
n

n

n

n

n

n

Using multicore systems can...

reduce CPU frequencies / exec. time

save energy

enable further optimizations

Most embedded system applications are writ-
ten in sequential C

Automatic parallelization beneficial

n

n

n

n

n

n

Splitting program into tasks manually is...

error prone

time consuming

Doing this automatically...

is a very complex problem with a very large
search space

Limitations of parallelization techniques of
high-perfomance computing

n

n

n

n

Focus on characteristics of embedded system
applications and architectures

Reduce search space by introducing hierar-
chy to the task graph model

Clustering of each hierarchical block can be
handled isolated of other nodes

Use integer linear programming (ILP) formula-
tion of problem to find best solution in each
hierarchical block

Internal Model: Hierarchical Task Graph Parallelization step

n

n

n

n

n

n

n

n

n

Sequential C-Code is translated automatically into hierarchical task
graphs

Elements of hierarchical task graphs:

Hierarchical node i.e. loops / conditional statements

Simple nodes for expression statements like ‘a = 0;’

Data dependencies for communication

In/out node for every hierarchical node encapsulates
communication

Advantages of model:

Each node can be optimized without having detailed knowledge about
other nodes

Subgraphs are cycle free

→

n

n

n

n

n

n

n

n

Parallelization is done bottum-up in hierarchy

Each node is transformed in ILP formulation to find possible tasks

Objective function: minimization of longest (most expensive) path from
communication in- to communication out-node

ILP generates a sequential part before and after a parallel section

ILP is solved several times for a different max. number of tasks

Value of objective function is used as execution time of this node for the
parallelization step of the parent node

Tool is capable of generating only a restrictive number of tasks

Results are combined to find solutions for parent nodes

An automatic parallelization tool for embedded systems,
based on hierarchical task graphs

Tool Characteristics

Experimental Results

D a n i e l C o r d e s P e t e r M a r w e d e l W e b : w w w . i c d . d e , w w w . m n e m e e . o r g | E m a i l : L a s t n a m e @ i c d . d e| |

I n f o r m a t i k C e n t r u m D o r t m u n d | J o s e p h - v o n - F r a u n h o f e r - S t r a ß e 2 0 | 4 4 2 2 7 D o r t m u n d | G e r m a n y

Motivation Problems Idea

In

Out

In

Out

In

...

...

...

Out

In

... ...

...

...

Out

In

...

...

...

Out

-2-

-3-

-5-

-6-

-7-

-8-

-1-

In

Out

-4-

Out

In

-1-

Out

In

-8-

Out

In

-2-

-4-

-6-

Out

In

-3-

-5-

-7-

n

n

n

n

n

n

n

n

Results measured with MPARM simulator

Default configuration with shared memories used

Implementation of parallelization done using ATOMIUM tools from
IMEC

Speedup up to 1,94 with 2 cores

Speedup up to 2,55 with 3 cores

Speedup up to 3,94 with 4 cores

Approach has shown that it finds reasonable solutions

Fast hierarchical approach

n Compress (UTDSP)

n Boundary Value Problem
(image processing)

3,9444

2,5133

1,9422

Speedup#Par. Tasks.#Tasks

51%

40%

29%

0%

20%

40%

60%

80%

100%

2 CPUs 3 CPUs 4 CPUs

Sequential Exec. Time

56%

39%
31%

0%

20%

40%

60%

80%

100%

2 CPUs 3 CPUs 4 CPUs

3,1944

2,5533

1,7822

Speedup#Par. Tasks.#Tasks

Sequential Exec. Time

Communication Node

Hierarchical NodeData dependency

Possible TaskStatement

Benchmarks

Sequential Parallelized

