
Grant Agreement n° 216008

©The PREDATOR consortium, 2010

Reconciling compilers
 and timing analysis

Peter Marwedel, Heiko Falk
TU Dortmund/Informatik 12

& ICD/ES

Germany

Property of the PREDATOR consortium. 2

Situation before PREDATOR

•

Importance of timing recognized by some real-time
specialists

•

First commercially successful timing analysis tools

•

But: WCETEST

computed after

software generation

•

Even if we use save WCETEST

guarantees …. 

Property of the PREDATOR consortium. 3

Inefficient Software Development
 with

Timing Analysis

1.

Specification of real-time software

2.

Generation of Code (ANSI-C or similar)

3.

Compilation for given target processor

4.

Computation of WCETEST

5.

If “WCETEST

”

> real-time constraint: change some detail,
go back to 1 or 2.

Property of the PREDATOR consortium. 4

Problems with this Approach

•

Design time
•

How to find necessary changes?

•

How many iterations until successful?

•

“Make the common case fast” a wrong approach for RT-
 systems

•

Computer architecture and compiler techniques focus on
average speed

•

Circuit designers know it’s wrong

•

Compiler designers (typically) don’t

•

“Optimizing” compilers unaware of cost
 functions other than code size

period

Common case fast

Property of the PREDATOR consortium. 5

How to reconcile compilers and timing
analysis?

•

Timing analysis tools already very complex

•

Adding timing analysis to compilers would add to their
complexity

•

Follow a golden principle of computer science:
 Implement a certain functionality once and only

once! 

Property of the PREDATOR consortium. 6

Integration of TA and compiler in WCC

Optimization for WCETEST

!

ICD-C
Parser

ANSI C ICD-C
IR

Code
Selector

LLIR

LLIR 
CRL2 CRL2

aiT WCET
Analysis

CRL2 +
WCETEST

CRL2 
LLIR

WCET-
Opt. ASM

Analyses,
Optimi-
zations

Target Processor:
Infineon TriCore
TC1796/TC1797;
Limited

support

for

 ARM7



WCC Compiler  TA

Linker-
 script

Gene-
rator

Property of the PREDATOR consortium. 7

WCET-oriented optimizations

•

Instruction cache locking (CODES/ISSS 07)
•

Cache partitioning (WCET-Workshop 09)

•

Procedure positioning (ECRTS 08)
•

Procedure cloning (…, CODES/ISSS 07, SCOPES 08)

•

Function inlining

(SMART 09)
•

Loop unswitching/invariant paths (SCOPES 09)

•

Loop unrolling (ECRTS 09)
•

Register allocation (DAC 09)

•

Scratchpad optimization (DAC 09)
•

Loop invariant code motion/machine learning (SMART 10)

•

Multi-objective optimization (RTSS 08, ISORC 10)

Property of the PREDATOR consortium. 8

Loop Unrolling as an Example

•

Unrolling replaces the original loop with several instances
of the loop body

•

Positive Effects
•

Reduced overhead for loop control

•

Enables instruction level parallelism (ILP)
•

Offers potential for following optimizations

•

Unroll early in optimization chain
•

Negative Effects

•

Aggressive unrolling leads to I-cache overflows
•

Additional spill code instructions

•

Control code may cancel positive effects

Consequences of transformation hardly knownConsequences of transformation hardly known

Property of the PREDATOR consortium. 9

WCET-aware Loop Unrolling
 via Back Annotation

•

WCET-information available at
assembly level

•

Unrolling to be applied at internal
representation of source code

•

Solution: Back-annotation: WCC
allows feeding information from
assembly level back to source level

•

WCET data
•

Assembly code size

•

Amount of spill code

•

Memory architecture info available

High-Level IR
 (Source Level)

Low-Level IR
 (Assembly Level)

Back-
 Annotation

Mem.
 Spec.

Property of the PREDATOR consortium. 10

80
82
84
86
88
90
92
94
96
98

100

0.5 kByte 1 kByte 2 kByte 4 kByte 8 kByte 16 kByte 16

I-Cache Size

WCET-reduction by loop unrolling

•

100%: Avg. WCET for all benchmarks with –O3 & no unrolling

•

WCET-driven unrolling outperforms standard unrolling by ave. 13.7%

•

WCET-driven unrolling outperforms std. by 10.2% to

15.4%

R
el

at
iv

e
W

C
ET

ES
T

[%
]

ST
A

N
D

A
R

D

Property of the PREDATOR consortium. 11

WCETEST

-reduction by WCETEST

-
 directed graph coloring

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

ad
pcm

_v
eri

fy

cjp
eg

_tr
an

su
pp

co
mpr

es
s crc

dijk
str

a
duff

ed
ge_

dete
ct ed

n
ep

ic
ex

pint
fdc

t
fft

_1
02

4
fft

_2
56 fir

fir
2d

im gsm

gsm
_e

nco
de h26

3

h26
4d

ec
_b

lock

h26
4d

ec
_m

ac
ro

iir_
4_

64

iir_
biq

uad
_N

jfd
cti

nt

lat
nrm

_3
2_

64
lm

sfi
r_8

_1

lm
sfi

r_3
2_

64 lpc
ludcm

p
matm

ult

matr
ix2

_fi
xe

d

matr
ix2

_fl
oat
md5

minve
r

mult_
10_

10
mult_

4_4
ndes
prim

e

qmf_r
ec

eiv
e

qmf_t
ran

sm
it

qurt

rijn
dae

l_e
nc

se
lec

t
sh

a
sp

ec
tra

l
sta

rtu
p

v3
2_

be
nc

Ave
ra

ge
R

el
at

iv
e

W
C

ET
ES

T [
%
]

(O
pt

im
iz

at
io

n
Le

ve
l -

O
3)

100% = WCETEST

using Standard Graph Coloring (highest degree)

93%

24%

69%

Property of the PREDATOR consortium. 12

WCETEST

-reduction by I-Cache Locking

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

64 128 256 512 1024 2048 4096 8192 16384

Cache Size [bytes]

R
el

. W
C

ET
ES

T [
%

]

ADPCM G723 Statemate Compress MPEG2

(ARM920T)

Postpass-Optimization

Property of the PREDATOR consortium. 13

Applications

•

Automotive: slower and cheaper microcontrollers

•

Real-time sensors (physics): increased sampling
rate

•

Multimedia: better algorithms/less energy

•

Control loops: improved stability

Exploitation

•

In cooperation with ICD (a local spin-off) for
maintenance etc.

Property of the PREDATOR consortium. 14

Conclusion

•

Completely new look at the use of compilers in
real-time systems design

•

Reflects the trend to “cyber-physical systems”

•

Significant potential for increased efficiency

•

WCC is a WCET-aware compiler for commercial
processors (no toy examples)

•

Developed in cooperation with industrial partners

•

Exploitation scheduled

	Reconciling compilers�and timing analysis
	Situation before PREDATOR
	Inefficient Software Development�with Timing Analysis
	Problems with this Approach
	How to reconcile compilers and timing analysis?
	Integration of TA and compiler in WCC
	WCET-oriented optimizations
	Loop Unrolling as an Example
	WCET-aware Loop Unrolling�via Back Annotation
	WCET-reduction by loop unrolling
	WCETEST-reduction by WCETEST-directed graph coloring
	WCETEST-reduction by I-Cache Locking
	Applications
	Conclusion

