
Automatic Parallelization of Embedded Software Using
Hierarchical Task Graphs and Integer Linear Programming

∗

Daniel Cordes
Informatik Centrum Dortmund
Joseph-von-Fraunhofer-Str. 20

Dortmund, Germany
cordes@icd.de

Peter Marwedel
Informatik Centrum Dortmund
Joseph-von-Fraunhofer-Str. 20

Dortmund, Germany
marwedel@icd.de

Arindam Mallik
Imec Belgium
Kapeldreef 75

Leuven, Belgium

arindam@imec.be

ABSTRACT

The last years have shown that there is no way to disregard
the advantages provided by multiprocessor System-on-Chip
(MPSoC) architectures in the embedded systems domain.
Using multiple cores in a single system enables to close the
gap between energy consumption, problems concerning heat
dissipation, and computational power. Nevertheless, these
benefits do not come for free. New challenges arise, if exist-
ing applications have to be ported to these multiprocessor
platforms. One of the most ambitious tasks is to extract effi-
cient parallelism from these existing sequential applications.
Hence, many parallelization tools have been developed, most
of them are extracting as much parallelism as possible, which
is in general not the best choice for embedded systems with
their limitations in hardware and software support. In con-
trast to previous approaches, we present a new automatic
parallelization tool, tailored to the particular requirements
of the resource constrained embedded systems. Therefore,
this paper presents an algorithm which automatically steers
the granularity of the generated tasks, with respect to archi-
tectural requirements and the overall execution time reduc-
tion. For this purpose, we exploit hierarchical task graphs to
simplify a new integer linear programming based approach
in order to split up sequential programs in an efficient way.
Results on real-life benchmarks have shown that the pre-
sented approach is able to speed sequential applications up
by a factor of up to 3.7 on a four core MPSoC architecture.

Categories and Subject Descriptors

D3.4 [Programming Languages]: Processors—Compil-
ers; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—Parallel Programming

General Terms

Experimentation, Languages, Measurement, Performance

∗
The research leading to these results has received funding from

the European Community’s MNEMEE project as part of the
Framework Programme FP7 under grant agreement no 216224.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-905-3/10/10 ...$10.00.

Keywords

Automatic Parallelization, Embedded Software, Hierarchi-
cal Task Graph, Integer Linear Programming

1. INTRODUCTION
To meet the increasing demands that are imposed on mod-

ern embedded systems, plenty of computational power is
needed. Multiprocessor System-on-Chip (MPSoC) architec-
tures can be used to satisfy these requirements. Compared
to a solution which increases the clock frequency of a single
core architecture, it is possible to reach comparable com-
putational power with lower energy consumption and less
heat dissipation by using MPSoC platforms. Nevertheless,
many new challenges have to be tackled, if existing sequen-
tial applications have to be ported to such multiprocessor
systems. To exploit full advantages of these platforms, the
applications have to be split up into several concurrent tasks
to enable parallel execution on available processing units.
However, by experience, manual parallelization tends to be
a very error-prone and time consuming task. As a conse-
quence, in most cases it is not possible to exploit the full
potential provided by MPSoC platforms. Unfortunately,
the complexity of embedded system’s software is increasing,
making it even more complicated to convert a sequential
application into a parallelized one.

In general, it is essential to have detailed knowledge of the
application to be parallelized, as well as of the underlying
hardware platform. To mitigate these requirements, many
models like PThreads [16], MPI [23] or OpenMP [17] were
developed to support the designer in specifying the paral-
lelism in his application. Nevertheless, the designer has to
search for and to specify the parallelism of his application by
hand in all details. Furthermore, depending on the used par-
allelization model, he is also responsible for introducing syn-
chronization and communication between concurrent tasks,
which is often a non-trivial exercise. As a consequence, the
designer should be relieved of the burden of generating par-
allel code, so that he is able to focus primarily on modeling
the behavior of the system.

In contrast to high performance computer systems, em-
bedded systems have some specific characteristics which have
to be addressed. On the one hand, they have a limited
amount of available memory plus other hardware specific
restrictions. On the other hand, specialized operating sys-
tems are often used to meet real-time constraints. To accom-
modate these constraints, in many cases the operating sys-
tems are very limited regarding e.g., the provided schedul-
ing methodologies and threading support, which has to be

considered if parallel software should be mapped efficiently
to such a platform. These observations were confirmed for
the industrial embedded target platforms, considered in the
MNEMEE European project, to which the presented work
belongs. As a consequence, it is important to deliberately
decide on how fine grained the parallelized code should be
in order to get the most beneficial speedup on the MPSoC
architecture.

Based on these observations, we developed a novel, fully
automated parallelization tool which focuses on the special
requirements of embedded systems. The proposed approach
aims at a coarse grained, task level parallelism which can
be limited to a given amount of concurrent tasks. Our tech-
niques offer the possibility to e.g., limit the number of gen-
erated tasks to the number of available processors of the
underlying hardware platform. To make the parallelization
problem manageable, we introduce hierarchy into the task
graph and search for parallelization opportunities on each
level of the hierarchy by using integer linear programming
(ILP). Although ILP may produce good or even optimal so-
lutions to the parallelization with respect to the used model,
it has not been employed in other works for this purpose
so far. To highlight the applicability for embedded systems,
results will be shown for embedded real-life applications, ex-
ecuted on a non-UMA based architecture.

The main contributions of this paper are as follows:

1. To our best knowledge, this is the first study which
uses integer linear programming to find parallelism in
sequential applications.

2. In contrast to the high performance community, this
approach considers constraints, which are relevant for
embedded system applications.

3. Our approach automatically steers the granularity of
the extracted parallelism according to the underlying
hardware platform.

The rest of this paper is organized as follows: Section 2
gives a survey of related work. The hierarchical task graph,
which is used as intermediate representation during the par-
allelization step, is described in Section 3. The paralleliza-
tion step itself is presented in Section 4, including the used
ILP formulation. Section 5 gives a short overview of our
tool flow, followed by experimental results in Section 6. Fi-
nally, Section 7 summarizes this paper and gives directions
for future work.

2. RELATED WORK
Since parallel architectures were invented decades ago,

much research has been done to develop automatic compiler
techniques, tailored to the special needs of these platforms.
One of these research areas aims at exploitation of instruc-
tion level parallelism, which includes optimizations like in-
struction scheduling or superscalar execution [14]. Its aim
is to speed up the application by exploiting hardware level
parallelism in isolation for each processor unit.

In contrast, data level parallelism, which is also well known
as loop-level parallelism, focuses on splitting up an applica-
tion to be computed by several cores concurrently. It con-
centrates on the dissemination of data to the available cores.
This kind of parallelism can often be found in loops, whose
iterations are therefore distributed. Some of these concepts
are presented by Franke et al. [5] or Chandra et al. [4].

Our approach addresses the extraction of coarse grained
task level parallelism. As well as for instruction and data
level parallelism, additional research has been done on how
to extract this kind of coarse grained parallelism from se-
quential applications. Hall et al. present a framework [7]
which is able to do this automatically. It is based on an
interprocedural analysis and was developed as part of the
SUIF compiler system [8]. The work also presents advanced
analysis techniques that are able to identify possible concur-
rency.

Ceng et al. developed a semi-automatic parallelization
assistant [3]. The application code is transformed into a
weighted statement control data flow graph which is sub-
sequently processed by a heuristically clustering algorithm,
generating tasks after several iterations. The approach pro-
posed by Ceng requires a user-feedback loop to steer the
granularity of the parallelized program. In contrast, our
approach controls the granularity in a fully automatic way,
depending on the given architectural description.

Several other approaches try to extract parallelism from
sequential applications, as well. Verdoolaege et al. [25]
present a technique which transforms sequential applications
into parallelized versions using process networks. Therefore,
all loops in the application have to be affine which is not
always the case in real-life applications. Sarkar [22] and Ot-
toni [18] have introduced parallelization techniques based on
program dependence graphs and extensions of them. Com-
pared to their approach, we use a kind of hierarchical task
graph that is similar to the one presented by Girkar et al. [6].
Polychronopoulos et al. demonstrated its usefulness for an
automatic scheduling algorithm in [19].

With respect to the usage of integer linear programming in
the parallelization domain, there is, to our best knowledge,
only the work by Kadayif [12]. However, the described ap-
proach is not used to partition the application, as done in
this work. In fact, it is used to determine the most beneficial
version composed of different parallel implementations.

3. HIERARCHICAL TASK GRAPH
One of the main challenges of extracting parallelism from

sequential code is the complexity of the solution space. The
parallelization step of this work uses an integer linear pro-
gramming based approach to exploit parallelism of an appli-
cation. Since ILP systems are NP-hard in general, a good
approximation of the problem description is essential. With-
out an approximation, the solution space is infeasible for
even small sized applications. Hence, an abstraction level
has to be introduced to make the parallelization step man-
ageable.

One possibility, which is often used in literature, is the in-
troduction of hierarchy in the underlying model. Based on
a flat task graph, Girkar and Polychronopoulos developed a
hierarchical task graph model [6], which is also used as inter-
mediate representation in our proposed approach. However,
some changes to the graph of Girkar are needed for the ap-
proach of this paper.

To automate the presented parallelization tool, we devel-
oped a technique which extracts a corresponding hierarchical
task graph from sequential ANSI C code.

3.1 Structure
An example of a hierarchical task graph is given in Figure

In

Out

In

Out

In

... ...

...

Out

In

...

...

...

Out

Communication Node

Hierarchical NodeData dependency

Simple node

Figure 1: Hierarchical Task Graph Example

1. As depicted, the graph contains communication edges for
data dependencies and four different kinds of nodes:

• Simple nodes
These nodes correspond to one basic statement in the
original C code. They do not contain any child nodes.
Such a statement could be, e.g., a = b;

• Hierarchical nodes
These nodes correspond to e.g., loop or function bodies
in the original source code. All hierarchical nodes con-
tain a communication in-node, a communication out-
node and an arbitrary number of child nodes. These
child nodes can be either simple nodes or other hier-
archical nodes.

• Communication in-nodes
These nodes are part of every hierarchical node. Com-
munication from a node not contained in the hierarchi-
cal node to any inner node is redirected through this
communication in-node.

• Communication out-nodes
These nodes are also part of every hierarchical node.
Communication from a child node of the hierarchical
node to any node not contained in the hierarchical
node is redirected through this communication out-
node.

In contrast to the model of Girkar [6], we added the spe-
cial communication nodes to encapsulate the communication
between different levels of the hierarchy. As can be seen in
Figure 1, communication between different levels of the hier-
archy is always redirected through these special communica-
tion nodes. This fact will be used later on in the paralleliza-
tion step, because it enables the extraction of parallelism for
each node in isolation.

In addition, hierarchical task graphs have further bene-
ficial characteristics. The control flow is already covered
by the hierarchical structure of the graph except for spe-
cial jump statements like break, return or goto. With the
exception of the mentioned jump statements, no edges (es-
pecially back edges) have to be added to model the control

1: while i ≤ 10 do

2: a[i]← 0
3: i← i + 1
4: end while

In

a[i] = 0

Out

i++

i

i

i

a[i]

i

Figure 2: Communication Example

flow of the application. Jump statements are handled by
communication edges without communication costs. In the
current implementation, we distinguish between the follow-
ing data dependency types:

• Def-Use Edges: read-after-write dependencies (RAW)

• Use-Def Edges: write-after-read dependencies (WAR)

• Def-Def Edges: write-after-write dependencies (WAW)

By construction, there is another advantage of the pre-
sented model. Figure 2 shows an example how loop car-
ried dependencies are modeled within the hierarchical task
graph. The statement of line 2 consumes data, produced by
the previous iteration of statement 3. Instead of adding a
communication edge in the opposite direction of the control
flow, the value of variable i is send to the communication
out-node of the hierarchical node, so that it is available at
the communication in-node for the next iteration of the loop.
The dashed edge visualizes an implicit communication, hid-
den in the hierarchy. Another communication edge is then
added to send the value from the communication in-node to
the node of the consuming statement of line 2. As a conse-
quence, all cyclic dependencies are hidden in the hierarchical
structure.

3.2 Additional Annotations
The information, which can be extracted from the pre-

sented task graph itself, is insufficient for the automatic par-
allelization technique described in this publication. There-
fore, the task graph is automatically augmented with addi-
tional information which is described in more detail in the
following.

In order to obtain an efficient parallelization for a sequen-
tial application, the created tasks have to be balanced, so
that concurrently executed tasks should finish nearly at the
same time, especially if they have to be synchronized. Oth-
erwise, some of the tasks would have to wait for completion
of other tasks. For this reason, weights must be added to the
nodes of the graph. These weights denote execution times
multiplied by the execution counts of statements, the node is
representing. Section 5 describes how these execution times
are extracted in our case.

In addition, it is also essential to have knowledge about the
communication costs. These are computed as the amount of
communicated bytes multiplied by a communication over-
head, given by the description of the underlying hardware
platform. This way, it is possible to employ the paralleliza-
tion tool for different hardware platforms. The communica-
tion costs, as well as the communicated variables are anno-
tated to the edges of the graph.

Having knowledge about both costs, our approach is able
to generate a well balanced version of the application. To

enable an automatic tool flow, these additional annotations
are collected automatically (cf. Section 5).

To summarize this section, the advantages of the pre-
sented hierarchical task graph are as follows:

• The parallelization problem becomes manageable by
the abstraction of the hierarchical task graph.

• In general, no control flow edges have to be added.

• Since the back edges of a classical control flow graph
are hidden in the hierarchy, all sub-graphs are cycle
free. This fits well with the chosen optimization func-
tion of the parallelization step, which is presented in
the next section.

• All communication of the child nodes is encapsulated
by the introduction of the communication in- and com-
munication out-nodes. This means that every node is
self-contained and can be optimized without having
detailed knowledge about other nodes in the graph.

4. PARALLELIZATION METHODOLOGY
Based on the extracted augmented hierarchical task graph,

the parallelization tool is able to extract parallelism from the
application’s source code. Therefore, this section explains
the details of the parallelization step. First of all, Section
4.1 gives an overview of the overall parallelization algorithm.
Section 4.2 will then describe how the parallelization is de-
termined for each node in the graph, followed by a detailed
definition of the ILP formulation in subsection 4.3.

4.1 Parallelization algorithm
The functionality of the parallelization algorithm is shown

in Figure 3. The function Parallelize takes a node n and
an upper bound on the number of creatable tasks (e.g., equal
to the number of cores) as input to create parallel solutions
– mappings of child nodes ci to tasks Tj – as output. These
solutions are called parallel sets. An example is given in
Table 1.

Tasks Task exec. times Task mapping

1 TSeq → 100 TSeq → {c1, c2, c3, c4}
3 TSeq → 40, TSeq → {c1, c2},

T1 → 30, T2 → 30 T1 → {c3}, T2 → {c4}
4 TSeq → 20, T1 → 20 TSeq → {c1}, T1 → {c2},

T2 → 30, T3 → 30 T2 → {c3}, T3 → {c4}

Table 1: Parallel Sets Example

The first column contains the number of concurrently ex-
ecuted tasks for the created solutions of node n. The sec-
ond one shows the execution time in CPU cycles per task,
depending on the node-to-task mapping of the last column.
The sequential task TSeq is also added to the amount of con-
currently executed tasks in the first column, since it must
also be executed on one of the available cores. The num-
ber of concurrently executed tasks may also be increased if
parallel versions of the child nodes ci are used within the
resulting parallel set.

Our parallelization process is started by calling the func-
tion Parallelize with the root node of the graph. As can
be seen in lines 2-11 of Figure 3, the function is called recur-
sively in a depth-first-search-manner initially. As a conse-
quence, the algorithm starts the parallelization step at the

1: function Parallelize(Node n, int maxTasks)
2: NewParSets← {SequentialSet}
3: if IsNotHierarchicalNode(n) then

4: return NewParSets

5: end if

6: # Cluster bottom-up in hierarchy, first.
7: ChildSets← ∅
8: for all c ∈ ChildNodes do

9: childset← Parallelize(c, maxTasks)
10: ChildSets← ChildSets ∪ {childset}
11: end for

12: # Cluster this node now (all child nodes clustered).
13: InputSets← CombineResults(ChildSets)
14: i← maxTasks

15: while i > 2 do

16: set← ILPParallelizer(n, i, InputSets)
17: NewParSets← NewParSets ∪ {set}
18: i← NumberOfTasks(set)− 1
19: end while

20: return NewParSets

21: end function

Figure 3: Pseudo code of parallelization function

innermost nodes of the graph. By construction, these nodes
of the presented hierarchical task graph are always simple-
or communication nodes (cf. Section 3). Since it makes no
sense to move one node to a separate task and wait for its
completion, these nodes are skipped in the parallelization
algorithm and a solution set containing only the sequential
solution of this one task is returned (lines 2-5). The algo-
rithm is then moving upwards in the graph hierarchy and
will reach a hierarchical node. Since all child nodes have
already been processed, parallel sets are available for them.
These parallel sets are combined in line 13 to be used as in-
put for the integer linear programming based parallelization
approach (cf. Section 4.2).

As already described, one major characteristic of this par-
allelization algorithm is the option to limit the number of
generated concurrently executed tasks. Therefore, the ILP
based parallelization step is executed several times to com-
pute solutions for maxTasks down to 2 tasks, represented
by the while loop in the lines 15-19. Since the parallelization
step is based on ILP, the solution w.r.t. the model is always
optimal. This means, that if the parallelization step returns
a solution set with 4 tasks, even if we restricted the algo-
rithm to generate at most 6 tasks, the iterations with 5 and
4 maximum tasks can be skipped, respectively. The gener-
ated parallel sets for node n are added to the NewParSets

set in line 17, before these are returned as the result of the
parallelization step for node n. Once node n is processed,
the algorithm continues by moving upwards in the hierar-
chy, until the root node is reached and all child nodes are
processed. The root node contains the final parallelization
result which is therefore returned.

4.2 ILP based parallelization approach
The previous section described the overall parallelization

algorithm. As can be seen in line 14 of Figure 3, an ILP
based approach is used to parallelize a node n for a given
upper bound for the number of concurrent tasks and the
already generated parallel sets of its child nodes. This sub-

Sequential

Out

In

Node 1

Out

In

Node 6

Out

In

Node 2

Node 4

Out

In

Node 3

Node 5

Parallelized

In

Node 1

Out

Node 6

Node 2

Node 4

Node 3

Node 5

Figure 4: Parallelization Example

section presents the conceptual idea of the parallelization
step, before the ILP formulation will be presented in more
detail in Section 4.3.

As the objective, the parallelization step tries to minimize
the critical path (or most expensive path) within a hierar-
chical node n. In particular, this means that the ILP-based
approach aims at the minimization of the costs of the path
from the hierarchical node’s communication in- to its com-
munication out-node by moving some of its child nodes to
concurrent tasks. Since every child node has parallel sets
with different execution times, depending on the number of
tasks, deeper in the hierarchy, attached (cf. Table 1), the
ILP solver is even able to pick solutions with different granu-
larities for the child nodes, as long as the maximum number
of concurrent tasks is not exceeded. The computation of the
critical path is based on Sarkar [21].

To be able to adopt this approach to different hardware
platforms, the user can specify the following parameters:

• Task creation overhead
This overhead is added to the computed path for every
created task. The parameter can be used to steer the
granularity of the parallelization step, depending on
the utilized hardware platform.

• Communication costs
Communication costs have to be added, if data has to
be transferred from one task to another. The com-
munication overhead can also be changed by the user
to model different hardware platforms. In this model,
communication takes only place at the beginning and
at the end of a task.

The parallelization approach divides the hierarchical node
into three sections. All statements of the first section are ex-
ecuted sequentially on the same processor, which started the
execution of the hierarchical node. The second one is the so
called parallel section, where different concurrent tasks can
be executed. In order to leave such a parallel section, all
tasks have to synchronize and all data has to be communi-
cated back to the parent task. The last section is again a
sequential section, where statements without explicit data
communication can be executed. This model is comparable
to the MPA [1] or OpenMP [17] based Sections directive. In
general, it is often useful to execute some statements before
and after a parallel section due to high communication costs
and less parallelism in some parts of the application.

An example of such a partitioning is shown in Figure 4.
The input for the parallelization step is given on the left
hand side. The sequential, hierarchical node, which should

be parallelized, contains 6 child nodes, its communication in-
and communication out-node and several data dependencies,
which may produce communication, if the statements are
executed in different tasks. The right hand side of Figure
4 shows a possible result of the ILP based approach. Here,
the solver decided to map Node 1 to the sequential task
that is executed before the parallel section. Therefore, no
data has to be communicated to execute Node 1. Node 2
and Node 4 are then moved to a separate task. The second
concurrent task contains Node 3 and Node 5. Node 6 is
finally executed after the two tasks have been synchronized.
Thus, two tasks, each one containing two child nodes, are
executed in parallel, which decreases the overall execution
time of the hierarchical node. It should be mentioned here,
that the inner-task communication edges are removed in the
parallelized version of Figure 4, because data communication
within the same task is superfluous.

4.3 ILP Formulation
Integer linear programming is a well known approach that

is often used for partitioning problems. Even though ILP
is NP-complete, the solutions can be determined very effi-
ciently by commercial as well as by open source solvers for
many real-life problems. The following sections define the
ILP formulation for the approach described in Section 4.2.

4.3.1 Node in task constraint

The result of the parallelization step is a mapping of nodes
to tasks, which is calculated by the ILP. Therefore, a decision
variable xi,j is defined in Equation 1, which describes this
relationship.

xi,j =

(

1, if node i is mapped to task j

0, else
(1)

The constraint in Equation 2 takes care that every node
is mapped to exactly one of the given tasks.

∀i ∈ Nodes :
X

j∈Tasks

xi,j = 1 (2)

4.3.2 Parallel sets constraint

As explained in the previous section, nodes, which should
be mapped to tasks, have different execution times, depend-
ing on the number of concurrently executed tasks, deeper
in the hierarchy. One parallel set has therefore a number of
concurrent tasks and a mapping of nodes to tasks deeper in
the hierarchy (cf. Table 1). The ILP has the possibility to
choose one of the offered parallel sets, which is then used as
basis for the newly generated parallel version of the active
node. The decision variable for the chosen parallel set is
defined in Equation 3.

pk =

(

1, if parallel set k is taken

0, else
(3)

Equation 4 takes care that exactly one parallel set is cho-
sen.

X

k∈ParSet

pk = 1 (4)

4.3.3 Predecessor constraint

To minimize the critical or most expensive path from the
communication in- to the communication out-node, the ILP

formulation has to be extended by path information. There-
fore, a predecessor/successor relationship between tasks l

and m has to be added, that is realized by the decision vari-
able predl,m in Equation 5.

predl,m =

(

1, if task l is predecessor of task m

0, else
(5)

In this case, it is not straightforward to describe this re-
lationship, because the dependency information is currently
only available for the nodes of the graph and not for the
tasks. Moreover, the task dependencies hinge on the node
to task mapping. As a consequence, the paths can change
dynamically, if a node is moved from one to another task.
This makes it hard to describe the predecessor relationship
for tasks, given in Equation 6.

∀l ∈ Tasks : ∀m ∈ Tasks : l 6= m :

∀n ∈ Nodes : ∀o ∈ Nodes : n 6= o :

predl,m ≥ EDGEn,o ∗ (xn,l ∧ xo,m) (6)

The predecessor variable predl,m is created for all possi-
ble task combinations. Furthermore, it checks for all node
combinations if node n is part of task l while node o has to
be part of task m. If this is true and a directed edge from n

to o exists (EDGEn,o = 1), task m depends on task l.
From the technical perspective, it should be mentioned

that the constant EDGEn,o is known when the ILP is cre-
ated. Therefore, constraints are only generated, if an edge
between n and o exists. It should be mentioned, that we
skipped the explanation of the different edge types in the
path calculation with respect to the limited amount of pages.

Two further exceptions belong to the calculation of the
correct path information: the sequential task right before
the parallel section (cf. Figure 4) is a predecessor of all other
tasks. Analogously, the sequential task after the parallel
section is a successor of all other tasks or vice versa: each
other task is a predecessor of the sequential task after the
parallel section.

The ∧ operator, used in Equation 6 is substituted by the
constraints of Equation 7 and will also be used in the fol-
lowing equations.

z = (x ∧ y) ∈ {0, 1}

z ≥ x + y − 1

z ≤ x

z ≤ y (7)

4.3.4 Execution costs of tasks constraint

The predecessor relationship enables to describe paths
with respect to dependencies. To weight these paths, costs
have to be added to nodes as well as to edges. Equation 8
is responsible for this.

∀j ∈ Tasks : costj ≥ ITERCOUNT ∗ OV ERHEAD+
P

i∈Nodes

P

k∈ParSec

(xi,j ∧ pk) ∗ COSTi,k (8)

Equation 8 sets the lower bound of the costs for each task j

to at least the sum of costs COSTi,k of each node i contained
by j, depending on the chosen parallel set k. Furthermore, a
constant overhead OV ERHEAD for task creation is added,
which is multiplied by the iteration count ITERCOUNT of
the task. This is done to steer the granularity of the created

tasks. The variable costj is also part of the objective func-
tion, so that it is minimized by the ILP solver automatically,
if task j is part of the critical path.

The costs of the sequential tasks are slightly different. Be-
cause they are executed on the same core as the previous
nodes, the task creation overhead ITERCOUNT ∗OV ER-
HEAD of Equation 8 can be ignored.

4.3.5 Path cost constraint

Based on the knowledge of the execution costs of each
task, it is now possible to describe the accumulated costs of
the possible paths. Unfortunately, it is not known at this
time, in which order the data will be communicated between
two tasks. Therefore, a worst case scenario is presented here
which assumes that a task p has to wait for its data until
all its predecessor tasks have communicated all data to their
successor tasks, even if this data is not consumed by p. The
ILP formulation of this worst-case scenario based path cal-
culation is shown in Equation 9. It should be mentioned here
that it is an easy task to change the optimization function
at this point to e.g., an average-case based scenario.

∀p ∈ Tasks : ∀q ∈ Tasks : p 6= q

accumcostp ≥ costp + accumcostq + commcostq−

BIGCONST + BIGCONST ∗ predq,p (9)

Equation 9 ensures that the path costs accumcostp for
task p are at least as high as the costs costp of task p it-
self and the path costs of its most expensive predecessor
accumcostq, including all communication costs commcostq

of task q.
Since there is no way to describe conditional constraints

in an ILP formulation, the last line of Equation 9 takes care,
that the equation is fulfilled automatically, if task q is not
a predecessor of task p. If the variable predq,p = 0, a big
constant BIGCONST , which is greater than the sum of all
other possible values, is subtracted from the right-hand side
of the constraint, so that it is fulfilled automatically for all
variable assignments. On the other hand, if predq,p = 1, the
last line of the constraint nullifies itself. The accumulated
costs are also included in the objective function, so that it
is automatically minimized by the ILP solver.

4.3.6 Number of hierarchical tasks constraint

Each child node may contain a number of concurrently
executed tasks deeper in the hierarchy, depending on the
chosen parallel set (cf. Table 1). To be able to restrict
the overall number of concurrent tasks, the amount of hi-
erarchical tasks htasksj has to be calculated for the newly
created tasks j, based on the node-to-task mapping. Since
all nodes within the same task are executed sequentially,
the hierarchical tasks of these nodes will not overlap. Thus,
the number of hierarchical tasks is as high as the maximum
number of hierarchical tasks of all nodes mapped to the new
task. This is expressed in the constraint of Equation 10.

∀j ∈ Tasks : ∀i ∈ Nodes : ∀k ∈ ParSet :

htasksj ≥ (xi,j ∧ pk) ∗DEEPERHTASKSi,k (10)

The number of hierarchical tasks DEEPERHTASKSi,k

for a node i depends on the chosen parallel set k. Neverthe-
less, DEEPERHTASKSi,k is a constant, contained in the
parallel sets (cf. first column of Table 1).

4.3.7 Max. number of concurrent tasks constraint

To limit the number of concurrently executed tasks, a new
decision variable taskusedj is introduced in Equation 11,
which shows, if a task j is used.

taskusedj =

(

1, if task j is used

0, else
(11)

Task j is used, if it contains at least one node, which is
ensured by Equation 12.

∀j ∈ Tasks : ∀i ∈ Nodes : taskusedj ≥ xi,j (12)

The number of concurrently executed tasks is equal to
the sum of the newly created tasks, increased by the num-
ber of hierarchical tasks. Here, only the parallel tasks are
taken into account, since the executed tasks in the sequential
parts are already synchronized, before the parallel section is
entered. Equation 13 takes care, that the number of newly
created and hierarchical tasks does not exceed the given up-
per bound MAXTASKS of concurrently executed tasks.

MAXTASKS ≥
X

j∈Tasks

(taskusedj + htasksj) (13)

4.3.8 Cycle free constraint

To ensure that the created tasks are deadlock free, the
nodes are sorted topologically by their dependencies. An as-
cending, unique ID is assigned to each of the tasks. W.l.o.g.
the generated local task graph is cycle free, if the task ID of
a node i has to be at least as high as the task ID of node n,
if node i depends on node n. This is shown by Equation 14.

∀i ∈ Nodes : ∀n ∈ Nodes : topsorti ≥ topsortn :

taskIDi ≥ taskIDn (14)

4.3.9 Objective function

With all defined decision variables and constraints, it is
now possible to describe the objective function. As men-
tioned before, the critical or most expensive path from the
communication in- to the communication out-node should
be minimized. The costs of this path are stored in the value
of the variable accumcost of the sequential out task tseqout ,
because it is the successor of all other nodes in the created
task graph. Thus, it should be minimized by the ILP solver:

exectime = min{accumcosttseqout
} (15)

The value of the objective function is equivalent to the ex-
ecution time needed to execute the parallelized hierarchical
node. It is hence returned together with the node-to-task
mapping as the result of the parallelization step.

The number of constraints is exponential in the number of
nodes. Nevertheless, the ILP can be solved quickly for the
considered real-life benchmarks. In general, the hierarchical
task graph reduces the amount of child nodes to five up
to fifteen nodes. Empirical results have shown that most
of the ILPs can be solved in less than a second, using the
commercial ILP solver CPLEX [10].

5. EXPERIMENTAL ENVIRONMENT
All described techniques are developed as contribution

to the MNEMEE European project. They are fully im-
plemented and integrated into the MACC framework [20],

Sequential
ANSI-C code

(ICD-C IR)

Platform
description

Code
optimization

Exec-time
estimation

Dependency
analysis

Hierarchical
task graph
extraction

Parallelization
Tool

ATOMIUM
tools

ILP-based
parallelization

Augmented
ANSI-C code

Parallel
specification

Figure 5: Implemented Tool Flow

which is used to facilitate the communication between all
processing steps employed in the parallelization approach.
Furthermore, the platform dependent information is also
provided by the platform description of the framework, like
e.g., the task creation- or communication overhead, steering
the granularity of the ILP based parallelization algorithm.

The internal structure of the parallelization tool is visu-
alized in Figure 5. As can be seen, the input to the tool
is sequential ANSI C code, combined with the platform de-
scription of the MACC framework. The code is parsed by
the ICD-C compiler framework [11] to extract a high-level
intermediate representation (ICD-C IR) of the application’s
source code. Based on this intermediate representation and
the architectural information provided by the MACC frame-
work, the sub-tools of Figure 5 are applied in the given or-
der to extract a parallelized version of the sequential source
code. The sub-tools are now briefly described.

Code optimization

The code optimization tool prepares the code for the sub-
sequent parallelization steps. These optimizations are e.g.,
constant propagation, constant folding, dead code elimina-
tion and other standard compiler optimizations described in
[15]. Furthermore, the code optimization tool also applies
optimizations which explicitly help the parallelization tool
to find more effective parallelism in the application. One of
these optimizations is a specialized version of loop unrolling
which additionally helps this coarse grained parallelization
approach to find parallelism in loops.

Dependency analysis

The dependency analyzer takes the intermediate represen-
tation of the optimized source code as input to extract all
data dependencies of the application. This information is
required to build the hierarchical task graph. In this case,
a profiling based approach is used. Due to profiling driven
analysis techniques, parallelization hints might ignore de-
pendencies which are not manifest in the profiling run. This
does not harm the correctness of the approach, since the
ATOMIUM tool suite [1] is used, which is based on safe

static analysis techniques. ATOMIUM introduces synchro-
nization and communication if necessary.

The profiling based approach has some advantages com-
pared to a static analysis. For example, it delivers very
detailed information about access patterns and very fine
grained dependency information. Thus, by using the pro-
filing based approach, it is possible to identify for exam-
ple that loop iterations modifying arrays or pointers are in-
dependent and therefore possible parallelization candidates.
Usually, this is very hard to detect via static analysis tech-
niques. These observations are also reported in [24], where
a profiling driven parallelization approach is presented.

Moreover, the dependency analyzer also returns the exe-
cution count of each statement.

Execution time estimation

To be able to attach weights to nodes of the hierarchical
task graph, approximated information about the execution
time of statements for a given hardware platform has to
be known. Since we are currently using the cycle accurate
MPARM simulator [2] as evaluation platform, the execution
time estimation is specialized for this architecture.

This version of the execution time estimation simulates
each statement on the given platform to extract an aver-
age execution time. Because node weights have to be ex-
tracted on statement level, the generated information is not
as precise as an overall system simulation. Nevertheless,
our experimental results (cf. Section 6) have shown that
the extracted execution times are sufficient to create well
balanced tasks. Compared to other approaches like Ceng [3]
which just calculates weights according to an execution time
per operation matrix, our model is more accurate.

Hierarchical task graph extraction

As soon as the previous steps have finished, all information
which is required to extract the hierarchical task graph is
available. The hierarchical structure of the graph is ex-
tracted statically with the use of the ICD-C framework.
Then, the created nodes are connected with directed depen-
dency edges, based on already gathered information of the
dependency analyzer tool. Finally, the graph is augmented
with weights of nodes and communication edges.

ILP based parallelization

Based on the extracted hierarchical task graph, the paral-
lelization step is executed, as described in Section 4.

As a result, the parallelization tool annotates the given
source code of the application. Based on these annotations,
a parallel specification is generated. These annotations com-
ply with the input specifications of the ATOMIUM tools, so
that the extracted parallelization can be implemented by
these tools automatically.

Implementation of parallelization

The implementation of the parallelization is done by the
MPA tool of the ATOMIUM suite [1]. The ATOMIUM tools
alone are not capable of automatically extracting parallelism
from a sequential application. Typically, the user has to
specify the parallelism on his own, which is now superflu-
ous, because this information is automatically generated by
the presented approach of this paper. The communication
between both tools is fully automated to close the gap for
an autonomously operating parallelization tool.

1,0

1,5

2,0

2,5

3,0

3,5

4,0

co
m

pr
es

s

ed
ge

de
te

ct

H
.2

63

sp
ec

tra
l

ad
pc

m
en

co
de

r

in
du

st
ria

l

im
ag

e
pi
pe

lin
e

av
er

ag
e

S
p

e
e
d

u
p

2 Cores 3 Cores 4 Cores

Figure 6: Speedup of parallelization compared to

sequential application code

6. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our parallelization ap-

proach, we present results for seven benchmarks stemming
from the UTDSP suite [13], some miscellaneous real-life ap-
plications like an implementation of the H.263 standard and
an industrial application used in INTRACOM TELECOM’s
Wimax system.

To evaluate the performance gain of the parallelization
tool, we used the cycle accurate MPARM simulator. Com-
pared to a high-level simulator, this cycle accurate one yields
highly precise results. Nevertheless, some additional work
had to be done to execute the parallelized code on the simu-
lator. The resulting code of the ATOMIUM tools requires a
special run time library (RTLIB), which had to be ported to
the MPARM platform. Furthermore, the RTEMS operating
system had to be extended e.g., by cross-core thread creation
and other multi-core functionality. To build a bridge be-
tween the operating system and the RTLIB, a library called
R2G (RTEMS and RTLIB Glued Together) [9] was used.

The presented results include the execution time of the
application without the initialization phase of the operat-
ing system and the runtime library, because this overhead
affects both, the sequential and the parallelized version of
the application. Thus, the results focus on the execution
time of the application itself. To summarize the potential of
the presented approach, the measured execution times are
visualized in Figure 6. The figure shows results for configu-
rations of the simulator with one up to four cores. Due to
restrictions of the simulator, at most four processors could
be used simultaneously. The presented speedups are com-
pared to the sequential execution times of the applications
on a single core. The amount of extracted, concurrently ex-
ecuted tasks was limited to the number of available cores.
The task creation- and the communication overhead were
determined empirically for the MPARM platform and had
been set to 20,000 and 100 units, respectively.

As can be seen in the figure, the speedup scales very well
with the given amount of processor units for most of the
benchmarks. Only the adpcm encoder does not benefit of
a fourth core, because it was not possible to extract more
coarse grained parallelism for that benchmark. Nevertheless,
a speedup of 1.5x and nearly 2x could be reached on a two-
and three-core architecture. The best utilization could be
achieved for the compress benchmark of the UTDSP bench-

Gradient Combining (GC)

Input image

Smoothing Filter (SF)

Vertical Gradient (VG)

Horizontal Gradient (HG)

Apply Threshold (AT)

Output image

Initialization Phase

Sequential

(a)

Input image

SF1

Output image

Initialization Phase

SF2 SF3

VG1 VG2 VG3

HG1 HG2 HG3

GC1 GC2 GC3

AT1 AT2 AT3

3-Cores

(c)

Input image

Output image

Initialization Phase

SF3SF2SF1 SF4

AT3AT2AT1 AT4

VG3VG2VG1 VG4

HG3HG2HG1 HG4

GC3GC2GC1 GC4

4-Cores

(d)

GC1

Input image

SF1

VG HG

Output image

Initialization Phase

SF2

GC2

AT1 AT2

2-Cores

(b)

Figure 7: Parallelization of the edge detect benchmark

mark suite. The achieved speedup amounts to 1.9x, 2.9x and
3.7x for a two-, three- and four-core system, respectively.
The high speedup results from the fact, that the paralleliza-
tion tool was able to spread the main computational loop
to concurrently executed tasks. In addition to the presented
real-life benchmarks, we also validated our approach with an
industrially used embedded application which is part of IN-
TRACOM TELECOM’s Wimax system. Compared to the
sequential version, it was possible to accelerate even this
application by a factor of 1.4, 1.9 and 2.2 for the given ar-
chitectural configurations, which emphasizes the usability of
the presented approach for industrial grade applications.

The average speedup of the presented benchmarks is visu-
alized in the last column of Figure 6. It was possible to speed
the different applications on average up by a factor of 1.8,
2.2 and 2.7, respectively. It should also be mentioned, that
the tool did not violate any data dependencies by generating
parallel solutions based on the profiling driven dependency
analysis.

Exemplary Description of Parallelization

In order to present the conceptual options of possible paral-
lel solutions exploited by our tool, the structural results of
the edge detect benchmark are visualized in Figure 7. This
application provides a good trade-off between computational
work and simplicity in its structure.

The aim of the benchmark is to detect edges in a two-
dimensional image. The structure of the sequential applica-
tion is displayed in Figure 7(a). After a short initialization
phase, three filters are applied to the original image in or-
der to extract horizontal and vertical edges within the image.
All three filters are applied by the same function convolve2d

which is just called with different input filters. The result of
the smoothing filter (the first call) is used as input for the
second two function calls. The two filtered images are then
combined and compared to a predefined threshold. This is
done in a loop which is iterating over the image dimensions.

The result of the parallelization tool, limiting the number
of concurrently executed tasks to two, is visualized in Figure
7(b). As can be seen, the convolve2d function is parallelized
using two tasks to compute the result of the smoothing filter.

In contrast to the most obvious solution of taking the same
parallelized function for the two other filter calls, the paral-
lelization tool decided to duplicate the convolve2d function,
to still have one sequential version available. This one is then
used for the horizontal and vertical filters, because the tool
detected that maximum benefit is obtained by parallelizing
both function calls instead of just parallelizing the functions
itself. After both function calls returned, the final combin-
ing and threshold computation loop is also divided into two
concurrently executed tasks. As can be seen, nearly the
whole application is executed in parallel, while the number
of concurrently executed tasks is limited to two. This results
in the presented speedup of 1.9x.

The results for the three and four core versions are visu-
alized in Figure 7(c) and 7(d). In contrast to the two core
version, the parallel results of the vertical and horizontal
function calls are changed. The version with two concurrent
function calls is no longer used, since the speedup is less
than using a parallelized version of the function, running
three and four tasks concurrently. The achieved speedup
with three concurrently executed tasks is 2.2x, while the
measured speedup of four tasks is 2.9x. We also observed
that the speedup is increasing for growing input image sizes,
because the contribution of the initialization phase to the
overall execution time is decreasing. In addition to these re-
sults, this example also demonstrated the described trade-off
technique of our approach, which checks which parallelism
is most suitable for the given architectural configuration.

Optimization time

The optimization time of the parallelization tool strongly
depends on the profiling based dependency analysis. Since
the results of the sub-tools can be stored within the MACC
framework, they can be used for different executions of the
parallelization step. The optimization time is visualized in
Table 2, while the optimization time of the preprocessing
tools (column two) includes the execution time of the Code
optimization, the Dependency analysis and the Execution
time estimation tools. The optimization time of the paral-
lelization approach is given in column three, while column
four lists the number of nodes in the hierarchical graph.

Benchmark Preproc. Parallelization Nodes

compress 03:46 min 07 sec 1393
edge detect 00:33 min 06 sec 577

H.263 05:06 min 04 sec 210
spectral 00:22 min 02 sec 444

adcpm encoder 00:10 min 02 sec 352
industrial app. 11:30 min 22 sec 771
image pipeline 00:37 min 02 sec 117

Table 2: Optimization time

As can be seen in Table 2, the ILP based parallelization
step performs very fast even if it generates and solves several
ILPs for each node, whose number is given in the last col-
umn. This is also a proof for the applicability of the combi-
nation of the hierarchical task graph and the comprehensive
ILP formulations.

7. CONCLUSIONS AND FUTUREWORK
To our best knowledge, this paper presents the first ILP

based parallelization approach on hierarchical task graphs
tailored to the particular needs of embedded systems. The
introduced parallelization tool is able to automatically steer
the task granularity for a given hardware platform to ex-
ploit the best suitable parallel version of the given sequen-
tial application. The efficiency of the tool was demonstrated
on seven real-life benchmarks from typical embedded sys-
tem application domains like e.g., audio-, image- and video-
processing, as well as on an industrial application. It could
be shown that the tool was able to achieve a speedup of up
to 3.7x for a four core system.

In the future, we would like to extend the presented ap-
proach to heterogeneous systems. In the current version,
the tool takes only one extracted execution time per node
into account while partitioning the application. By adding
different cores to the same system, this approach has to
be adapted to differing execution times, depending on the
mapped core. Furthermore, we would also like to com-
bine this coarse grained approach with a finer grained loop
level parallelization technique to achieve the most possible
speedup for an application.

8. REFERENCES

[1] R. Baert, E. Brockmeyer, S. Wuytack, et al. Exploring
parallelizations of applications for MPSoC platforms
using MPA. In Proc. of DATE, 2009.

[2] L. Benini, D. Bertozzi, A. Bogliolo, et al. MPARM:
Exploring the Multi-Processor SoC Design Space with
SystemC. Journal of VLSI Signal Processing Systems,
41(2):169–182, 2005.

[3] J. Ceng, J. Castrillon, W. Sheng, et al. MAPS: an
integrated framework for MPSoC application
parallelization. In Proc. of DAC, 2008.

[4] R. Chandra, D.-K. Chen, R. Cox, et al. Data
distribution support on distributed shared memory
multiprocessors. ACM SIGPLAN Notices,
32(5):334–345, 1997.

[5] B. Franke and M. O’Boyle. Compiler parallelization of
C programs for multi-core DSPs with multiple address
spaces. In Proc. of CODES+ISSS. ACM, 2003.

[6] M. Girkar and C. D. Polychronopoulos. The
hierarchical task graph as a universal intermediate
representation. International Journal of Parallel
Programming, 22(5):519–551, 1994.

[7] M. H. Hall, S. P. Amarasinghe, B. R. Murphy, et al.
Detecting coarse-grain parallelism using an
interprocedural parallelizing compiler. In Proc. of
Supercomputing, 1995.

[8] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, et al.
Maximizing Multiprocessor Performance with the
SUIF Compiler. IEEE Computer, 29(12):84–89, 1996.

[9] A. Heinig. R2G - RTEMS and RTLib Glued Together.
http://ls12-www.cs.tu-dortmund.de/staff/heinig/
research/projects/r2g/, April 2010.

[10] IBM. IBM - High-performance mathematical
programming engine - IBM ILOG CPLEX - Software.
http://www-01.ibm.com/software/integration/
optimization/cplex/, April 2010.

[11] ICD e.V. ICD-C Compiler framework.
http://www.icd.de/es/icd-c/icd-c.html, April 2010.

[12] I. Kadayif, M. Kandemir, and U. Sezer. An integer
linear programming based approach for parallelizing
applications in On-chip multiprocessors. In Proc. of
DAC, 2002.

[13] C. G. Lee. UTDSP Benchmark Suite.
http://www.eecg.toronto.edu/˜corinna/DSP/
infrastructure/UTDSP.html, April 2010.

[14] G. Memik, G. Reinman, and W. H. Mangione-Smith.
Precise instruction scheduling. Proc. of JILP, 2005.

[15] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc.,
1997.

[16] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads
programming. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1996.

[17] OpenMP. The OpenMP API specification for parallel
programming. http://www.openmp.org/, April 2010.

[18] G. Ottoni, R. Rangan, A. Stoler, et al. Automatic
Thread Extraction with Decoupled Software
Pipelining. In Proc. of MICRO 38, 2005.

[19] C. D. Polychronopoulos. The hierarchical task graph
and its use in auto-scheduling. In Proc. of ICS, 1991.

[20] R. Pyka, F. Klein, P. Marwedel, et al. Versatile
System-level Memory-aware Platform Description
Approach for embedded MPSoCs. In Proc. of LCTES,
2010.

[21] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Multiprocessors. MIT Press, 1989.

[22] V. Sarkar. Automatic partitioning of a program
dependence graph into parallel tasks. IBM Journal of
Research and Development, 35(5-6):779–804, 1991.

[23] M. Snir, S. Otto, S. Huss-Lederman, et al. MPI-The
Complete Reference, Volume 1: The MPI Core. MIT
Press, 1998.

[24] G. Tournavitis, Z. Wang, B. Franke, et al. Towards a
holistic approach to auto-parallelization: integrating
profile-driven parallelism detection and machine-
learning based mapping. In Proc. of PLDI, 2009.

[25] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: A
Tool for Improved Derivation of Process Networks.
EURASIP Journal on Embedded Systems, 2007.

