WCET-AWARE SOFTWARE BASED CACHE
PARTITIONING FOR MULTI-TASK REAL-TIME
SYSTEMS!?

Sascha PlazaPaul LokuciejewsKiPeter Marwedél

Abstract

Caches are a source of unpredictability since it is very diffito predict if a memory access results
in a cache hit or miss. In systems running multiple tasksrsteby a preempting scheduler, it is
even impossible to determine the cache behavior sinceruptedriven schedulers lead to unknown
points of time for context switches. Partitioned caches &eaady used in multi-task environments to
increase the cache hit ratio by avoiding mutual evictionaskss from the cache.

For real-time systems, the upper bound of the execution isno@e of the most important metrics,
called the Worst-Case Execution Time (WCET). In this paperse@artitioning of instruction caches
as a technique to achieve tighter WCET estimations since tasknot be evicted from their partition
by other tasks. We propose a novel WCET-aware cache partijalgorithm, which determines the
optimal partition size for each task with focus on decreashmsystem’s WCET for a given set of
possible partition sizes. Employing this algorithm, we anéeao decrease the WCET depending on
the number of tasks in a set by up to 34%. On average, reducbetween 12% and 19% can be
achieved.

1 Introduction

Embedded systems often operate as hard real-time systerol dwve to meet hard timing con-
straints. For these systems, it is mandatory to know the rupmend of the execution time for each
task and possible input data. This bound is caliaist-Case Execution Time

Caches have become popular to bridge the gap between higésgmyand low memory performance.
The latency for an access to a certain memory address higplgrdis on the content of the cache. If
an instruction to be fetched already resides in the cacha,also calledache hitoccurs and the fetch
can be usually performed within one cycle. Otherwise, itiltssn acache missThe desired address
has to be fetched from the slow main memory (e.g. Flash)hggdi penalty cycles depending on the
processor and memory architecture.

It is hard to determine statically if an arbitrary memory g results in a cache hit or a cache miss.
However, caches are used in real-time systems becauseaheayrastically speed up the execution
of programs. Hence, a lot of effort has been successfullynpatresearch to make sound prediction
about the worst-case cache performace during a program@iggn. Absint'saiT [2] is a tool that
performs static analyses on binary programs to predict tagihe behavior and WCET.

1The research leading to these results has received fundbng the European Community’s ArtistDesign Network of
Excellence and from the European Community’s Seventh RramieProgramme FP7/2007-2013 under grant agreement
n° 216008.

2Computer Science 12 — TU Dortmund University — D-44221 Damah, Germany — FirstName.LastName@tu-
dortmund.de

In environments with preemptive schedulers running maae tine task, it is impossible to make any
assumption about the memory access patterns. This is n@nked by interrupt-driven scheduling
algorithms causing context switches at unknown pointsragti Thus, the program’s state in not
known at which a context switch occurs. It is also unknown hiclv address the execution of a
program continues, hence it is unknown which line of the easlevicted next. An unknown cache
behavior forces to assume a cache miss for every memorysacupfying a highly overestimated
systems overall WCET. As a consequence, the underlying sysésno be oversized to meet real-
time constraints resulting in higher costs for hardware.

We adapt an existing technique called software based caotiggning [16] to make the instruction
cache [-cachg behavior more predictable. This can be guaranteed sinesy ¢ask has its own
cache partition from which it can not be evicted by anothsk.taOur novel WCET-aware cache
partitioning aims at selecting the optimal partition sipe éach task of a set to achieve the optimal
WCET minimization. The main contributions of this paper aréaiisws:

1. Compared to existing approaches which focus on mininunaif average-case execution times,
our WCET-aware cache partitioning explicitly evaluates WCEfR@a metric for optimization.

2. In contrast to previous works which presented theoriggattition a cache in software, our
approach comprises a fully functional implementation ohehe partitioning method.

3. We show that our ILP-based WCET-aware cache partitioniefféstive in minimizing a sys-
tem’'s WCET and outperforms existing algorithms.

The paper is organized as follows: In the next section, weqmrerelated work. Existing techniques
to partition a cache as well as our new algorithm are expthineSection 3. Section 4 introduces
the compiler WCC used to integrate our novel cache partitgpmilgorithm. An evaluation of the
performance which is achieved by our WCET-aware cache penitity, is presented in Section 5.
Finally, we conclude our work and give a brief overview ofuftg work.

2 Related Work

The papers [16, 5, 15] present different techniques to &xpézhe partitioning realized either in
hardware or in software. In contrast to our work, these imyglietations either do not take the impact
on the WCET into account or do not employ the WCET as the key mairioptimization which
leads to suboptimal or even degraded results. In [16], thieoaypresents ideas for compiler support
for software based cache partitioning which serves as fidise partitioning techniques presented in
this paper. Compared to the work in this paper, a functionplémentation or impacts on the WCET
are not shown. In [5], a hardware extension for caches isqa@ghto realize a dynamic partitioning
through a fine grained control of the replacement policy wativeare. Access to the cache can be
restricted to a subset of the target cache set which is catllesinnization. For homogeneous on-chip
multi-processor systems sharing a unified set-associedigbe, [15] presents partitioning schemes
based on associativity and sets.

A combination of locking and partitioning of shared cachesrulti-core architectures is researched
in [18] to guarantee a predictable system behavior. Evegittlie authors evaluate the impact of their
caching schemes on the worst-case application perform#maie algorithms are not WCET-aware.
Kim et al. [11] developed an energy efficient partitionedreaarchitecture to reduce the energy per
access. A partitioned L1-cache is used to access only oreggiie for every instruction fetch leading
to dynamic energy reduction since other sub-caches arecnessed.

The authors of [4] show the implications of code expandinagations on instruction cache design.
Different types of optimizations and their influence on elifint cache sizes are evaluated. [12] gives
an overview of cache optimization techniques and cacheeamamerical algorithms. It focuses on
the bottleneck memory interface which often limits the perfance of numerical algorithms.

Puaut et al. counteract the problem of unpredictabilityhvidaicked instruction caches in multi-task
real-time systems. They propose two low complexity altponis for cache content selection in [17].
A drawback of statically locking the cache content is thatdignamic behavior of the cache gets lost.
Code is no more automatically loaded into the cache, thuswbdsh is not locked into the cache can
not profit from it anymore.

Vera et al. [22] combine cache partitioning, dynamic cadwo&ihg and static cache analysis of data
caches to achieve predictability in preemptive systemss &liminates overestimation and allows to
approximate the worst-case memory performance.

Lokuciejewski et. al rearrange the orders of proceduresammmemory to exploit locality in the
control flow leading to a higher cache performance [13]. \WWoese calling frequencies serve as
metrics for WCET minimization but multi-task sets are not supgd.

3 WCET-aware Cache Partitioning

Caches have become popular to bridge the growing gap betweeegsor and memory performance
since they are transparent from the programmer’s pointetvinfortunately, caches are a source of
unpredictability because it is very difficult to determifi@imemory access results in a cache hit or
a cache miss. Static analysis is a technique to predict thaviom of the cache [19] and make sound
prediction about the WCET of a program which allows the prolgalsage of caches in real-time
systems running a single task.

In general, real-time systems consist of more than one téds&hvwnakes it often impossible to de-

termine the worst-case cache behavior. Due to interrupédschedulers, points of time for context
switches can not be statically determined. Thus, it is nedijotable which memory address is fetched
from the next task being executed and one can not make pregemgptions which cache line is re-

placed by such an unknown memory access. Due to this fagl evamory access has to be treated
as a cache miss leading to a highly overestimated WCET causad biyderestimated cache perfor-
mance.

In a normally operating cache, each task can be mapped iptoeghe line depending on its memory
usage. To overcome this situation, partitioned cachesewmemmended in literature [16, 5, 15].
Tasks in a system with partitioned caches can only evictedicles residing in the partition they
are assigned to. Reducing the prediction problem of replaaete lines to one task with its own
cache partition, allows the application of well known sm¢gisk approaches for WCET- and cache
performance estimation. The overall execution time of & &4 is then composed of the execution
time of the single tasks with a certain partition size andoerhead required for scheduling including
additional time for context switches.

Infineon’s TriCore architecture does not support partittbnaches in hardware so that partitioning
has to be done in software. The following section describedbasics of software based cache parti-
tioning schemes applied in our WCET-aware cache partitioalggrithms. In Section 3.2, a heuristic
approach is applied to determine the partitioning basedertasks’ sizes. Section 3.3 presents our
novel algorithm for selecting an optimal partition size.tvthe overall WCET of a system.

3.1 Software based Cache Partitioning

The author in [16] presents a theory to integrate softwasetaache partitioning into a compiler
toolchain without an existing implementation. Code showddsbattered over the address space so
that tasks are mapped to certain cache lines. Thereforggskk have to be linked together in one
monolithic binary and a possible free space between separtd has to be filled withNOPs Parti-
tioning for data caches involves code transformation cd deterences.

A ~pMemory Address

The theory to exactly position code in the address space™

to map it into certain cache lines is picked up here, but® | e | Offet |

a completely different technique is applied to achieve Tag Line 0
such a distribution. We restrict ourselves to partition- T

. e . Line 1
ing of I-caches, thus only software based partitioning of

code using the new technique is discussed. However, Line 2
a partitioning of data caches w.r.t. WCET decrease is P

straightforward using a modified version of our algo-
rithm.

Cache

Line 16

. C) Fi 1: Addressing of cache content
For the sake of simplicity, in the following we assume oHre g

a direct-mapped cache. Way associative caches can begpeatitas well: The desired partition size
has to be divided by the degrdeof associativity since any particular address in main mencan
be mapped in one af locations in the cache. In this case, predictable replanepwicies (e.glast
recently usedor TriCore) are allowed to enable static WCET-analysis. Havdhe replacement
policy has no influence on the partitioning procedure.

Assuming a very small cache with = 256 bytes capacity divided intb = 16 cache lines, results
in a cache line size of = 16 bytes. When an access to a cached memory address is perfahmed,
address is split into a tag, an index, and an offset part. €amele in Figure 1 shows the 4 offset bits
addressing the content inside a cache line, whereas 4 inttegdbect a cache line. The remaining
address bits form the tag which is stored in conjunction whlhcache line. The tag bits have to be
compared for every cache access since arbitrary memorgssil with the same index bits can be
loaded into the same line.

Cache Main Memory

0x0

To partition a cache, it has to be ensured that a task! | Tosklparl oxs0

assigned to a certain partition only allocates memaory Task2_part] o100

addresses with index bits belonging to this partitigrsk2 Task1_part2 s

For an instruction cache divided into two partitions pf Task2_par2

128 bytes, one partition ranges from cache line 0 to \ Taskl_part3 e

line 7 and the second one from line 8 up to 15. If a T2 part 0280
0x300

taskT is assigned to the first partition, each occupied _ _
memory address must have index bits ranging from Figure 2: Mapping of tasks to cache lines
000b up to111b accessing the cache lines 0 to 7 and arbitrary offset bitgethier, index and offset
bits correspond to memory addresses modulo cache sizengafrgim 0x00 to Ox7f . A taskT,
assigned to the second partition has to be restricted ta amhg memory addresses modulo cache
size from0Ox80 up toOxf f .

Tasks exceeding the size of the partition they are mappdtate to be split and scattered over the
address space. Figure 2 illustrates the partitioning fekg@; and7; into such 128 bytes portions
and the distribution of these portions over the main memdagk 77 is allocated to portions which
are mapped to the first half of the cache since all occupied onerddresses modulo cache size

range from 0-127. The same has to meet for tBs&ccupying memory addresses modulo cache size
ranging from 128-255.

Obviously, partitioning does not depend on the cache line since a contiguous part of the memory
is always mapped into the same amount of cache memory. Oalatthmic size for composing
partitions is equal to the cache line size, thus the pantgiae must be a multiple thereof.

WCC'’s workflow employs the linker to achieve such a distributtdrcode over the address space.
Individual linker scripts are used (compare Listing 1 fag #forementioned example) with relocation
information for every task and its portions it is divideddntor linker basics refer to [3].

text: {
text _begin = .;
(.task_partl)

The output sectiont ext, to be created in the output binary
(line 1), is aligned to a memory address which is a multiple of

1

2

the cache size to ensure that the mapping starts at cache line= {ext begin + 0x80; j
0. Line 3 allocates the assembly input sectidtrask1_part 1 *(.task2_part1) 5
at the beginning of thet ext output section, thus the begin- - = _text_begin + 0x100; s
ning of the cache. The content of this section must not exceelf - task1l_part2) T
= text_begin + 0x180; s

9

128 bytes since line 4 sets the relocation counter to theeaddr ;(_task2_part 2)
128 bytes beyond the start address, which is mapped into the = text begin + 0x280;
first line of the second cache half. Line 5 accomplishes the re<(. task2_part 3)

location of section t ask2_part 1 to the new address. Thé > PFLASHC

other sections are mapped in the same manner. Listing 1: Linker script example

PR e
N P O

On the assembly level, each code portion which should be aethigpa partition, has to be attached to
its own linker section to cause a relocation by the linkeg; et ask _part 1 for the first 128 bytes
memory partition of task;. To restore the original control flow, every memory partitivas to be
terminated by an additional unconditional branch to the nemory partition of the task unless the
last instruction of this block already performs an uncandgl transfer of control.

For further jump corrections required by growing displaeets of jump targets and jump sources
refer to [16].

3.2 Size-driven Partition Size Selection

The author in [16] propose to select a task’s partition sizeethding on its size relative to the size
of the complete task set. For our example, a task set with- 4 tasks7; — T, having a size of
s(Ty) = 128 bytes,s(T») = 256 bytes,s(73) = 512 bytes ands(7,) = 128 bytes should be assumed.

Hence, the complete task set has an overall code size of 1 k&eab we use the assumed cache
from the previous section with a capacity.®f= 256 bytes.

According to its size, task;’s partition size computes as follows:

s(Th)
E;'L:1 s(T;)
e.g.7T; is assigned to a partition with28 bytes/1024 bytes = 1/8 of the cache size. Accordingly the

assigned partition sizes arg(7;) = 32 bytes,p(7») = 64 bytes,p(73) = 128 bytes anth(7,) = 32
bytes.

3.3 WCET-driven Partition Size Selection

p(ﬂ) = * Scache (1)

The size of a cache may have a drastic influence on the penficerdd a task or an embedded system.
Caches with sufficient size can decrease the runtime of agamogthereas undersized caches can lead

to a degraded performance due to a high cache miss ratio eHierecessential to choose the optimal
partition size for every task in order to achieve the higlpesisible decrease of the system’s overall
WCET.

Current approaches select the partition size dependingeondtie size or a tasks priority [16, 18].
They aim at improving a system’s predictability and exantireeimpact of partitioning on the WCET
but do not explicit aim at minimizing its WCET.

In this section, we present our novel approach to find therggdtpartition sizes for a set of tasks w.r.t.
the lowest overall WCET of a system. We use integer linear jarogning (LP) to select the partition
size for each task from a given set of possible partitionssize

We assume that there is a setotasks which are scheduled periodically. There is a schediide/al
within each taskl; € T is executed exactly; times, which is repeated continuously. The length of
this interval is the least common multiple of thetasks’ periods. Furthermore, we assume afset
of given partition sizes withP| = n partitions, e.g.P = {0, 128, 256, 512, 1024} measured in bytes.
Letz;; be a binary decision variable determining if taSks assigned to a partition with size € P:

xij

~|1,if T; assigned t,
~ |0, else

To ensure that a task is assigned to exactly one partitierfolfowing m constraints have to be met:

Vi=1l.m:» =1 (2)
7j=1
WCET;; is T;’s WCET for a single execution Input: Set of taskg’, set of partition sizes
if assigned to partitiop,, then the WCET for a P, execution count§’, cache size¢y
single taskKI; is calculated as follows: Output: Set of partitioned tasks
. 1 begin
2 fort; e Tdo
WCET(T;) = ;xw «* WCET; . for p, € P do
4 partitionTask(;, p;);
Since we focus on WCET minimization, we de-5 WCET;; = determineWCET(,);
fine the cost function to be minimized for thes WCET =WCET U WCET;;
whole task set: 7 end
m n s end
WCET =)) mjjxc;* WCET; (3) © ilp=setupkquatl’, P, WCET, C, 5);
i—1 j—1 10 X =solvelLP(ilp);
1 forall z;; € X : x;; =1do
To keep track of the limited cache sisewe in- 12 partitionTask(;, p;);
troduce another constraint: 13 end
o 14 returnT
Z Zﬂfij xp; <8 4) 15 end
j=1 i=1 Algorithm 1: Pseudo code of cache partition-
ing algorithm

Using equations 2 to 4, we are able to set up the
cost function andn + 1 constraints as input for

an ILP solver likdp_solve[1] or CPLEX][10]. After solving the set of linear equations, the minietdz
WCET and all variables;; = 1, representing the optimal partition sizes for all tasks,karown.

The number of necessary WCET analyses depends on the numbask®aind the number of possible
partition sizes which have to be taken into accodattnalysesywcpr = |T| * |P| = m *n

To determine the WCETS, to set up all equations and to applitipamg, Algorithm 1 is employed.
A given task set, the instruction cache size and a set oflplegsartition sizes for the tasks are required
as input data. The algorithm iterates over all tasks (linar) temporary partitions each task (line
3 to 4) for all given partition sizes. Subsequently, the WCEtlhe partitioned task is determined
invoking Abslint’s static analyzer aiT (line 5). Exploitinige information about tasks, partition sizes,
cache size and gathered WCETSs, an ILP model is generated iregaqlations 3 to 4 (line 8) and
solved in line 9.

Afterwards, the seX includes exactly one decision variahlg per taskl; with the value 1 whereas
p, is T;’s optimal partition size w.r.t. minimization of the systesmVCET. Finally, in lines 11to 12 a
software-based partitioning of each task with its optinatition size, as described in Section 3.1, is
performed.

4 \Workflow

Software based cache partitioning needs the support of@eriying compiler to collect WCET-data,
perform the required code modifications and scatter the owde the address space. We employ
our WCET-aware C compiler framework, callddCC[8], intended to develop various high- and low-
level optimizations. WCC is a compiler for the Infineon TriCoi@II796 processor coupling Absint’s
static WCET analyzeaiT [2] which provides WCET data that is imported into the compilackend

and made accessible for optimizations.
ANSI-C
Figure 3 depicts WCC'’s internal structure reading t ‘;J"Feascil

tasks of a set in the form of ANSI-C source files with use

annotations for loop bounds and recursion depths, cal M W

flow facts These source files are parsed and transformet® ICD c Belectoy

into our high-level intermediate representatitiR)((CD-

C [6]. Each task in a set is represented by its own IR. 4—»

In the next step, th&LIR Code Selectotranslates the

2
. X WCET- o e
high-level IRs into low-level IRs calledCD-LLIR [7]. Software | Memory
On these TriCore TC1796 specific assembly level IRs, [aitionng | {Ge"era“’; Specificatio

the software based cache partitioning can be performed.

To enable such a WCET-aware optimization, Absint's Optimized ot

aiT is employed to perform static WCET analyses on the Assembly

low-level IRs. Therefore, mandatory information abogfgure 3: Workflow of the WCET-aware C
loop bounds and recursion depth is supplied by flow fagimpiler WCC

annotations.

Optimizations exploiting memory hierarchies such as owehsoftware based cache partitioning
require detailed information about available memoriesirthizes and access times. For this purpose,
WCC integrates a detailed memory hierarchy specificatioriaaionlCD-LLIR level.

Finally, WCC emits WCET-optimized assembly files and generaigalde binaries using a linker
script reflecting the utilized internal memory layout.

5 Evaluation

This section compares the capability of our WCET-driven carétioning to existing partition size
selection heuristic based on tasks sizes. We use diffeashtsets from media and real-time bench-
mark suites to evaluate our optimization on computing atigors typically found in the embedded
systems domain. Namely, tasks from the sud&fstong21], MRTC[14] andUTDSP[20] are eval-
uated. WCC supports the Infineon TriCore architecture whoskeimgntation in form of the TC1796
processor is employed for the evaluation. The processegiates a 16 kB 2-way set associative |-
cache with 32 bytes cache line size.

Overall, the used benchmark suites include 101 benchmarksas we have to limit to a subset of
tasks for cache partitioning. For lack of specialized bematks suites, sets of tasks stemming from
the mentioned benchmark suite, as proposed in [9], are geteand compiled with the optimization
level - O3. Using these sets, we benchmark the capability of decrgabm WCET achieved by
standard partitioning algorithms compared to our WCET-awaproach.

Different numbers of tasks (5, 10, 15) in a set are checkeeterohine their effect on the WCET. To
gather presentable results, we compute the average of 190fsendomly selected tasks for each
considered cache sizes and the differing task set sizeen®axche sizes with the power of two are
taken into account, ranging from 256 bytes up to 16 kB. Thus otrerall number of ILPs for every
benchmark suite, which has to be generated and solved, is:

IILPs| =3 %100 %7 = 2100

==5 Tasks = *10 Tasks 15 Tasks

-

Due to the fact that we do not take scheduling into acg.,

count for benchmarking, the tasks execution frequen. e
ciesc; (cf. equation (3.3)) are set to one, thus, the sys- / s
tem’s WCET is composed of the task’'s WCETSs fora®™"* / 7
single execution. 8 0% +———

o

Figure 4 shows the relative WCETSs for the bench-*°*
mark suite DSPstone Floating Pointachieved by s0%
our novel optimization presented in Section 3.3 aSo
percentage of the WCET achieved by the standard **
heuristic presented in Section 3.2. The nominal S|2FesUllre 4 Optimized WCET for DSPstone
of the task sets range on average from 1.5kB forF}%ating Point relative to standard approach
tasks up to 5kB for 15 tasks. Substantial WCET re-
ductions can only be obtained for smaller caches of
up to 1kB since almost all tasks fit into the caché®” - —
from 4kB on. There, WCET reductions between 486%0% ===
and 33% can be observed. In general, larger task Seis,-
result in higher optimization potential for all cach
sizes.

Figure 5 depicts the average WCET for tiRTC
benchmark suite. The average code size of the gen-
erated task sets is comparatively large with 6KB for' sss s12 100¢ 20ss 4006 8102 16384
5 tasks, 12kB for 10 tasks and 19kB for 15 tasks. Cache size [Bytes]

Hence, there is more potential to find a better distFigure 5: Optimized WCET for MRTC relative

bution of partition sizes. This can be seen in a neai$ystandard approach

el
T
1

T T T T T
512 1024 2048 4096 8192 16384
Cachesize [Bytes]

==5 Tasks = *10 Tasks 15 Tasks

=
-
-
-
-
-

T

)
§70%; -
9]
o

60%

linear correlation of the optimization potential and th@tent of task set size and cache size. For 5
tasks in a set, WCET reductions up to 30% can be gained. 10 taskgfhave a higher optimization
potential, so that 7% to 31% decrease of WCET can be observeumni@pg the sets of 15 tasks, 9%
up to 31% lower WCETSs can be achieved.

A similar situation can be observed in Figure 6 for thEDSPbenchmark suite. The average code
sizes for the task sets range from 9 kB to 27 kB. This leads tgpeimzation potential of 4% for a

5 task set completely fitting into the cache and 17% up to 36% fib task set especially for small
cache sizes. For this benchmark suite, the same behavidrecahserved: for smaller cache sizes
and larger code sizes our algorithm achieves better resuttpared to the standard approach.

Using caches larger than 16 kB, our algorithm is not =5 Tasks = 10 Tasks 15 Tasks
able to achieve better or only marginal better result§o»
than if the standard method from section 3.2 is gp<o% -
plied. This comes from the fact that mostly there HJge,‘so%, e
no optimization potential if all tasks fit into the cach%. .
For realistic applications, the cache would be mugh ™"~
smaller than the amount of code. There is also no casg”
where the standard algorithm performs better than ouo%
approach since we use ILP models to always obtaig,

the optimal partition size distribution. 206 %1z 024 2048 40% 8192 16384
Cache size [Bytes]

Compilation Time Figure 6: Optimized WCET for UTDSP relative

. I o . to standard approach
To consider compilation and optimization time on the PP

host system, we utilize an Intel Xeon X3220 (2.40 GHz). A ctetetoolchain iteration is decom-
posed into the three phases compilation, WCET analysis, aidiaption. The stage WCET analysis
comprises all aiT invocations necessary to compute thes't88ETS for possible partition sizes.

The time required for a combined compilation and optim@atphase ranges from less than one
second fir from MRTC) to 30 seconds fadpcmfrom UTDSP. Compared to this, the duration for
performing static WCET analyses used for construction of d@hil_significantly higher with up to
10 hours..

6 Conclusions and Future Work

In this paper, we show how to exploit software based cach#ipamg to improve the predictability
of worst-case cache behavior in focus of multi-task reaktsystems. Employing partitioned caches,
every task has its own cache area from which it can not beeslioy other tasks. We introduce a
novel algorithm for WCET-aware software based cache pariiigin multi-task systems to achieve
predictability of cache behavior. The linker is exploitedachieve a restriction of tasks to be mapped
into certain cache lines. An ILP model, based on the tasks’ WgIBidifferent partition sizes, is set
up and solved to select the optimal partition size for eask var.t. minimizing the systems WCET.

The new technique was compared to simple partition sizetsatealgorithms in order to demonstrate
its potential. The results show that our algorithm alwayddihetter combinations of tasks’ partition
sizes than the size-based approach. Inspecting smalletskige are able to decrease the WCET up
to 30% compared to the standard approach. Better resultsecachiieved for larger task sets with up
to 33% WCET reduction.

On average, we were able to outperform the size-based thgoby 12% for 5 tasks in a set, 16% for
task sets with 10 tasks, and 19% considering tasks sets Wittsks.

In general, the larger the task sets (and by associationoitie sizes) are, the better the results. This
means: the algorithm performs best for realistic exampteslass well for small (more academic)
examples.

In the future, we intend to extend our algorithm to supportif\aning of data caches. This enables
predictable assumptions for the worst-case behavior af cithes accessed by multiple tasks in em-
bedded systems with preempting schedulers. Another gthed tgghtly coupling of offline scheduling
algorithm analyses to automatically prefer those tasksiduptimization which miss their deadlines.

References
[1] Ip_solve reference guidént t p: / /| psol ve. sour cef orge. net/5.5/. v. 5.5.0.14.

[2] ABSINT ANGEWANDTE INFORMATIK GMBH. Worst-Case Execution e Analyzer aiT
for TriCore.ht t p: / / www. absi nt.com ai t.

[3] CHAMBERLAIN, S., AND TAYLOR, I. L. Using Id 2000. Version 2.11.90t t p: / / www.
skyfree.org/linux/references/|d. pdf.

[4] CHEN, W. Y., CHANG, P. P, CONTE, T. M., AND HWU, W. W. The Effeof Code Expanding
Optimizations on Instruction Cache DesidBEE Trans. Comput. 42 (1993).

[5] CHIOU, D., RUDOLPH, L., DEVADAS, S., AND ANG, B. S. Dynamic @€ae Partitioning via
Columnization. InProceedings of DAQ2000).

[6] ECKART, J., AND PYKA, R. ICD-C Compiler Frameworkht t p: / / ww. i cd. de/ es/
I cd- ¢, 2009. Informatik Centrum Dortmund, Embedded Systems Reefitter.

[7] ECKART, J., AND PYKA, R. ICD-LLIR Low-Level Intermediate Repsentation.htt p:
[Iww. i cd. de/ es/icd-11ir,2009. Informatik Centrum Dortmund, Embedded Systems
Profit Center.

[8] FALK, H., LOKUCIEJEWSKI, P., AND THEILING, H. Design of a wet-aware ¢ compiler.
In Proceedings of WCEThttp://1s12-ww. cs. tu-dortnund. de//research/
activities/wec, 2006).

[9] HARDY, D., AND PUAUT, I. WCET Analysis of Multi-Level Non-Iclusive Set-Associative
Instruction Caches. IRroceedings of RTS2008).

[10] ILOG. CPLEX.http://wwv. il og. com product s/ cpl ex.

[11] KIM, C., CHUNG, S., AND JHON, C. An Energy-Efficient Parttied Instruction Cache Ar-
chitecture for Embedded ProcessdisICE - Trans. Inf. Syst4 (2006).

[12] KOWARSCHIK, M., AND WEI, C. An Overview of Cache Optimizatiofechniques and
Cache-Aware Numerical Algorithms. Wlgorithms for Memory Hierarchie@003), Springer.

[13] LOKUCIEJEWSKI, P., FALK, H., AND MARWEDEL, P. WCET-driven Cae-based Proce-
dure Positioning Optimizations. Iroceedings of ECRT@®rague/Czech R., 2008).

[14] MALARDALEN WCET RESEARCH GROUP. Mlardalen WCET benchmark suitet t p:
/I ww. nrtc. ndh. se/ proj ect s/ wcet, 2008.

[15] MOLNOS, A., HEIJLIGERS, M., COTOFANA, S. D., AND EIJNDHCEN, J. Cache Parti-
tioning Options for Compositional Multimedia Applicatiaria Proceedings of ProRIS(2004).

[16] MUELLER, F. Compiler Support for Software-Based Cache ifaning. SIGPLAN Not. 30
11 (1995).

[17] PUAUT, I., AND DECOTIGNY, D. Low-Complexity Algorithmsdr Static Cache Locking in
Multitasking Hard Real-Time Systems. Rroceedings of RTS8Vashington, DC, USA, 2002),
IEEE Computer Society.

[18] SUHENDRA, V., AND MITRA, T. Exploring Locking & Partitioing for Predictable Shared
Caches on Multi-Cores. IRroceedings of DAGQNew York, USA, 2008).

[19] THEILING, H., FERDINAND, C., AND WILHELM, R. Fast and Pre@sWCET Prediction by
Separated Cache and Path Analygesal-Time Syst. 1-3 (2000).

[20] UTDSP Benchmark Suite. http://ww. eecg. t or ont o. edu/ ~cori nna/ DSP/
i nfrastructure/UTDSP. ht m , 2008.

[21] V. ZIVOINOVIC, J. MARTINEZ, C. S., AND MEYR, H. DSPstone: ASP-Oriented Bench-
marking Methodology. IfProceedings of ICSPA[Dallas, TX, USA, 1994).

[22] VERA, X., LISPER, B., AND XUE, J. Data Caches in Multitaskirtard Real-Time Systems.
In Proceedings of RT§&ancun, Mexico, 2003).

