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Situation before PREDATOR

•
 

Importance of timing recognized by some real-time 
specialists

•
 

First commercially successful timing analysis tools

•
 

But: WCETEST

 

computed after
 

software generation

•
 

Even if we use save WCETEST

 

guarantees …. 
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Inefficient Software Development
 with

 
Timing Analysis

1.
 

Specification of real-time software 

2.
 

Generation of Code (ANSI-C or similar)

3.
 

Compilation for given target processor

4.
 

Computation of WCETEST

5.
 

If “WCETEST

 

”
 

> real-time constraint: change some detail, 
go back to 1 or 2.
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Problems with this Approach

•
 

Design time
•

 
How to find necessary changes?

•
 

How many iterations until successful?

•
 

“Make the common case fast” a wrong approach for RT-
 systems

•
 

Computer architecture and compiler techniques focus on 
average speed

•
 

Circuit designers know it’s wrong

•
 

Compiler designers (typically) don’t 

•
 

“Optimizing” compilers unaware of cost
 functions other than code size

period

Common case fast
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How to reconcile compilers and timing 
analysis?

•
 

Timing analysis tools already very complex

•
 

Adding timing analysis to compilers would add to their 
complexity

•
 

Follow a golden principle of computer science:
 Implement a certain functionality once and only 

once! 
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Integration of TA and compiler in WCC

Optimization for WCETEST
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WCET-oriented optimizations

•
 

Instruction cache locking (CODES/ISSS 07)
•

 
Cache partitioning (WCET-Workshop 09)

•
 

Procedure positioning (ECRTS 08) 
•

 
Procedure cloning (…, CODES/ISSS 07, SCOPES 08)

•
 

Function inlining
 

(SMART 09)
•

 
Loop unswitching/invariant paths (SCOPES 09)

•
 

Loop unrolling (ECRTS 09)
•

 
Register allocation (DAC 09)

•
 

Scratchpad optimization (DAC 09)
•

 
Loop invariant code motion/machine learning (SMART 10)

•
 

Multi-objective optimization (RTSS 08, ISORC 10)
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Loop Unrolling as an Example

•
 

Unrolling replaces the original loop with several instances 
of the loop body

•
 

Positive Effects
•

 
Reduced overhead for loop control

•
 

Enables instruction level parallelism (ILP)
•

 
Offers potential for following optimizations

•
 

Unroll early in optimization chain
•

 
Negative Effects

•
 

Aggressive unrolling leads to I-cache overflows
•

 
Additional spill code instructions 

•
 

Control code may cancel positive effects

Consequences of transformation hardly knownConsequences of transformation hardly known
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WCET-aware Loop Unrolling
 via Back Annotation

•
 

WCET-information available at 
assembly level

•
 

Unrolling to be applied at internal 
representation of source code

•
 

Solution: Back-annotation: WCC 
allows feeding information from 
assembly level back to source level

•
 

WCET data
•

 
Assembly code size

•
 

Amount of spill code

•
 

Memory architecture info available

High-Level IR
 (Source Level)

Low-Level IR
 (Assembly Level)

Back-
 Annotation

Mem.
 Spec.
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WCET-reduction by loop unrolling

•
 

100%: Avg. WCET for all benchmarks with –O3 & no unrolling  

•
 

WCET-driven unrolling outperforms standard unrolling by ave. 13.7%

•
 

WCET-driven unrolling outperforms std. by 10.2% to
 

15.4%
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WCETEST
 

-reduction by WCETEST
 

-
 directed graph coloring
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WCETEST
 

-reduction by I-Cache Locking
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Applications

•
 

Automotive: slower and cheaper microcontrollers

•
 

Real-time sensors (physics): increased sampling 
rate

•
 

Multimedia: better algorithms/less energy

•
 

Control loops: improved stability

Exploitation

•
 

In cooperation with ICD (a local spin-off) for 
maintenance etc.



Property of the PREDATOR consortium. 14

Conclusion

•
 

Completely new look at the use of compilers in 
real-time systems design

•
 

Reflects the trend to “cyber-physical systems”

•
 

Significant potential for increased efficiency

•
 

WCC is a WCET-aware compiler for commercial 
processors (no toy examples)

•
 

Developed in cooperation with industrial partners

•
 

Exploitation scheduled
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