Optimizing Execution Runtimes of R Programs

Sascha Plazar; Peter Marwedel; Jorg Rahnenfiihrer’
Department of Computer Science? Department of Statistics'
TU Dortmund University, D-44221 Dortmund, Germany
{sascha.plazar | peter.marwedel } @tu-dortmund.de *
rahnenfuehrer @statistik.tu-dortmund.de’

Abstract

The GNU R language is very popular in the domain of statistics. Its functional
character supports the rapid development of statistical algorithms and analyses.
Statisticians around the world profit from the immense R package archive CRAN
where researchers offer their algorithms in form of R programs for free usage.

One of the disadvantages of R is that programs have to be evaluated and pro-
cessed by a runtime interpreter. Such an interpretation requires a lot of time and
delays the execution. Thus, a lot of computing power is wasted compared to imper-
ative languages like ANSI C, which can be automatically optimized and translated
to machine code by a sophisticated compiler.

This abstract proposes an approach which exploits various optimizations and
the workflow of toolchains for imperative languages to accelerate R programs. To
this end, we are proposing a toolchain which is divided into four phases. Phase
1 applies source level optimizations on R. Phase 2 transforms such optimized R
code and libraries to C code. In the next phase, the generated C in turn can be op-
timized, employing existing and newly developed optimization techniques. In the
final phase, a standard compiler will translate the C code into machine code for a
fast execution on a host machine. Our goal is to speed up R programs automatically
on average by a factor of 50 or better.

In a case study, we manually applied the optimizations common subexpression
elimination (CSE) and dead code elimination (DCE) to R programs to evaluate
their positive impact on the programs’ execution times. CSE replaces multiple
occurrences of the same expressions by a single variable holding the same value.
Applied to strMCMC, a function for estimating graphical models with a Markov
chain Monte Carlo approach, CSE was able to remove eight expressions which
otherwise would have to be recomputed several times. DCE removes code which
would be executed on no account. By applying DCE to the same program, three
if-statements inside the commonly used which () function could be removed
which always evaluate to false. These optimizations reduced the overall execution
time by 10% and 5%, respectively.

In order to demonstrate the advantages of avoiding a time consuming inter-
pretation of R programs to achieve high performance, we exemplarily translated
pieces of R code into C. For this purpose, we evaluated the hot spot of the fre-
quently used R package rda for Regularized Discriminant Analysis. By translating
asingle for loop ofrda’s apply () function and compiling it with the GCC com-
piler, we were able to speed up this function by a factor of 90. This led to a total
reduction of 71% concerning the overall runtime of the rda package.

These excellent results attest that our envisioned toolchain will be highly ef-
fective for accelerating R programs. The results also show that a speedup by a
factor of 50 is achievable by optimizing R programs and translating them into an
imperative language in order to generate efficient machine code.



