PREDATOR (™

Grant Agreement n° 216008

Reconciling compilers
and timing analysis

Peter Marwedel, Heiko Falk
TU Dortmund/Informatik 12
& ICD/ES
Germany

©The PREDATOR consor tium, 2010

1 || Situation before PREDATOR

Importance of timing recognized by some real-time
specialists

First commercially successful timing analysis tools

But: WCET.s; computed after software generation

Even if we use save WCET s guarantees &

PREDATOR CCO Property of the PREDATOR consortium.

Inefficient Software Development
with Timing Analysis

. Specification of real-time software

. Generation of Code (ANSI-C or similar)
. Compilation for given target processor
. Computation of WCET ¢t

. If “WCET.s;” > real-time constraint: change some detail,
go back to 1 or 2.

PREDATOR CCO Property of the PREDATOR consortium.

Problems with this Approach

e Design time
e How to find necessary changes?
e How many iterations until successful?
e "Make the common case fast” a wrong approach for RT-
systems

e Computer architecture and compiler techniques focus on
average speed Common case fast

e Circuit designers know it's wrong M

e Compiler designers (typically) don't « period—

e “"Optimizing” compilers unaware of cost
functions other than code size

PRED ATOR CCO Property of the PREDATOR consortium.

How to reconcile compilers and timing
analysis?

e Timing analysis tools already very complex

e Adding timing analysis to compilers would add to their
complexity

e Follow a golden principle of computer science:
Implement a certain functionality once and only
once! =

PREDATOR CCO Property of the PREDATOR consortium.

Integration of TA and compiler in WCC

«— WCC Compiler —

Parser Selector CRL2

(l

” m
Target Processor: Analyses \

Infineon TriCore Optimi-
TC1796/TC1797; zatlons [Gene- CIEII:IZR—>
Limited support for rator

ARM7
WC ET- Lmker-
Opt. ASM | script
Optimization for WCET ;!
PREDATOR CCO Property of the PREDATOR consortium.

1) WCET-oriented optimizations

e Instruction cache locking (CODES/ISSS 07)
e Cache partitioning (WCET-Workshop 09)
e Procedure positioning (ECRTS 08)
e Procedure cloning (..., CODES/ISSS 07, SCOPES 08)
e Function inlining (SMART 09)
e Loop unswitching/invariant paths (SCOPES 09)
=) ¢ Loop unrolling (ECRTS 09)
e Register allocation (DAC 09)
e Scratchpad optimization (DAC 09)
e Loop invariant code motion/machine learning (SMART 10)

e Multi-objective optimization (RTSS 08, ISORC 10)
PRED ATOR CCO Property of the PREDATOR consortium.

Loop Unrolling as an Example

Unrolling replaces the original loop with several instances
of the loop body

Positive Effects

e Reduced overhead for loop control
e Enables instruction level parallelism (ILP)
o Offers potential for following optimizations

Unroll ear/y in optimization chain

Negative Effects

e Aggressive unrolling leads to I-cache overflows
e Additional spill code instructions
e Control code may cancel positive effects

Consequences of transformation hardly known'

PREDATOR CCO Property of the PREDATOR consortium.

: WCET-aware Loop Unrolling
“ via Back Annotation

e \WCET-information available at
assembly level

e Unrolling to be applied at internal |

representation of source code High-Level IR }

e Solution: Back-annotation: WCC (Source Level)
allows feeding information from

assembly level back to source level Back-
e WCET data Annotation

e Assembly code size t
e Amount of spill code Low-Level IR }
e Memory architecture info available (Assembly Level)

v

PRED ATOR CCO Property of the PREDATOR consortium.

'hJ WCET-reduction by loop unrolling

X
-
(7p)
Ll

=

LL

=

()

P

wied

L

()

14

TEREY]

0.5 kByte 1 kByte 2 kByte 4 kByte 8 kByte 16 kByte
I-Cache Size

100%: Avg. WCET for all benchmarks with —O3 & no unrolling
WCET-driven unrolling outperforms standard unrolling by ave. 13.7%

WCET-driven unrolling outperforms std. by 10.2% to 15.4%
PREDATOR CCO Property of the PREDATOR consortium.

EST

_I
LI
O
=
>
Ia)
-
O

Property of the PREDATOR consortium.

-reduct
directed graph coloring

EST

WCET

100% = WCET g7 using Standard Graph Coloring (highest degree)

(€0~ 19A®7 uoneziwndo)
[%] 1s313DM dAie|aYy

PREDATOR (&>

tU

'l'U WCET-reduction by I-Cache Locking

110%
B ADPCM 0OG723 @ Statemate @ Compress & MPEG2

100% -

90% -

Postpass-Optimization

80% -

70% -

60% -

50% -

40% -

=,
-
(72}
w
-
L
2
[
(14

30% -

20% -

10% -

0% -
64 512 1024 2048 4096 8192 16384

(ARM920T) Cache Size [bytes]
PREDATOR CCO Property of the PREDATOR consortium.

|| Applications

e Automotive: slower and cheaper microcontrollers

e Real-time sensors (physics): increased sampling
rate

e Multimedia: better algorithms/less energy
e Control loops: improved stability
Exploitation

e In cooperation with ICD (a local spin-off) for
maintenance etc.

PREDATOR >

1 1 | Conclusion

Completely new look at the use of compilers in
real-time systems design

Reflects the trend to “cyber-physical systems”

Significant potential for increased efficiency

WCC is a WCET-aware compiler for commercial
processors (no toy examples)

Developed in cooperation with industrial partners
Exploitation scheduled

PREDATOR >

	Reconciling compilers�and timing analysis
	Situation before PREDATOR
	Inefficient Software Development�with Timing Analysis
	Problems with this Approach
	How to reconcile compilers and timing analysis?
	Integration of TA and compiler in WCC
	WCET-oriented optimizations
	Loop Unrolling as an Example
	WCET-aware Loop Unrolling�via Back Annotation
	WCET-reduction by loop unrolling
	WCETEST-reduction by WCETEST-directed graph coloring
	WCETEST-reduction by I-Cache Locking
	Applications
	Conclusion

