crucial issue in particular for embedded systems. The ioidsnsures that a minimal
WCET reduction of less than one percent coming with a pa#ntiarge code size
increase is not classified as a positive inlining example.

The label extraction is automatically performed for allétion calls in the program
that allow function inlining. For each call, in a first step features are extracted and in
a second step the corresponding label is determined. Tiasepées are collected for
all considered benchmarks and serve as input to the aumgeteration of a heuristic
as described in the following.

4.4 Application of WCET-driven Function Inlining

One of the advantages of random forests is the possibilityaoforming the classifi-
cation rules into equivalent programming language coog&risince random forests are
a collection of decision trees representing tests of camditconcerning the features,
they can be translated intd - t hen- el se statements that are incorporated into the
compiler as optimization heuristics.

To achieve a maximal WCET reduction simultaneously with alfincrease of
code size, we propose a complementary heuristic for thetsabeof inlining candi-
dates. Except for some specialized compilers like the HPtdXilim compiler perform-
ing a selective inlining calledhline specializatiof22], ordinary compilers consider
inlining candidates in a top-down manner by traversing thece code. In contrast, we
start with the optimization of callees having the largestBYCThese are usually func-
tions that promise the largest WCET reduction when inliridfollowing this order,
we exploit the maximal optimization potential with the nmral number of transforma-
tions, thus avoiding a too heavy code expansion in the firstnigation steps. After
finding such an inlining candidate with maximal WCET, our ebeuristic is applied
to decide if function inlining should be performed.

5 Experimental Environment

To indicate the efficacy of our WCET-driven function inliginevaluation on a large
number of different benchmarks was performed. The 41 beadksitome from the the
test suites MRTC WCET Benchmark Suite [23], NetBench Sa#g,[MiBench [25],
and our own collection of real-world benchmarks containinigcellaneous applica-
tions, e.g. an H263 coder or a G.721 encoder. The size of thehb@ark codes ranges
between 58 and 12082 Bytes.

The tests are conducted using our WCET-aware C compiler WWE@é& Infineon
TriCore TC1796 processor using two different types of meesoiThe first memory is
the program scratchpad memory (SPM) with a capacity of 48&khe second mem-
ory utilized in our experiments is a 2 MB cached program flagmmory. Our WCET

ANSI- ﬂ ICD-C High-Le ﬂ LLIR Cod
Source Parser ICD CIR Selector
L —|aiT WCET
S
Back-
Machine Learnmg m I
Code
$ Generator
RPA i

WCET-
Optimized
Assembl

WCET-Driven
Function
Inlining

Fig. 2. Workflow for WCET-driven Inlining

analyzer allows the modification of the I-cache capacitytal@® cache effects, which
are crucial for the code expansion during inlining, into@aatt, a cache capacity of 2
KByte was chosen. Due to architectural reasons, the systhiavior differs depending
on whether the program is executed from the SPM or flash. Wnispllected two dif-
ferent learning sets for each memory type, each of whichatoe75 feature vectors
that were extracted from all benchmarks with approximat@B6 ofnegative examples
i. e. function inlining had a negative effect on the WCET floese cases. This number
points out that function inlining is an optimization thatosiid be used with caution.
The number of extracted examples ranges from 1 example falt Benchmarks up to
59 examples for larger benchmarks lig@21 encode

The workflow is depicted in Figure 2. Before our WCET-drivertiriing can be
applied, the heuristics are trained offline. As describatiéprevious section, the con-
struction of the learning set for supervised learning issdamtomatically. After parsing
the C source code, the program is translated into the higdl-letermediate represen-
tation ICD-C IR [26]. In the next step, a code selector is useanslate the program
into the low-level IR called LLIR [27]. Finally, the prograimpassed to Absint's WCET
analyzer aiT. This workflow is depicted by solid arrows.

Subsequently, WCET information generated by aiT is immbitéo our compiler.
To make it accessible to the feature extraction in the ICORCd Back-Annotation,
which establishes a connection between LLIR and ICD-C IReatj using the code
selector, is performed in order to translate WCET inforomatirom the low- to the
high-level IR. After this step, each ICD-C object is annethtvith WCET informa-
tion that is derived from the corresponding LLIR object ctarpart. In addition, the
register pressure analyzer (see Section 4.1) collectsnration about the allocation of
physical registers in the LLIR. Together with the ICD-C IRetRPA and the Back-
Annotation provide information about the features of ctdlshe inlining candidates.
With the WCET information from the Back-Annotation, the éddand the feature vec-
tors are determined and finally passed to the machine leamrmar case the todRapid-
Miner [28], to generate the random forests based inlining hécsisAfter this learning
phase, the generated heuristics are incorporated int@>bed optimizer of our com-
piler and exploited by the WCET-driven function inliningh& learning workflow and
the application of the novel optimization are shown by ddsdreows.

6 Results

Worst-Case Execution Time

In order to evaluate the effectiveness of our machine lagrbased (MLB) inlining
heuristic and to compare it against the standard ACET imdjiieuristics, we measured
the WCET for the real-world benchmarks after the code t@msétion. Table 1 shows
the overall results achieved for the two memory types SPMtheatached flash. The
reference value is the WCET of the program compiled with tighést optimization

E O3 ICD-C Inlining 50 MWO3 ICD-C Inlining 100 103 MLB Inlining

Relative WCET [%]

Benchmarks

Fig. 3. Relative WCET after Inlining

level (O3) with disabled function inlining. In the first rothe standard ICD-C inlin-
ing heuristic was used (inlining functions smaller than %pressions) and the relative
WCET (average for all benchmarks) was estimated. For a cosgpe in the second
row the ICD-C inlining heuristic was increased to 100 expi@ss. Finally, the last row
represents the relative WCETs when the standard heusstapilaced by the machine
learning based heuristic. The results point out that our Imewvistic outperformed the

|WCET - SPM |WCET - Flash

03 ICD-C Inlining 50 101.7% 100.3%
O3 ICD-C Inlining 100 104.6% 105.5%
MLB WCET-driven Inlining|92.6% 94.1%

Table 1. Overview of Resulting WCET

standard hand-crafted heuristic (limiting callee size Goe%pressions) on average by
9.1% for the scratchpad and by 6.2% for the flash memory. Wiestandard inlining
heuristic is increased to 100 expressions for the inliniagdidates, our MLB inlin-
ing achieves a WCET reduction of 12% for the SPM and 11.4%feiflash memory.
Moreover, comparing row two and three in Table 1, the conatusan be drawn that it
is more beneficial to have a conservative heuristic thatepsedptimization of smaller
functions since inlining of larger function might have aostg negative effect on the
program run time.

In general, unlike the standard ICD-C heuristic, the MLB tigic never signif-
icantly increases the WCET in all our experiments. For twaodbenarks a marginal
WCET increase of less than 2% was observed. Figure 3 showlectezk subset of
the 41 considered benchmarks omitting benchmarks for wdoafiparable results were
achieved for the MLB and standard heuristic, i. e. inliningswperformed or prevented
in both cases. The bars represent relative WCET estimatwribe flash, with 100%
corresponding to the WCET for O3 with disabled inlining. @&ibenchmarks are dis-
cussed in more detail which summarize the typical impacuofreuristic.

The benchmarkrc benefits from the new heuristic since it prevents inlining. |
contrast, the standard heuristic performs inlining of fimcticrcl which enlarges the
caller preventing the compiler to apply further optimipat like procedure cloning
with code size constraints yielding an WCET increase of %0.Moreover, inlining
leads to additional spill code within a loop that originatiyntained the function call.

Another typical example is benchmagkpintwith a strong WCET reduction of
69.0% w.r.t. the standard ICD-C inlining. The reason fos MWCET improvement is
an additional optimization potential that was establisivéti our MLB heuristic. The
benchmark contains a functi@xpinthaving more than 100 expressions, thus not con-

|Code Size - SPMCode Size - Flash

03 ICD-C Inlining 50 102.9% 103.0%
O3 ICD-C Inlining 100 107.6% 107.8%
MLB WCET-driven Inlining|94.2% 95.3%

Table 2. Relative Code Size after Inlining

sidered for standard inlining. In contrast, our heuristfdakh does not use the function
size as the only restriction, permits inlining and thus déesln additional application
of constant propagatiofior some functions parameters which in turn makastant
folding possible. This additional optimization potential helpsstgnificantly improve
the code quality.

The only negative example encountered during our expetsraises for bench-
mark matmultwhere the standard heuristic performed better than our My @ach.
With standard inlining, a small function was inlined levgireg further optimizations,
while our classifier predicted to prevent inlining. Thisdoarate decision can be at-
tributed to the small number of feature vectors (61 positixamples) used to train
the model for classifying an inlining candidate as bendfiSach classification errors
are typical for small learning sets and with an increasedbarmof positive examples
inaccurate decisions can be expected to be smaller.

Code Size Increase

Table 2 shows the influence of function inlining on the code gor the scratchpad
and flash memory, with 100% being the code size of the bendhoaanpiled with O3
and disabled inlining. Unlike standard inlining, our MLB topization could reduce
the code size on average by up to 5.8%. The reasons are twbfodtl our heuristic
performed in total less function inlining than the stand&@-C inliner. Our heuristic is
more conservative and prevents optimization in potegtiddingerous situations where
a WCET increase might be expected. This explains why the erpansion is smaller
than for ICD-C inlining. Second, some of the inlined funascare so calledne-call
functions These are functions that have a single function call withensource code.
By inlining them and assuming that the code is not executedtbgr programs, the
original function can be removed from the source code. litifg the calling overhead
is avoided and the inlined function body can be further oftéd. This leads to smaller
code than for the non-inlined code as can be seen in the hasbfrthe table. Thus,
negative effects on the cache performance due to a codersimase coming from
inlining are very unlikely.

|Accuracy - SPM |Accuracy - Flash

Correctly classified examples 84.0% 83.5%
Correctly classified positive example6.1% 19.2%
Correctly classified negative examp|@8.7% 99.5%

Table 3. Accuracy and class recall based on LOOCV

Accuracy of Classification

The quality of a classifier can be estimated by the classificarror. This is an impor-
tantissue since we are interested in the accuracy of owgifitador novel programs not
considered in the training phase. To evaluate our randoesfeheuristic, we apply a
common approach calldceave-One-Out Cross Validation (LOOCW)subdivides the
learning set (consisting of all collected feature vectonts) two classes, a training and a
validation set. In particular, LOOCYV eliminates a single@mple from the learning set
of sizen, exploits the remaining — 1 examples to learn a classifier and finally uses the
eliminated example to validate the trained model. Thisdedion is repeated times

Calle size

Calls in caller
Callee WCET
Call-related WCET

Max. num. of D-regs. with co-existing lifetimes

Caller size

Static Features

Caller WCET

Call exec. frequency

Max. number of live D-regs.

0 1 2 3 4 5 6 7 8

Gini Index

Fig. 4. Variable Importance Measure

for each example considered once as validation set. Thi®appis best suited for ap-
plications with only a small number of available learningeples since the learning
algorithm can be precisely trained with almost all examples

Table 3 summarizes the LOOCYV results based on the critagioinindex which
reaches a value of zero when only one class is present at adeéided by a particular
static feature. The first row represents the accuracy wihdeéext two lines indicate the
so-callecclass recalffor the positive and negative examples. In total, 84.0% &h8%
of the examples could be correctly classified for SPM and tshflrespectively. It can
be observed that the classification error for positive eXam(elassifier predicts inlin-
ing as beneficial) is significantly larger than the error fa hegative tests. A reason for
that is the small number of positive examples used in ourrx@ats. Thus, the learn-
ing algorithm was not able to generate an accurate modebfgitipe examples as was
accomplished for the negative examples. In general, thessdts are fully satisfactory
for our WCET-driven function inlining since we focussed anacurate classification
of negative examples to avoid strong performance deg@auadiue to incorrect inlining
decisions.

Variable Importance Measure

One advantage of random forests is their capability of estimg the importance of
variables for the classification, callédpurity measuresThe importance of a variable
is determined by its contribution for an effective classifion and reveals if the fea-
tures chosen for the learning algorithm are appropriatgir€i4 depicts the importance
of attributes discussed in Section 4.1 based on the ginkindle expected, the most
important variable for the classification of inlining caddies is the size of the callee.
This is also the attribute that is found in inlining heugstof most compilers. However,
as could be seen with the WCET results, the exclusive coratida of this attribute is
often not sufficient and might lead to an inappropriate intjdecision.

It can be also seen that attributes concerning the prograwrst-case behavior
have a high importance. This underlines that an optimiraiiiat is tailored towards
a WCET minimization must take WCET information during tharl@ing phase into
accout. Last but not least, Figure 4 reveals that the at&riblaracterizing the number
of data registers with co-existing lifetimes, being an @adion for potential spill code,
is important. Thus, a register pressure analyzer is a safi@@icial information when
dealing with code-size critical optimizations.

Simulated Time

Finally, we measured the simulated time of the benchmarkgyusur MLB WCET-
driven heuristic in order to compare the heuristic’s imgatthe ACET. In general, the
results for the simulated time performed slightly worsentfa the WCET. However, in
contrast to general-purpose machines, this small incieabe simulated time is usu-
ally not crucial for embedded systems for which the adher@ficeal-time constraints

is the key objective. For some benchmarks, éirgour MLB heuristic yields a WCET
reduction of 6.0% on the one hand and an increase in the dimadiane of 1.9% on the
other hand. This shows that our heuristic is aiming at arcéifie WCET minimization
which can be only accomplished when a specific cost funct@onsidered.

Compilation Time
Our WCET-aware function inlining has an impact on the coatjoh time which mainly

results from the feature extraction. During this phase,dhginal program must be
passed to aiT in order to obtain WCET information about theecd he evaluation of
the MLB heuristics which are simpléef - t hen- el se statements is in contrast negli-
gible.

7 Conclusions and Future Work

Machine learning was recently employed to automaticallyegate compiler heuristics
for the improvement of the system’s average-case perfazemarhese techniques are
promising since they reduce the complexity of compiler glediy relieving compiler
writers of tedious heuristic tuning. In addition, the ausdizally generated heuristics
often outperform hand-crafted models.

In this paper, machine learning techniques are integratethé first time into an
optimizing compiler to automatically reduce the WCET. Wendastrate how random
forests, a supervised learning technique, can be expliitélde construction of WCET-
centric compiler optimization heuristics. For this purppoae developed an automatic
system to extract program features based on data from a WG@&yz&r. This data is
provided by WCC's Back-Annotation which transforms warase execution data from
the low-level to the high-level IR. Subsequently, this datased to construct a heuris-
tic for the optimization function inlining. Our novel WCEIHven inlining outperforms
standard inlining heuristics by up to 9.1% on average WWEET reduction. We also
show that random forests are well suited for compiler h&agsind yield classifiers of
high accuracy. In our experiments, leave-one-out crosdatadn estimated a predic-
tion rate of 84.0% and 83.5% for SPM and flash memory, respgtin addition, we
present results of the variable importance measure indgcattributes that are most
relevant for an effective classification of inlining candies.

In the future, we intend to automate the incorporation ofitan forests heuristics
into our WCET compiler, i. e. the textual tree representatibthe classifier should be
automatically parsed into equivalent programming languegnstructs and not trans-
lated manually as is done currently. This would enable, uitaxh to the current esti-
mation of the accuracy, an automated LOOCV w.r.t. the WCEH, tD learn iteratively
a heuristic from all but one benchmark and subsequentlym@te the WCET for that
benchmark applying the learned heurisitc. We also planudysthe potential of other
machine learning approaches for further optimizationsitunmize the WCET. Last but
not least, we work on the integration of further benchmarkiding more examples
that improve the accuracy of generated compiler heuristics

Acknowledgments
The authors would like to thank Absint Angewandte Inforik&mbH for their support
concerning WCET analysis using the aiT framework.

References

1. Absint Angewandte Informatik GmbH: Worst-Case Exeaqufféme Analyzer aiT for Tri-
Core. (2008)

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Campoy, A.M., Puaut, |., et al., A.P.l.: Cache contenkscion for statically-locked instruc-
tion caches: An algorithm comparison. In: Proc. of ECRTSIy(2005)

. Vera, X., Lisper, B., Xue, J.: Data cache locking for higheogram predictability. In: Proc.
of SIGMETRICS. (July 2003)

. Lokuciejewski, P., Falk, H., Marwedel, P.: WCET-driveadbe-based Procedure Positioning
Optimizations. In: Proc. of ECRTS. (July 2008)

. Zhao, W., Kulkarni, P., Whalley, D., et al.: Tuning the WCBf Embedded Applications.
In: Proc. of RTAS. (May 2004)

. Lee, S, Lee, J., Park, C.Y., Min, S.L.: A Flexible Traddwétween Code Size and WCET
using a Dual Instruction Set Processor. In: Proc. of SCOPEShtember 2004)

. Lokuciejewsi, P., Falk, H., Marwedel, P., Henrik, T.. WGEBriven, Code-Size Critical
Procedure Cloning. In: Proc. of SCOPES. (March 2008)

. Falk, H., Lokuciejewski, P., Theiling, H.: Design of a WGBware C Compiler. In: Proc.
of ESTIMedia. (October 2006)

. Monsifrot, A., Bodin, F., Quiniou, R.: A Machine Learnidgproach to Automatic Produc-

tion of Compiler Heuristics. In: Proc. of AIMSA. (Septemt2602)

Mark Stephenson and Saman Amarasinghe: Predicting fators using supervised clas-

sification. In: Proc. of CGO. (March 2005)

Stephenson, M., Amarasinghe, S., Martin, M., O'RelllyM.: Meta Optimization: Improv-

ing Compiler Heuristics with Machine Learning. SIGPLAN N88(5) (2003)

McGovern, A., Moss, E.: Scheduling Straight-line Codimg Reinforcement Learning and

Rollouts. In: Proc. of NIPS. (September 1999)

Cavazos, J., Moss, J.E.B.: Inducing Heuristics to Detithether to Schedule. SIGPLAN

Not. 3%(6) (2004)

Calder, B., Grunwald, D., Jones, M., Lindsay, D., MardinMozer, M., Zorn, B.: Evidence-

based Static Branch Prediction Using Machine Learning. AB#hs. Program. Lang. Syst.

19(1) (1997)

Cooper, K.D., Schielke, P.J., Subramanian, D.: OptimgiFor Reduced Code Space using

Genetic Algorithms. SIGPLAN NoB4(7) (1999)

Guo, Y., Subramanian, D., Cooper, K.D.: An Effective &lod8earch Algorithm for an Adap-

tive Compiler. In: Proc. of SMART. (January 2007)

Davidson, J.W., Holler, A.M.: Subprogram Inlining: Ausly of its Effects on Program

Execution Time. Technical report, Charlottesville, VA, N§.989)

Cooper, K.D., Hall, M.W., Torczon, L.: An Experiment itnline Substitution. Softw.

Pract. Exper21(6) (1991)

Cavazos, J., O'Boyle, M.F.P.: Automatic Tuning of linig Heuristics. In: Proc. of Super-

computing. (November 2005)

Muchnick, S.S.: Advanced Compiler Design and Impleson. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA (1997)

Freund, Y., Schapire, R.E.: Experiments with a New BagsAlgorithm. In: Proc. of Int.

Conference on Machine Learning. (June 1996)

Chakrabarti, D.R., Liu, S.M.: Inline Analysis: Beyondl&ction Heuristics. In: CGO '06:

Proceedings of the International Symposium on Code Geoaranhd Optimization, Wash-

ington, DC, USA, IEEE Computer Society (2006) 221-232

Malardalen WCET Research Group: WCET Benchmarks.

http://www.mrtc.mdh.se/projects/wcet (September 2008)

Memik, G., Mangione-Smith, W.H., Hu, W.: NetBench: A Bamarking Suite for Network

Processors. In: Proc. of ICCAD '01. (November 2001)

Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mydg, Brown, T.: MiBench: A

Free, Commercially Representative Embedded Benchmatk.Sui: Proc. of International

Workshop on Workload Characteristics. (December 2001)

Informatik Centrum Dortmund: ICD-C Compiler frameworkttp://www.icd.de/es/icd-c

(September 2008)

Informatik Centrum Dortmund: ICD Low Level IntermedigRepresentation Backend In-

frastructure (LLIR) — Developer Manual. Informatik CentriDortmund (September 2008)

Mierswa, 1., Wurst, M., Klinkenberg, R., Scholz, M., EgIT.: YALE: Rapid Prototyping

for Complex Data Mining Tasks. In: Proc. of KDD. (August 2006

