
Automatic WCET Reduction by Machine Learning
Based Heuristics for Function Inlining ⋆

Paul Lokuciejewski1, Fatih Gedikli1, Peter Marwedel1, Katharina Morik2

1 Computer Science 12 (Embedded Systems Group)
2 Computer Science 8 (Artificial Intelligence Group)

TU Dortmund University
D-44221 Dortmund, Germany

FirstName.LastName@tu-dortmund.de

Abstract. The application of machine learning techniques in compilerframe-
works has become a challenging research area. Learning algorithms are exploited
for an automatic generation of optimization heuristics which often outperform
hand-crafted models. Moreover, these automatic approaches can effectively tune
the compilers’ heuristics after larger changes in the optimization sequence or they
can be leveraged to tailor heuristics towards a particular architectural model. Pre-
vious works focussed on a reduction of the average-case performance.
In this paper, learning approaches are studied in the context of an automatic min-
imization of the worst-case execution time(WCET)which is the upper bound
of the program’s maximum execution time. We show that explicitly taking the
new timing model into account allows the construction of compiler heuristics
that effectively reduce the WCET. This is demonstrated for the well-known opti-
mization function inlining. Our WCET-driven inlining heuristics based on a fast
classifier calledrandom forestsoutperform standard heuristics by up to 9.1% on
average in terms of the WCET reduction. Moreover, we point out that our classi-
fier is highly accurate with a prediction rate for inlining candidates of 84.0%.

1 Introduction
Today’s embedded systems are characterized by both efficiency requirements and crit-
ical timing constraints. Average-case performance, powerconsumption and resource
utilization are objectives describing the efficiency of a system. Timing constraints are
expressed by the worst-case execution time. Especially forsafety-critical application
domains such as automotive and avionics, the satisfaction of the WCET must be guar-
anteed to avoid system failure. Moreover, the precise knowledge of this key parameter
is mandatory for various scheduling algorithms and is required for an efficient develop-
ment of hardware platforms which have to meet real-time constraints.

To cope with the complex requirements imposed by modern embedded systems,
software developers rely on a high-level language and an optimizing compiler. Typi-
cally, the goal of state-of-the-art compilers is the automatic reduction of the average-
case execution time(ACET)or the energy dissipation. In contrast, a compiler-based
reduction of the WCET is still a novel research area with a small number of published
approaches. Similar to feedback-directed compilation relying on profiling information
to optimize the average-case performance, WCET-driven compiler optimizations re-
quire the integration of a static WCET analyzer into a compiler framework. The ana-
lyzer provides worst-case timing information that allows modelling of the longest path
in the control flow graph (CFG), the so-called worst-case execution path (WCEP). The

⋆ The research leading to these results has been partially funded by the European Community’s
ARTIST2 Network of Excellence and by the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement no 216008.



objective of a WCET optimization is the minimization of thispath which implicitly
reduces the program’s WCET.

The development of heuristics for compiler optimizations which efficiently reduce
a given objective for a broad range of applications is a tedious task which requires
both a high amount of expertise and an extensive trial-and-error tuning. The reasons are
twofold. First, the advent of complex computer architectures complicates the develop-
ment of heuristics. Optimizing compilers base their decisions on abstract architecture
models. However, the construction of precise models is a time-consuming process, thus
compiler writers are often constrained to employ inaccurate abstractions not able to cap-
ture all relevant architectural features. The result is a set of universal compiler heuristics
that are not capable of exploiting a particular target and might even have a negative im-
pact on the program to be optimized. Second, compiler optimizations are not performed
separately but within a sequence of interfering optimizations. Since optimizations might
have conflicting goals, disadvantageous interactions can be observed. However, for-
mal models expressing interactions between optimizationsare hardly known. Compiler
writers are forced to either tune a heuristic for a given optimization sequence that must
not be changed, or their heuristics are based on conservative assumptions which do not
allow the exploration of the program’s optimization potential.

A solution to this dilemma is the application of machine learning (ML) approaches
to automatically generate heuristics. The key advantage oflearning techniques is their
capability to find relevant information in a high dimensional space, thus helping to un-
derstand and to control a complex system. Providing a description of the parts of the
program to be optimized, so-calledstatic features, a machine learning algorithm au-
tomatically learns a mapping from these features to heuristic parameters. Using the
learning result enhances the flexibility of a compiler framework. Exchanging the tar-
get architecture or modifying the optimization sequence only requires an automatic
re-learning to adjust heuristics. Thus, machine learning helps to reduce the efforts of
developing compiler optimizations which is crucial in today’s rapidly evolving market.

In this paper, we exploit machine learning techniques for anautomatic WCET re-
duction. To our best knowledge, this is the first study applying supervised learning to
construct heuristics for a WCET-driven compiler optimization. We consider the well-
known optimizationfunction inliningwhich can have strong effects on the WCET. An
inappropriate decision to inline a function might degrade the worst-case performance
of the program. We improve standard heuristics for inliningby supervised learning of
a classifier that decides whether inlining of a particular function promises a WCET
reduction and should thus be applied.

The main contributions of this paper are as follows:

1. In contrast to other works, we explicitly consider a detailed timing model based
on the WCET which allows the extraction of features describing the program’s
temporal behavior.

2. Based on this data, we develop a novel high-level WCET-driven function inlining
that is tailored towards an effective WCET minimization.

3. Our machine learning classifier is highly accurate since it is based on an advanced
technique calledrandom foreststhat deliver a collection of decision trees.

The rest of this paper is organized as follows: Section 2 gives a survey of the related
work. The standard optimization function inlining is presented in Section 3. Section 4
introduces our WCET-driven function inlining as well as themachine learning tech-
niques used for the automatic heuristic generation. A description of our experimental
environment is given in Section 5, followed by results achieved on real-world bench-
marks in Section 6. Finally, Section 7 summarizes this paperand gives directions for
future work.



2 Related Work
Typically, compiler optimizations aim at the reduction of the ACET. With the growing
importance of embedded systems, new optimization goals, e.g. minimization of energy
dissipation or code size reduction, have moved into the focus of research. In contrast, an
automatic compiler-based reduction of the WCET, which is a crucial objective in real-
time systems, is still a novel research area. All the approaches rely on feedback data, the
WCET, from a static analyzer. Thus, timing information is provided for the low-level
intermediate representation (IR) of the program. In this work, we use the sophisticated
WCET analyzeraiT [1].

To reduce the worst-case performance of a program, the longest path must be opti-
mized. Most published works operate on a low-level IR and exploit memory hierarchies.
[2] presents an algorithm for static locking of instructioncaches based on a genetic algo-
rithm. [3] combines compile-time cache analysis with static data cache locking. In [4],
WCET-driven procedure positioning optimizations are presented. All these approaches
rely on a static cache analysis which is an essential part of aWCET estimation for
cache-based processors.

In [5], a genetic algorithm performing different low-levelstandard compiler opti-
mizations to the program under test is applied. The objective is to find an effective
optimization sequence that yields the largest reduction inthe program’s WCET. Zhao’s
paper is most related to our work since it also combines approaches from the domain
of machine learning to reduce the WCET. However, the main difference is that we use
supervised learning while [5] exploits an evolutionary algorithm. Furthermore, the op-
timizations are applied at different abstraction levels ofthe code.

A compiler guided trade-off between WCET and code size for anARM7 processor
was studied by [6]. They use a simplified timing analyzer to obtain WCET information
employed in their code generator to produce code that exploits this trade-off and uses
the two instruction sets (16-and 32-bit instructions) for different program sections.

Contrary to these low-level optimizations, WCET-driven high-level optimizations
require an additional intermediate step which transforms timing information into the
high-level IR and makes them accessible to the optimizations. In literature, this step
is calledBack-Annotationand was utilized in [7] where we exploit the high-level op-
timizationprocedure cloningto improve the precision of the WCET estimation. Also,
the WCET-driven function inlining presented in this paper is an optimization operating
on the program’s high-level IR. All of our optimizations areintegrated into the WCET-
driven C compilerWCCwhich is discussed in [8].

The application of machine learning techniques for the generation of compiler heuris-
tics has been studied for the reduction of the average-case performance. [9] uses super-
vised learning to generate heuristics forloop unrolling. Since the transformation might
have a negative impact on the program execution, their generated heuristic serves as a
classifier which decides if a loop should be unrolled. Loop unrolling is also considered
by [10]. The authors employ supervised learning techniquesto predict an appropriate
unroll factor. The utilization of genetic algorithms for a generation of compiler heuris-
tics for the optimizations hyperblock formation, registerallocation, and data prefetching
are discussed in [11]. Machine learning techniques (e. g., reinforcement learning) in the
context of instruction scheduling are presented in [12, 13].

Neural networks and decision trees are used in [14] to predict branch behavior based
on static features associated with each branch. In [15, 16],evolutionary algorithms are
used in an iterative adaptive compiler to find effective compiler phase orderings.

The influence of the optimization function inlining on the ACET has been studies in
different publications. In [17], equations representing the execution time performance
of inlined versions of the programs have been formulated revealing which factors affect
the speed of inlined code. The effectiveness of inlining hasbeen also evaluated in [18].



From the experiments, the authors of both works conclude that this optimization was
not always beneficial for the program performance. Inliningwas also studied in the
context of evolutionary algorithms. [19] uses genetic algorithms to tune the parameters
of a dynamic Java compiler’s inlining heuristics. This publication is close to the work
presented in this paper, but also differs in several important ways. Most importantly, our
goal is the minimization of the worst-case and not average-case performance. Further-
more, the authors employ a genetic algorithm while our approach utilizes supervised
learning of a classifier. In order to receive understandableresults which can easily be
converted intoif-then-else rules we have chosen the learning of random forests.

3 Function Inlining
Function inlining is a well known transformation replacingthe function call with the
body of the callee while storing the arguments in variables that correspond to function
parameters [20]. The optimization can be either applied by the compiler at the high-
level or low-level IR, or by the linker. Typically, inliningis applied to reduce the ACET.

It has several positive effects on the program execution. Bycopying the callee’s
function body into the caller, the calling overhead is reduced since the function call and
return instructions as well as the parameter handling is removed. Moreover, the control
transfer entailed with a call instruction is avoided, thus improving the pipeline behavior.

However, the most significant improvements result from additional optimizations
that could not be applied to the original code, since they were restricted by function
boundaries, but become possible after inlining. For example, the optimizationconstant
propagationcan replace all parameter variables with constant values used as arguments.
This enables a static evaluation of conditions which can be followed by dead code
eliminationremoving code within conditions evaluated to be always false. In addition,
inlining generates code for the callees which can be tailored to the context of a particular
call site. This code specialization usually provides further optimization potential.

The evaluation of the impact of function inlining on the program execution is chal-
lenging since the transformation influences different components, e. g. register alloca-
tion, instruction scheduling, and the usage of the memory hierarchy. Thus, its conse-
quences are not directly visible but are noticed as side effects. This complicates the de-
cision of whether a function should be inlined. Although it is widely believed that func-
tion inlining substantially improves the program run-time, different studies like [18]
came to the conclusion that its application is not always beneficial.

One of the main drawbacks of this optimization is the increased register pressure.
By inserting additional variables from the inlined function into the caller, possibly more
registers are required. If the callee is inserted in an area with an already high register
pressure, the register allocator is afterwards forced to add spill code. These additional
accesses to the memory degrade the performance. Another problem that function inlin-
ing entails is a possible degraded cache behavior. With an increasing code size, critical
sections may not remain in the instruction cache but are evicted by the inlined func-
tion. The resulting cache conflict misses slow down the program execution. Further-
more, cache performance may suffer from inlining since the locality of references is
decreased.

The decision if a particular function should be inlined is made by compiler heuris-
tics. They try to predict if the application of the optimization will be beneficial. The
most common heuristic found in literature and many compilers is the consideration of
the callee size. This parameter can be expressed as the number of high-level expressions
or machine instructions. If a predefined value is exceeded, function inlining is omitted.
Usually, this heuristic is conservative and allows inlining of only small functions.

However, due to the complex interaction between function inlining and other opti-
mizations as well as the architecture, a simple heuristic based on the callee size is not



0

20

40

60

80

100

120

140

160

180

bs
or

t
cr

c

g7
21

_e
nc

od
e

g7
21

_d
ec

od
e

lu
dc

m
p

m
d5

Benchmarks

R
e

la
ti

v
e

W
C

E
T

[%
]

O3 with inlining

Fig. 1.Negative Impact of Function Inlining on WCET

sufficient for an effective run-time optimization. Even worse, the simple heuristic may
inline inappropriate functions which substantially degrade the system performance.
This is illustrated in Figure 1 showing the influence of function inlining of selected
real-world benchmarks. The bars represent relative WCET estimations for the code
compiled with the highest optimization level (O3) and enabled inlining using the sim-
ple heuristic based on the callee size which is bounded to 50 expressions, while 100%
corresponds to the WCET for O3 with disabled inlining. It canbe seen that the WCET
was increased by up to 59.1% for theg721encodebenchmark. This figure shows that
the optimization is highly dangerous and might adversely affect the program.

Hence, it is important to correctly decide whether to apply function inlining, or not.
The decision should be based on empirical observation, should be easily understand-
able, and easily be put to practice. Machine learning techniques demand a fraction of
effort compared to the hand-crafted heuristic generation.The task is then to extract fea-
tures that characterize a function call, thus establishingthe observations to choose an
appropriate learning algorithm, and to integrate the learning result into the compiler.

4 WCET-driven Function Inlining
In this section, we begin with a brief introduction to supervised learning and discuss a
technique called random forests which is employed for the construction of our inlining
classifier. Next, we present our approach to gather static features for the WCET-driven
heuristic. Finally, we show how the heuristic is integratedinto our optimizing com-
piler and how the WCET-driven function inlining is applied to achieve a high WCET
minimization while keeping the code expansion as small as possible.

4.1 Supervised Learning
Figure 1 emphasizes the problem encountered with function inlining. When inappro-
priate functions are optimized, the resulting maximal program run time can substan-
tially increase. The reasons are non-trivial interactionsbetween interfering optimiza-
tions as well as the memory system. These complex interactions which represent a
high-dimensional space can hardly be analyzed manually to find a suitable combina-
tion of parameters that helps to make good decisions about which functions should
be inlined without degrading the system performance. In addition, the simple heuris-
tic presented in Section 3 is conservative and does not explore the entire optimization
potential. Thus, it would be desirable to find an inlining heuristic that on the one hand
prevents negative inlining decisions leading to a performance degradation, but on the
other hand performs inlining for all functions that promisea WCET reduction.

Machine learning techniques provide a flexible, automatic and adaptive framework
to effectively handle a large number of parameters which allows an evaluation of com-
piler optimizations in specific scenarios. The applicationof function inlining poses a



typicalclassification problem, i. e. we are interested in a classification rule that decides
if a particular function in a particular context should be inlined or not.

Classifier learning is performed on observationsxi, i = 1, ..., N that were gathered
in the past, together with their binary classification (orlabel) yi ∈ {0, 1}, i = 1, ..., N .
Due to the given classifications, this learning task is called supervised. An example is a
pair〈xi, yi〉. The set ofN examples used for learning is called thetraining set. Another
set of examples, thevalidation set, is used for the evaluation of the learning result: the
learned classifier is applied to observations and its outputlabels are then compared to
the true labels. If the true label and the one outputted by thelearned classifier are the
same, the observation was classified correctly, otherwise it is an error. Theaccuracyof
a learning result is simply the ratio of all correctly classified observations divided by
the total number of observations in the validation set.

Here, an observationxi is represented by afeature vector. The features are extracted
from the source code as well as information obtained from theWCET analysis. Labelyi

denotes whether a function calli characterized byxi should be inlined. For the training
and validation set, the labels were determined by a static WCET analysis. We measured
the global WCET twice, for the program compiled with O3 with and without inlining
function calli. If the WCET was decreased after performing the optimization to calli,
the label was set to1 indicating that a call with the characteristicsxi yields a WCET
reduction, otherwise the label was set to0.

The task of training a classifier is to find a mapping from feature vectors to labels
such that the classification error is minimal or the accuracyis maximal, respectively.
This model is used afterwards for the classification of new examples that were not
considered during the training phase. For our WCET-aware inlining the trained classifier
predicts for inlining candidates in new programs if their inlining promises a WCET
reduction omitting an evaluation via a costly WCET analysis.

There are several algorithms for supervised learning. Where linear models which
determine a hyperplane in the feature space separating positive and negative examples
often deliver highly accurate results even in high-dimensional spaces, their learning re-
sult is hard to understand and, hence, its plausibility can hardly be checked. In contrast,
partitional approaches like decision trees can easily be interpreted. A decision tree splits
the set of examples according to the values of one feature (a vector component). In each
subspace, this step is recursively repeated until all examples in a subspace belong to the
same class (i. e., have the samey-value). In other words, a decision tree consists of a
sequence of decisions represented by a tree. Each node in tree performs a test on the val-
ues of a single or several features, splitting the path basedon possible outputs. Leaves
in decision trees represent the final output, which is the predicted class. To classify an
object, the tree is traversed on a particular path from the root node to a leaf depending
on the test results based on the values of the feature vector.

Ensemble techniques which combine several learning results and classify according
to the majority have shown to be robust. Hence, an ensemble ofdecision trees is a
promising approach for our task.

Random Forests

Random forests consist of manyunpruneddecision trees constructed from different
bootstrapsamples which are obtained from a training setD of sizeN by sampling
examples fromD uniformly and with replacement. In contrast to standard trees where
node splits are based on all features from the training set, random forests use a randomly
chosen subset of features to find the best split for each node.This counterintuitive strat-
egy turned out to be highly accurate and generates results comparable with other state-
of-the-art algorithms likeSupport Vector Machinesor Adaboost[21]. Other important
advantages of random forests are their speed, their robustness againstoverfitting, and



their user-friendliness since just two parameters (numberof considered features for
node splitting and number of trees in forest) have to be defined.

To predict novel data, the object under consideration is classified by each of the trees
in the forest and the outputs are aggregated by a majority vote, i. e. the most frequently
predicted class is the final output.

Random forests provide an unbiased estimation of the classification error. For each
constructed decision tree based on the bootstrap sample, examples not in the bootstrap
sample, calledout-of-bagdata, are predicted. In a second step, these predictions are
aggregated to calculate the error rate. The probability forbootstrapping of sampling a
particular examplei from a set of sizeN is 1/N , while the probability of not to sample
i is 1 − 1/N . Thus, the probability thati is not sampled afterN iterations is

(

1 −
1

N

)N

≈ e−1
= 0.368 (1)

This means that the training set contains approximately 63.2% of examples. Thus 36.8%
of examples are not used in the training phase and the error estimation is pessimistic.

Combining understandability, efficiency, and robustness has led to the decision to
apply random forests to learning heuristics for function inlining.

4.2 Feature Extraction for WCET Minimization

Before machine learning can be applied, the training set hasto be established. In partic-
ular, an appropriate description of the inlining candidates need to be determined. Which
features capture the main function characteristics that influence the WCET on a modern
processor? How to extract these features from the program?

The feature extraction is based on the high-level intermediate representation (IR) of
the program. In addition, further features are obtained from a static WCET analysis. As
will be discussed in more detail in Section 5, WCET information that is provided by the
static analyzer at the low-level is automatically transformed into the high-level IR and
made accessible to the feature extraction. We present a subset of the 22 features used in
this paper that are considered to be most significant for the classification, as indicated
by the results of theVariable Importance Measurediscussed later in Section 6.

First, integer features, generally having a value range ofN0, are presented. It should
be noted that all relative features are given as percentages, whereas WCET estimations
are measured in cycles. Furthermore,calleedenotes the function to be inlined, while
caller represents a function containing a call to the inline candidate.
• Caller/callee size: Size of caller/callee measured in number of expressions
• Calls in caller: The number of function calls within the caller
• Caller/callee WCET: Accumulated WCET of the caller/callee over all calling

contexts, i. e. for all invocations
• Call-related WCET : The WCET of a function related to a particular function call,

i. e. the product of the function’s WCET for a single invocation and the execution
frequency of the corresponding call

• Call execution frequency: Worst-case execution counts for a particular call ex-
pression derived from the WCET analysis

• Relative caller/callee WCET: The relative WCET of the caller/callee considered
for all calling contexts w.r.t. the overall program WCET

Next, two important binary features are introduced.
• One-Call function: This feature indicates if the considered function is invoked by

exactly one call expression.
• Call in loop:When a call to the inline candidate is contained in a loop, this feature

is assigned the valueyes.



This selection of features indicates that our approach significantly differs from previous
works. Monsifrot [9] or Stephenson [10] aim at a ACET reduction and exclusively con-
sider features that are extracted from the source code. In contrast, we focus on heuristics
for a WCET minimization. Besides the consideration of features based on the source
code, our approach additionally includes valuable features that are provided by a static
WCET analyzer. These key parameters allow a construction ofinlining heuristics for
an efficient WCET minimization.

Register Pressure Analyzer
As discussed in Section 3, function inlining can potentially increase the register pres-
sure. Calling a function,caller-savedregisters are saved before the callee is entered and
restored after returning to the caller. This context save enables the usage of saved reg-
isters in the callee. Performing function inlining and replacing the call by the callee’s
function body makes the context save redundant. However, asa consequence, the num-
ber of registers that can be exploited in the inlined function is decreased, leading to a
higher register pressure in the caller.

Increasing the register pressure can potentially lead to a generation of spill code
which has a negative effect on the program run time. Ideally,a WCET-driven inlining
heuristic should be able to predict whether inlining a function yields spill code in or-
der to prevent the application of this optimization and to anticipate an increase in the
WCET. For this purpose, theregister pressure analyzer (RPA)was developed.

The RPA takes those registers into account that can be potentially spilled, i. e. all
address and data registers for which the compiler can produce spill code. In our case,
input for the RPA is the program under analysis in its low-level representation after the
register allocation. Since our compiler incorporates botha high- and a low-level IR, we
have full control of the generated code and the mapping between both code represen-
tations. Thus, results provided by the RPA can be easily assigned to the corresponding
high-level constructs.

For the feature extraction, the RPA provides significant information for the clas-
sification of inline candidates based on the register distribution. Following additional
features are taken into account:
• Number of live address/data registers across calls: These are registers that must

be preserved across a call, i. e. their lifetime spans a call.Inlining of calls crossing
a high number of lifetimes increases the probability for spilling.

• Max. number of address/data registers with co-existing lifetimes: The maximal
number of registers that are simultaneously live within a function. This feature is
also an indicator for potential spill code. Even functions with a small number of
registers with a lifetime crossing a call may be potential spilling candidates when
the inlined function has a high register pressure.

Further features characterizing the call to functionf represent the execution fre-
quency of the basic blocks containing the call expression tof, the number of call ex-
pressions inf, the number of call expression tof, and the number of call expressions to
functionf lying on the worst-case execution time path.

4.3 Label Extraction
The second phase of establishing the training set is the generation of labels for the cor-
responding feature vectors. The labels are automatically determined. For this purpose,
our compiler WCC is run twice. In a first run, the analyzed program is compiled with
the highest optimization level (O3) with disabled compiler’s standard function inlin-
ing. For this program, the overall program WCETWCETref is computed and serves
as reference value. In a second run, the same program is againcompiled with O3 and
function inlining disabled for all function calls except for function calli. Function call



i is the currently considered inlining candidate for which anexample in the learning
set is generated. For this generated code where exclusivelythe function at calli was
inlined (independent of the function’s size), the program’s WCETWCETi is deter-
mined. Thus, a comparison between both WCETs indicates the influence of inlining
function calli on the WCET. The value oflabeli is determined as follows:

labeli =

{

yes, if WCETi·100

WCETref
% ≤ 99%

no, otherwise
(2)

The value of 100% means that inlining of function calli had no influence on the WCET.
If the value is less than 100%, a WCET reduction was achieved,otherwise inlining had
a negative impact on the worst-case performance. We set the threshold to 99% , i. e. if
inlining at calli reduced the program’s WCET by at least 1%, this call is considered as
being beneficial. This strategy is motivated by the potential code expansion which is a
crucial issue in particular for embedded systems. The threshold ensures that a minimal
WCET reduction of less than one percent coming with a potentially large code size
increase is not classified as a positive inlining example.

The label extraction is automatically performed for all function calls in the program
that allow function inlining. For each call, in a first step its features are extracted and in
a second step the corresponding label is determined. These examples are collected for
all considered benchmarks and serve as input to the automatic generation of a heuristic
as described in the following.

4.4 Application of WCET-driven Function Inlining
One of the advantages of random forests is the possibility oftransforming the classifi-
cation rules into equivalent programming language constructs. Since random forests are
a collection of decision trees representing tests of conditions concerning the features,
they can be translated intoif-then-else statements that are incorporated into the
compiler as optimization heuristics.

To achieve a maximal WCET reduction simultaneously with a small increase of
code size, we propose a complementary heuristic for the selection of inlining candi-
dates. Except for some specialized compilers like the HPUX Itanium compiler perform-
ing a selective inlining calledinline specialization[22], ordinary compilers consider
inlining candidates in a top-down manner by traversing the source code. In contrast, we
start with the optimization of callees having the largest WCET. These are usually func-
tions that promise the largest WCET reduction when inlined.By following this order,
we exploit the maximal optimization potential with the minimal number of transforma-
tions, thus avoiding a too heavy code expansion in the first optimization steps. After
finding such an inlining candidate with maximal WCET, our novel heuristic is applied
to decide if function inlining should be performed.

5 Experimental Environment
To indicate the efficacy of our WCET-driven function inlining, evaluation on a large
number of different benchmarks was performed. The 41 benchmarks come from the the
test suites MRTC WCET Benchmark Suite [23], NetBench Suite [24], MiBench [25],
and our own collection of real-world benchmarks containingmiscellaneous applica-
tions, e. g. an H263 coder or a G.721 encoder. The size of the benchmark codes ranges
between 58 and 12082 Bytes.

The tests are conducted using our WCET-aware C compiler WCC for the Infineon
TriCore TC1796 processor using two different types of memories. The first memory is
the program scratchpad memory (SPM) with a capacity of 48Kbyte, the second mem-
ory utilized in our experiments is a 2 MB cached program flash memory. Our WCET



LLIR

ICD-C
Parser

High-Level
ICD-C IR

LLIR Code
Selector

Code
Generator

aiT WCET
Analysis

ANSI-C
Source

WCET-
Optimized
Assembly

ICD-C
Parser

Back-
annotationMachine Learning

WCET-Driven
Function
Inlining

RPA

Fig. 2. Workflow for WCET-driven Inlining

analyzer allows the modification of the I-cache capacity. Totake cache effects, which
are crucial for the code expansion during inlining, into account, a cache capacity of 2
KByte was chosen. Due to architectural reasons, the system behavior differs depending
on whether the program is executed from the SPM or flash. Thus,we collected two dif-
ferent learning sets for each memory type, each of which contains 275 feature vectors
that were extracted from all benchmarks with approximately70% ofnegative examples,
i. e. function inlining had a negative effect on the WCET for these cases. This number
points out that function inlining is an optimization that should be used with caution.
The number of extracted examples ranges from 1 example for small benchmarks up to
59 examples for larger benchmarks likeg721encode.

The workflow is depicted in Figure 2. Before our WCET-driven inlining can be
applied, the heuristics are trained offline. As described inthe previous section, the con-
struction of the learning set for supervised learning is done automatically. After parsing
the C source code, the program is translated into the high-level intermediate represen-
tation ICD-C IR [26]. In the next step, a code selector is usedto translate the program
into the low-level IR called LLIR [27]. Finally, the programis passed to AbsInt’s WCET
analyzer aiT. This workflow is depicted by solid arrows.

Subsequently, WCET information generated by aiT is imported into our compiler.
To make it accessible to the feature extraction in the ICD-C IR, a Back-Annotation,
which establishes a connection between LLIR and ICD-C IR objects using the code
selector, is performed in order to translate WCET information from the low- to the
high-level IR. After this step, each ICD-C object is annotated with WCET informa-
tion that is derived from the corresponding LLIR object counterpart. In addition, the
register pressure analyzer (see Section 4.1) collects information about the allocation of
physical registers in the LLIR. Together with the ICD-C IR, the RPA and the Back-
Annotation provide information about the features of callsto the inlining candidates.
With the WCET information from the Back-Annotation, the labels and the feature vec-
tors are determined and finally passed to the machine learner, in our case the toolRapid-
Miner [28], to generate the random forests based inlining heuristics. After this learning
phase, the generated heuristics are incorporated into the ICD-C optimizer of our com-
piler and exploited by the WCET-driven function inlining. The learning workflow and
the application of the novel optimization are shown by dashed arrows.

6 Results
Worst-Case Execution Time
In order to evaluate the effectiveness of our machine learning based (MLB) inlining
heuristic and to compare it against the standard ACET inlining heuristics, we measured
the WCET for the real-world benchmarks after the code transformation. Table 1 shows
the overall results achieved for the two memory types SPM andthe cached flash. The
reference value is the WCET of the program compiled with the highest optimization



0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

ad
pc

m
_d

ec
od

er

ad
pc

m
_e

nc
od

er

bi
na

ry
se

ar
ch

co
m

pr
es

sd
at

a

co
un

tn
eg

at
iv
e

cr
c

ed
n

ex
pi
nt

fd
ct fir

g7
21

_e
nc

od
e

g7
23

_e
nc

od
e

h2
63

jfd
ct
in
t

lc
dn

um lm
s

lu
dc

m
p

m
at

m
ul
t

m
d5

m
in
ve

r

pr
im

e
qu

rt

se
ar

ch
m

ul
tia

rr
ay

se
le
ct

sq
rt st

av
er

ag
e

Benchmarks

R
e

la
ti

v
e

W
C

E
T

[%
]

O3 ICD-C Inlining 50 O3 ICD-C Inlining 100 O3 MLB Inlining

Fig. 3. Relative WCET after Inlining

level (O3) with disabled function inlining. In the first row,the standard ICD-C inlin-
ing heuristic was used (inlining functions smaller than 50 expressions) and the relative
WCET (average for all benchmarks) was estimated. For a comparison, in the second
row the ICD-C inlining heuristic was increased to 100 expressions. Finally, the last row
represents the relative WCETs when the standard heuristic is replaced by the machine
learning based heuristic. The results point out that our newheuristic outperformed the

WCET - SPM WCET - Flash

O3 ICD-C Inlining 50 101.7% 100.3%
O3 ICD-C Inlining 100 104.6% 105.5%
MLB WCET-driven Inlining 92.6% 94.1%

Table 1.Overview of Resulting WCET

standard hand-crafted heuristic (limiting callee size to 50 expressions) on average by
9.1% for the scratchpad and by 6.2% for the flash memory. When the standard inlining
heuristic is increased to 100 expressions for the inlining candidates, our MLB inlin-
ing achieves a WCET reduction of 12% for the SPM and 11.4% for the flash memory.
Moreover, comparing row two and three in Table 1, the conclusion can be drawn that it
is more beneficial to have a conservative heuristic that prefers optimization of smaller
functions since inlining of larger function might have a strong negative effect on the
program run time.

In general, unlike the standard ICD-C heuristic, the MLB heuristic never signif-
icantly increases the WCET in all our experiments. For two benchmarks a marginal
WCET increase of less than 2% was observed. Figure 3 shows a selected subset of
the 41 considered benchmarks omitting benchmarks for whichcomparable results were
achieved for the MLB and standard heuristic, i. e. inlining was performed or prevented
in both cases. The bars represent relative WCET estimationsfor the flash, with 100%
corresponding to the WCET for O3 with disabled inlining. Three benchmarks are dis-
cussed in more detail which summarize the typical impact of our heuristic.

The benchmarkcrc benefits from the new heuristic since it prevents inlining. In
contrast, the standard heuristic performs inlining of function icrc1 which enlarges the
caller preventing the compiler to apply further optimizations like procedure cloning
with code size constraints yielding an WCET increase of 40.0%. Moreover, inlining
leads to additional spill code within a loop that originallycontained the function call.

Another typical example is benchmarkexpint with a strong WCET reduction of
69.0% w.r.t. the standard ICD-C inlining. The reason for this WCET improvement is
an additional optimization potential that was establishedwith our MLB heuristic. The
benchmark contains a functionexpinthaving more than 100 expressions, thus not con-



Code Size - SPM Code Size - Flash

O3 ICD-C Inlining 50 102.9% 103.0%
O3 ICD-C Inlining 100 107.6% 107.8%
MLB WCET-driven Inlining 94.2% 95.3%

Table 2.Relative Code Size after Inlining

sidered for standard inlining. In contrast, our heuristic which does not use the function
size as the only restriction, permits inlining and thus enables an additional application
of constant propagationfor some functions parameters which in turn makeconstant
folding possible. This additional optimization potential helps tosignificantly improve
the code quality.

The only negative example encountered during our experiments arises for bench-
markmatmultwhere the standard heuristic performed better than our MLB approach.
With standard inlining, a small function was inlined leveraging further optimizations,
while our classifier predicted to prevent inlining. This inaccurate decision can be at-
tributed to the small number of feature vectors (61 positiveexamples) used to train
the model for classifying an inlining candidate as beneficial. Such classification errors
are typical for small learning sets and with an increased number of positive examples
inaccurate decisions can be expected to be smaller.

Code Size Increase
Table 2 shows the influence of function inlining on the code size for the scratchpad
and flash memory, with 100% being the code size of the benchmark compiled with O3
and disabled inlining. Unlike standard inlining, our MLB optimization could reduce
the code size on average by up to 5.8%. The reasons are twofold. First, our heuristic
performed in total less function inlining than the standardICD-C inliner. Our heuristic is
more conservative and prevents optimization in potentially dangerous situations where
a WCET increase might be expected. This explains why the codeexpansion is smaller
than for ICD-C inlining. Second, some of the inlined functions are so calledone-call
functions. These are functions that have a single function call withinthe source code.
By inlining them and assuming that the code is not executed byother programs, the
original function can be removed from the source code. In addition, the calling overhead
is avoided and the inlined function body can be further optimized. This leads to smaller
code than for the non-inlined code as can be seen in the last row of the table. Thus,
negative effects on the cache performance due to a code size increase coming from
inlining are very unlikely.

Accuracy - SPM Accuracy - Flash

Correctly classified examples 84.0% 83.5%
Correctly classified positive examples36.1% 19.2%
Correctly classified negative examples97.7% 99.5%

Table 3.Accuracy and class recall based on LOOCV

Accuracy of Classification
The quality of a classifier can be estimated by the classification error. This is an impor-
tant issue since we are interested in the accuracy of our classifier for novel programs not
considered in the training phase. To evaluate our random forests heuristic, we apply a
common approach calledLeave-One-Out Cross Validation (LOOCV). It subdivides the
learning set (consisting of all collected feature vectors)into two classes, a training and a
validation set. In particular, LOOCV eliminates a single example from the learning set
of sizen, exploits the remainingn−1 examples to learn a classifier and finally uses the
eliminated example to validate the trained model. This validation is repeatedn times



0 1 2 3 4 5 6 7 8

Max. number of live D-regs.

Call exec. frequency

Caller WCET

Caller size

Max. num. of D-regs. with co-existing lifetimes

Call-related WCET

Callee WCET

Calls in caller

Calle size

Gini Index

S
ta

ti
c

F
e
a
tu

re
s

Fig. 4.Variable Importance Measure

for each example considered once as validation set. This approach is best suited for ap-
plications with only a small number of available learning examples since the learning
algorithm can be precisely trained with almost all examples.

Table 3 summarizes the LOOCV results based on the criteriongini indexwhich
reaches a value of zero when only one class is present at a nodedefined by a particular
static feature. The first row represents the accuracy while the next two lines indicate the
so-calledclass recallfor the positive and negative examples. In total, 84.0% and 83.5%
of the examples could be correctly classified for SPM and the flash, respectively. It can
be observed that the classification error for positive examples (classifier predicts inlin-
ing as beneficial) is significantly larger than the error for the negative tests. A reason for
that is the small number of positive examples used in our experiments. Thus, the learn-
ing algorithm was not able to generate an accurate model for positive examples as was
accomplished for the negative examples. In general, these results are fully satisfactory
for our WCET-driven function inlining since we focussed on an accurate classification
of negative examples to avoid strong performance degradations due to incorrect inlining
decisions.

Variable Importance Measure
One advantage of random forests is their capability of estimating the importance of
variables for the classification, calledimpurity measures. The importance of a variable
is determined by its contribution for an effective classification and reveals if the fea-
tures chosen for the learning algorithm are appropriate. Figure 4 depicts the importance
of attributes discussed in Section 4.1 based on the gini index. As expected, the most
important variable for the classification of inlining candidates is the size of the callee.
This is also the attribute that is found in inlining heuristics of most compilers. However,
as could be seen with the WCET results, the exclusive consideration of this attribute is
often not sufficient and might lead to an inappropriate inlining decision.

It can be also seen that attributes concerning the program’sworst-case behavior
have a high importance. This underlines that an optimization that is tailored towards
a WCET minimization must take WCET information during the learning phase into
accout. Last but not least, Figure 4 reveals that the attribute characterizing the number
of data registers with co-existing lifetimes, being an indication for potential spill code,
is important. Thus, a register pressure analyzer is a sourceof crucial information when
dealing with code-size critical optimizations.

Simulated Time
Finally, we measured the simulated time of the benchmarks using our MLB WCET-
driven heuristic in order to compare the heuristic’s impacton the ACET. In general, the
results for the simulated time performed slightly worse than for the WCET. However, in
contrast to general-purpose machines, this small increasein the simulated time is usu-
ally not crucial for embedded systems for which the adherence of real-time constraints



is the key objective. For some benchmarks, e. g.fir, our MLB heuristic yields a WCET
reduction of 6.0% on the one hand and an increase in the simulated time of 1.9% on the
other hand. This shows that our heuristic is aiming at an effective WCET minimization
which can be only accomplished when a specific cost function is considered.

Compilation Time
Our WCET-aware function inlining has an impact on the compilation time which mainly
results from the feature extraction. During this phase, theoriginal program must be
passed to aiT in order to obtain WCET information about the code. The evaluation of
the MLB heuristics which are simpleif-then-else statements is in contrast negli-
gible.

7 Conclusions and Future Work
Machine learning was recently employed to automatically generate compiler heuristics
for the improvement of the system’s average-case performance. These techniques are
promising since they reduce the complexity of compiler design by relieving compiler
writers of tedious heuristic tuning. In addition, the automatically generated heuristics
often outperform hand-crafted models.

In this paper, machine learning techniques are integrated for the first time into an
optimizing compiler to automatically reduce the WCET. We demonstrate how random
forests, a supervised learning technique, can be exploitedfor the construction of WCET-
centric compiler optimization heuristics. For this purpose, we developed an automatic
system to extract program features based on data from a WCET analyzer. This data is
provided by WCC’s Back-Annotation which transforms worst-case execution data from
the low-level to the high-level IR. Subsequently, this datais used to construct a heuris-
tic for the optimization function inlining. Our novel WCET-driven inlining outperforms
standard inlining heuristics by up to 9.1% on average w.r.t.WCET reduction. We also
show that random forests are well suited for compiler heuristics and yield classifiers of
high accuracy. In our experiments, leave-one-out cross validation estimated a predic-
tion rate of 84.0% and 83.5% for SPM and flash memory, respectively. In addition, we
present results of the variable importance measure indicating attributes that are most
relevant for an effective classification of inlining candidates.

In the future, we intend to automate the incorporation of random forests heuristics
into our WCET compiler, i. e. the textual tree representation of the classifier should be
automatically parsed into equivalent programming language constructs and not trans-
lated manually as is done currently. This would enable, in addition to the current esti-
mation of the accuracy, an automated LOOCV w.r.t. the WCET, i. e. to learn iteratively
a heuristic from all but one benchmark and subsequently determine the WCET for that
benchmark applying the learned heurisitc. We also plan to study the potential of other
machine learning approaches for further optimizations to minimize the WCET. Last but
not least, we work on the integration of further benchmarks providing more examples
that improve the accuracy of generated compiler heuristics.

Acknowledgments
The authors would like to thank AbsInt Angewandte Informatik GmbH for their support
concerning WCET analysis using the aiT framework.

References

1. AbsInt Angewandte Informatik GmbH: Worst-Case Execution Time Analyzer aiT for Tri-
Core. (2008)



2. Campoy, A.M., Puaut, I., et al., A.P.I.: Cache contents selection for statically-locked instruc-
tion caches: An algorithm comparison. In: Proc. of ECRTS. (July 2005)

3. Vera, X., Lisper, B., Xue, J.: Data cache locking for higher program predictability. In: Proc.
of SIGMETRICS. (July 2003)

4. Lokuciejewski, P., Falk, H., Marwedel, P.: WCET-driven Cache-based Procedure Positioning
Optimizations. In: Proc. of ECRTS. (July 2008)

5. Zhao, W., Kulkarni, P., Whalley, D., et al.: Tuning the WCET of Embedded Applications.
In: Proc. of RTAS. (May 2004)

6. Lee, S., Lee, J., Park, C.Y., Min, S.L.: A Flexible Tradeoff between Code Size and WCET
using a Dual Instruction Set Processor. In: Proc. of SCOPES.(September 2004)

7. Lokuciejewsi, P., Falk, H., Marwedel, P., Henrik, T.: WCET-Driven, Code-Size Critical
Procedure Cloning. In: Proc. of SCOPES. (March 2008)

8. Falk, H., Lokuciejewski, P., Theiling, H.: Design of a WCET-Aware C Compiler. In: Proc.
of ESTIMedia. (October 2006)

9. Monsifrot, A., Bodin, F., Quiniou, R.: A Machine LearningApproach to Automatic Produc-
tion of Compiler Heuristics. In: Proc. of AIMSA. (September2002)

10. Mark Stephenson and Saman Amarasinghe: Predicting unroll factors using supervised clas-
sification. In: Proc. of CGO. (March 2005)

11. Stephenson, M., Amarasinghe, S., Martin, M., O’Reilly,U.M.: Meta Optimization: Improv-
ing Compiler Heuristics with Machine Learning. SIGPLAN Not. 38(5) (2003)

12. McGovern, A., Moss, E.: Scheduling Straight-line Code using Reinforcement Learning and
Rollouts. In: Proc. of NIPS. (September 1999)

13. Cavazos, J., Moss, J.E.B.: Inducing Heuristics to Decide Whether to Schedule. SIGPLAN
Not. 39(6) (2004)

14. Calder, B., Grunwald, D., Jones, M., Lindsay, D., Martin, J., Mozer, M., Zorn, B.: Evidence-
based Static Branch Prediction Using Machine Learning. ACMTrans. Program. Lang. Syst.
19(1) (1997)

15. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing For Reduced Code Space using
Genetic Algorithms. SIGPLAN Not.34(7) (1999)

16. Guo, Y., Subramanian, D., Cooper, K.D.: An Effective Local Search Algorithm for an Adap-
tive Compiler. In: Proc. of SMART. (January 2007)

17. Davidson, J.W., Holler, A.M.: Subprogram Inlining: A Study of its Effects on Program
Execution Time. Technical report, Charlottesville, VA, USA (1989)

18. Cooper, K.D., Hall, M.W., Torczon, L.: An Experiment with Inline Substitution. Softw.
Pract. Exper.21(6) (1991)

19. Cavazos, J., O’Boyle, M.F.P.: Automatic Tuning of Inlining Heuristics. In: Proc. of Super-
computing. (November 2005)

20. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (1997)

21. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proc. of Int.
Conference on Machine Learning. (June 1996)

22. Chakrabarti, D.R., Liu, S.M.: Inline Analysis: Beyond Selection Heuristics. In: CGO ’06:
Proceedings of the International Symposium on Code Generation and Optimization, Wash-
ington, DC, USA, IEEE Computer Society (2006) 221–232

23. Mälardalen WCET Research Group: WCET Benchmarks.
http://www.mrtc.mdh.se/projects/wcet (September 2008)

24. Memik, G., Mangione-Smith, W.H., Hu, W.: NetBench: A Benchmarking Suite for Network
Processors. In: Proc. of ICCAD ’01. (November 2001)

25. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, T.: MiBench: A
Free, Commercially Representative Embedded Benchmark Suite. In: Proc. of International
Workshop on Workload Characteristics. (December 2001)

26. Informatik Centrum Dortmund: ICD-C Compiler framework. http://www.icd.de/es/icd-c
(September 2008)

27. Informatik Centrum Dortmund: ICD Low Level Intermediate Representation Backend In-
frastructure (LLIR) – Developer Manual. Informatik Centrum Dortmund (September 2008)

28. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping
for Complex Data Mining Tasks. In: Proc. of KDD. (August 2006)


