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1 || Situation before PREDATOR

Importance of timing recognized by some real-time
specialists

First commercially successful timing analysis tools

But: WCET.s; computed after software generation

Even if we use save WCET s guarantees .... &
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Inefficient Software Development
with Timing Analysis

. Specification of real-time software

. Generation of Code (ANSI-C or similar)
. Compilation for given target processor
. Computation of WCET ¢t

. If “WCET.s;” > real-time constraint: change some detail,
go back to 1 or 2.
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Problems with this Approach

e Design time
e How to find necessary changes?
e How many iterations until successful?
e "Make the common case fast” a wrong approach for RT-
systems

e Computer architecture and compiler techniques focus on
average speed Common case fast

e Circuit designers know it's wrong M

e Compiler designers (typically) don't « period—

e “"Optimizing” compilers unaware of cost
functions other than code size
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How to reconcile compilers and timing
analysis?

e Timing analysis tools already very complex

e Adding timing analysis to compilers would add to their
complexity

e Follow a golden principle of computer science:
Implement a certain functionality once and only
once! =
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Integration of TA and compiler in WCC

«— WCC Compiler —

Parser Selector CRL2

( l

” m
Target Processor: Analyses \

Infineon TriCore Optimi-
TC1796/TC1797; zatlons [ Gene- CIEII:IZR—>
Limited support for rator

ARM7
WC ET- Lmker-
Opt. ASM | script
Optimization for WCET ;!
PREDATOR CCO Property of the PREDATOR consortium.




1) WCET-oriented optimizations

e Instruction cache locking (CODES/ISSS 07)
e Cache partitioning (WCET-Workshop 09)
e Procedure positioning (ECRTS 08)
e Procedure cloning (..., CODES/ISSS 07, SCOPES 08)
e Function inlining (SMART 09)
e Loop unswitching/invariant paths (SCOPES 09)
=) ¢ Loop unrolling (ECRTS 09)
e Register allocation (DAC 09)
e Scratchpad optimization (DAC 09)
e Loop invariant code motion/machine learning (SMART 10)

e Multi-objective optimization (RTSS 08, ISORC 10)
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Loop Unrolling as an Example

Unrolling replaces the original loop with several instances
of the loop body

Positive Effects

e Reduced overhead for loop control
e Enables instruction level parallelism (ILP)
o Offers potential for following optimizations

Unroll ear/y in optimization chain

Negative Effects

e Aggressive unrolling leads to I-cache overflows
e Additional spill code instructions
e Control code may cancel positive effects

Consequences of transformation hardly known'
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: WCET-aware Loop Unrolling
“ via Back Annotation

e \WCET-information available at
assembly level

e Unrolling to be applied at internal |

representation of source code High-Level IR }

e Solution: Back-annotation: WCC (Source Level)
allows feeding information from

assembly level back to source level Back-
e WCET data Annotation

e Assembly code size t
e Amount of spill code Low-Level IR }
e Memory architecture info available (Assembly Level)

v
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'hJ WCET-reduction by loop unrolling
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WCET-driven unrolling outperforms standard unrolling by ave. 13.7%

WCET-driven unrolling outperforms std. by 10.2% to 15.4%
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'l'U WCET-reduction by I-Cache Locking
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|| Applications

e Automotive: slower and cheaper microcontrollers

e Real-time sensors (physics): increased sampling
rate

e Multimedia: better algorithms/less energy
e Control loops: improved stability
Exploitation

e In cooperation with ICD (a local spin-off) for
maintenance etc.

PREDATOR >



1 1 | Conclusion

Completely new look at the use of compilers in
real-time systems design

Reflects the trend to “cyber-physical systems”

Significant potential for increased efficiency

WCC is a WCET-aware compiler for commercial
processors (no toy examples)

Developed in cooperation with industrial partners
Exploitation scheduled
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