
WCET-driven Cache-aware Memory Content Selection¹

Sascha Plazar, Paul Lokuciejewski, Peter Marwedel

Computer Science 12

TU Dortmund University

D-44221 Dortmund, Germany

FirstName.LastName@tu-dortmund.de

Abstract—Caches are widely used to bridge the increasingly
growing gap between processor and memory performance.
They store copies of frequently used parts of the slow main
memory for faster access.

Static analysis techniques allow the estimation of the worst-
case cache behavior and enable the computation of an upper
bound of the execution time of a program. This bound is called
worst-case execution time (WCET). Its knowledge is crucial to
verify if hard real-time systems satisfy their timing constraints
and the WCET is a key parameter for the design of embedded
systems.

In this paper, we propose a new WCET-driven cache-aware
memory content selection algorithm, which allocates functions
whose WCET highly benefits from a cached execution to cached
memory areas. Vice versa, rarely used functions which do
not benefit from a cached execution are allocated to non-
cached memory areas. As a result of this, unfavorable functions
w. r. t. a program’s WCET can not evict beneficial functions
from the cache. This can lead to a reduced cache miss ratio
and a decreased WCET. The effectiveness of our approach
is demonstrated by results achieved on real-life benchmarks.
In a case study, our greedy algorithm is able to reduce the
benchmarks’ WCET by up to 20%.

I. INTRODUCTION

Many embedded systems have to meet hard real-time

constraints. The worst-case execution time (WCET) of a

program is the upper bound of its execution time for all

possible input data and all possible initial system states. The

WCET is a key parameter for real-time scheduling and the

development of hardware platforms which have to satisfy

critical timing constraints.

Caches have become popular to bridge the growing gap

between processor and memory performance. They are

developed to work transparently to the software running

on a system by integrating a fully autonomous hardware

controller. Caches are essential in today’s computer systems

since they dramatically improve the average-case perfor-

mance. In the following, we will consider the optimization

of instruction caches (I-caches).

The latency of an access to a certain main memory address

highly depends on the contents of the cache. If an instruction

1The research leading to these results has received funding from the
European Community’s ArtistDesign Network of Excellence and from the
European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 216008.

to be fetched already resides in the cache, then a so called

cache hit occurs and the fetch can be usually performed

within one processor clock cycle. Otherwise, the access

results in a cache miss. The required data then has to be

fetched from the slow main memory (e.g. Flash) leading

to penalty cycles depending on the processor and memory

architecture.

The disadvantage of systems with caches is the limited

predictability. It is hard to determine if an access results

in a cache hit or miss and thus, it is hard to predict

the execution time of a program executed from a cached

memory. This is caused by the fact that caches only speed

up the execution if a program tends to reuse instructions

in the near future. If, however, the code of a program is

not suitably arranged in the address space and the memory

accesses are random or widely spread over the address space,

the performance can be also decreased by the usage of a

cache. Hence, static analysis techniques have been developed

to allow safe predictions of a cache’s impact on the worst-

case performance of a system [1] in order to estimate tight

bounds for the WCET of a program. Since the real WCET

of a system can not be determined, we use the term WCET

as a synonym for estimated WCET which is determined by

a static WCET analyzer.

Compared to state-of-the-art main memories, caches are

rather small. They can only keep a fraction of the slower

memories’ content as a copy for faster access. If a cache miss

occurs, a complete cache line containing the addressed item

is fetched from the main memory and possibly evicts valid

content from the cache. Depending on the ratio of cache

size to memory size, the cache replacement policy and the

structure of the executed program, many cache misses can

occur leading to costly reloading of content from the slow

main memory.

Intelligent allocation of beneficial functions to cached

memory areas and unfavorable functions to non-cached

memory areas can ensure that functions whose WCET highly

profits from a cache are not evicted from the cache by

functions with a low benefit. This can lead to a faster

execution and a decreased WCET due to a dramatically

decreased number of cache misses. Furthermore, it is pos-

sible to reduce the overestimation of the WCET which is

introduced by pessimistic assumptions concerning the I-

cache performance: If the memory access pattern can not

be determined at a certain point of the program execution,

a static WCET analyzer has to assume a cache miss and

invalidated cache content. By allocating only a promising

subset of functions to cached memory areas, the amount

of unpredictable cache accesses can be decreased. As result,

the cache analysis assumes less cache misses caused by such

unpredictable accesses and a tighter bound for the WCET

can be computed.

The WCET of a program always corresponds to the length

of the worst-case execution path (WCEP) which is that path

of the control flow graph (CFG) with the highest execution

time. Optimizations of elements like functions on the WCEP

can shorten this longest path in a way that another path will

become the new WCEP. Optimizations of elements not lying

on the WCEP will not result in a reduction of the WCET.

Hence, possible switches of the WCEP have to be taken into

account during optimizations.

Due to the complexity of today’s embedded systems,

programs are predominantly developed in a high-level lan-

guage like C or designed with graphical tools which in

turn emit C code. Optimizing compilers with a vast vari-

ety of optimizations focussing on average-case execution

time (ACET) reductions are employed to generate highly

optimized code. In contrast to ACET-optimizing compilers,

automatic compiler-driven reduction of the WCET is still

a novel research area. The big challenge is to develop

optimizations which are able to keep track of switching

WCEPs. Therefore, a tight coupling of a static WCET

analyzer and a fine grained timing model has to be integrated

into any WCET-optimizing compiler.

We developed a novel WCET-driven cache-aware memory

content selection algorithm to decide which functions should

be placed in a cached memory area in order to improve

the worst-case I-cache performance. The proposed algorithm

uses a greedy approach and evaluates the impact of executing

a function from a cached memory area on the WCET. To

enable WCET-centric optimizations, we employ the sophis-

ticated static WCET analyzer aiT developed by AbsInt [2].

The algorithm always selects the function with the largest

profit and keeps track of changing WCEPs by subsequently

performing a WCET analysis. The main contributions of this

paper are as follows:

• We explicitly select the memory contents of cached and

non-cached regions based on its impact on the WCET

of a program.

• Our greedy memory content selection takes changes

on the worst-case execution path into account and

optimizes along this path in order to allow an effective

minimization of the WCET.

• We show that our algorithm is capable of improving

the performance of caches with inherently low cache

miss rates.

void foo1() {

for(i=0; i<100; i++) {

foo2();

foo3();

}

}

Figure 1. Exemplary program and resulting call graph

The paper is organized as follows: In the next section, we

provide an overview of related work. Section III presents

our new WCET-driven cache-aware memory content selec-

tion algorithm. Section IV introduces the WCET-aware C

compiler WCC employed to develop our novel algorithm.

An evaluation of the performance which is achieved by our

WCET-aware memory allocation algorithm, is presented in

Section V. Finally, we conclude our work and give a brief

overview of future work.

II. RELATED WORK

Theiling et al. present static WCET analyses for systems

with caches based on their research in [1]. They separate

microarchitecture analysis from path analysis in order to

manage the overall analysis complexity. This way, a fast

and still precise WCET analysis is feasible.

Chen et al. evaluate different types of optimizations

and their influence on different cache sizes to show the

implications of code expanding optimizations on instruction

cache design [3]. The authors in [4] give an overview of

cache optimization techniques and cache-aware numerical

algorithms. They focus on the memory bottleneck which

often limits the performance of numerical algorithms. Both

[3] and [4] do not take the impact on the WCET of a system

into account.

Work presented in [5] examines a combination of locking

and partitioning of shared caches on multi-core architectures

in order to guarantee a predictable system behavior. The pro-

posed algorithms are not WCET-aware since their decisions

are not based on any WCET values; nevertheless, the authors

evaluate the impact of their caching schemes on the worst-

case application performance.

In [6], Falk et al. present a cache locking algorithm

which explicitly takes the worst-case execution path into

account during each step of the optimization procedure.

This way, they can make sure that always those parts of

the code are locked in the I-cache that lead to the highest

WCET reduction. Puaut et al. [7] propose locked instruction

caches in multi-task real-time systems. They propose two

low complexity algorithms for cache content selection. A

drawback of statically locking the cache content is that

the dynamic behavior of the cache is lost. In contrast to

the techniques proposed in this paper, code is no more

automatically loaded into the cache. Thus, code which is

not locked into the cache can not profit from it anymore.

Figure 2. Cache thrashed by mutual evictions of functions

Vera et al. [8] combine cache partitioning, dynamic cache

locking and static cache analysis of data caches to achieve

predictability in preemptive systems. This eliminates overes-

timation and allows to approximate the worst-case memory

performance, however, unlike our new approach, they are

not able to explicitly optimize the WCET of a system.

In [9], a technique rearranging the positions of tasks to

improve the cache performance is presented. The interdepen-

dency relation of tasks is evaluated in order to determine a

memory layout which maximizes the number of persistent

cache sets for each task.

A technique for procedure placement to reduce the cache

miss ratio of programs is presented in [10]. Guillon et al.

provide an optimal algorithm for memory placement which

is improved regarding the unavoidable code size increase

caused by gaps in the address space. In contrast to our

optimizations, the presented approach does not take the

WCET as metric into account.

Another technique for procedure positioning is presented

in [11]. The authors propose an iterative algorithm which

evaluates the worst-case calling frequencies and takes the

WCET as metric into account. Unlike the work presented

in this paper, their algorithm exploits preloading if parts of

contiguous functions occupy the same cache line but suffers

from small caches leading to increased cache miss rates.

Falk et al. counteract the possible predictability problems

of caches with a static allocation of program code to

so called scratchpad memories (SPM) [12]. They employ

integer linear programming to select the optimal content of

the SPM w. r. t. the program’s WCET. Static SPM allocation

has the disadvantage that the content is fixed during the

program’s execution. Thus, only the code located in the SPM

profits from an accelerated execution.

III. WCET-DRIVEN CACHE-AWARE MEMORY CONTENT

SELECTION

Nowadays, embedded systems are equipped with caches

in kilobyte ranges, typically from 1 kB up to 16 or 32 kB.

Compared to growing main memories in megabyte ranges,

Table I
WCETS FOR FUNCTIONS DEPENDING ON THE MEMORY REGION

Function WCETFlash WCETCached

foo1 350 195
foo2 690 470
foo3 500 369

caches are rather small. The I-cache controller tries to

keep copies of frequently executed memory lines containing

sequences of instructions as cache content for a faster access.

The amount of cache misses highly depends on the ratio

of cache to memory size, the cache replacement policy and

the structure of the executed program. A high amount of

cache misses implies costly reloading of content from the

slow main memory and leads to a high number of penalty

cycles due to pipeline stalls.

Figure 1 depicts the C code of a function foo1 containing

a loop which calls functions foo2 and foo3. The resulting

call graph of this simple program is shown on the right side.

If the functions are consecutively arranged in the memory,

foo1 and foo2 can be simultaneously stored in the cache

(cf. Figure 2). Since the cache capacity is not large enough

to store the whole program, foo3 evicts the complete cache

content during its execution. Thus, a lot of conflict misses

occur and the complete cache has to be refilled twice during

each iteration of the loop in foo1. This might lead to a

dramatically increased WCET caused by pipeline stalls due

to a high number of cache misses.

Many embedded systems have parameterizable caches and

memory layouts which allow that parts of the address space

can be included or excluded from caching. A WCET-aware

compiler can exploit such a memory system and allocate

functions to cached or non-cached memory regions. This

strategy can ensure that functions which highly benefit from

a cached execution can not be evicted by functions with a

lower benefit.

In the following we assume the WCETs for functions

foo1, foo2 and foo3 as depicted in Table I. WCETFlash

is the overall WCET of a function f if the entire function

is executed from a non-cached memory area. WCETCached

is f’s WCET if it is executed from a cached memory

area. Obviously, it is more favorable if functions foo1

and foo2 can be kept in the cache since the accumulated

WCET of foo1 and foo2 is decreased from 1040 cycles

to 665 cycles. Overall, the WCET is reduced by 375 cycles

compared to 131 if foo3 is kept in the cache. An optimized

memory layout for the example in Figure 1 is shown in

Figure 3. Function foo3 is moved to a non-cached memory

area in order to prevent a constantly repetitive eviction of

function foo1 and foo2.

In the following, we describe our novel algorithm for a

WCET-driven cache-aware memory content selection which

moves functions to different memory areas depending on

their impact on the overall WCET.

Figure 3. Exploiting non-cached memory areas to avoid cache thrashing

Greedy approach

It is well known [11] that even local code modifications

can have a strong impact on the WCET of other parts

of a program. This impact is hardly predictable without

performing a complete static WCET-analysis of the program.

Moreover, the situation becomes even more complicated if

systems are equipped with caches. To deal with this hand-

icap, a greedy optimization algorithm has been developed

which moves single functions between memory areas and

evaluates the influence on the WCET of the program to

optimize by performing a WCET-analysis using aiT. The

new assignment of functions to cached and non-cached

memory areas acts as starting point for the next iteration

which moves another function in case of a preceding WCET

decrease. But if the WCET is degraded, the last modification

is rolled back in order to guarantee that the optimized

program is never worse than the original code w. r. t. its

WCET.

Figure 4 shows the pseudo code of the greedy algorithm

requiring a set F of functions to be optimized as input. The

first two lines define sets of functions which are decided

to be placed in a cached memory region (set CF) or a

non-cached memory region (set NCF). The variable S is

initialized with the cache size (line 3) and acts as counter

for the free cache in bytes.

The profit for a function f if it will be moved from a

non-cached memory region to a cached memory region is

calculated in line 4. The profit of a function f is defined as:

profit(f) =
WCET (f) − cachedWCET (f)

size(f)

WCET (f) is the WCET of function f if it is allocated

to a non-cached memory region, while cachedWCET (f)
is f ’s WCET if it is executed from a cached memory. To

avoid side effects caused by cache conflict misses when

two or more functions are mapped to the same cache lines,

Input: set<functions> F

1: set<functions> CF = ∅
2: set<functions> NCF = ∅
3: S = cache size

4: calculateProfit(F)
5: while (S > 0 ∧ F 6= ∅) do

6: for f ∈ F : max(getProfit(f)) do

7: if (getSize(f) > S) then

8: break;

9: end if

10: CF = CF ∪ f

11: F = F \ f

12: S = S − getSize(f)
13: end for

14: end while

/* From now on evaluate the WCET

trend since the cache is full */

15: WCET lastWCET = evaluateWCET ()
16: for all f ∈ F : max(getProfit(f)) do

17: CF = CF ∪ f

18: F = F \ f

19: WCET newWCET = evaluateWCET ()
20: if (newWCET > lastWCET) then

21: CF = CF \ f

22: NCF = NCF ∪ f

23: else

24: lastWCET = newWCET

25: calculateProfit(F)
26: end if

27: end for

28: return CF

Figure 4. Greedy WCET-driven memory content selection algorithm

either the cache has to be large enough to store copies of

all functions or only a subset of functions has to be placed

into the cached memory region and analyzed at a time.

In a few cases, a negative profit is detected. Then function

f incurs a WCET increase due to a cached execution and

therefore is excluded from optimization.

cachedWCET (f) could be determined by moving each

function separately into the cached memory and determining

its WCET using a timing analyzer. However, this approach

has the drawback that several static WCET analyses are

required to compute cachedWCET for all functions. The

employed static WCET analyzer aiT is able to compute a

program’s WCET for systems with different cache sizes.

To save time consumed by repetitive WCET analyses, a

virtual large I-cache larger than the code size of the analyzed

program is chosen for the evaluation. Moreover, we align

each function at the start address of a cache line in order

to achieve the same values as if all functions were analyzed

separately.

The loop in lines 5-14 allocates functions to the cached

memory as long as the overall code size still fits into the

cache or not all functions are allocated. Inside the loop, the

function with the highest profit (line 6) is removed from

the set of unhandled functions and allocated to the cached

memory region (lines 10-11). Line 12 keeps track of the

allocated overall code size and lines 7-9 breaks the loop if

the function with the highest profist does not fit into the

cache anymore.

If the cache can store no more functions simultaneously,

it is yet possible that allocating another function to a cached

memory can decrease the WCET. Hence, lines 15-27 test if

moving another function to the cached memory can achieve

further reductions of the WCET.

Line 15 stores the current WCET of the program with the

allocation decisions made in the preceding loop. The loop

starting in line 16 iteratively moves one of the remaining

functions with the highest profit to the cached memory

region (line 17-18) and evaluates its effect on the WCET

(line 19). If a WCET increase was detected in line 20, the

following two lines roll the last change in the memory layout

back and function f is stored in the set NCF of non-cached

functions. Otherwise, the new decreased WCET serves as

reference for the next iteration (line 24).

A new profit calculation is performed in line 25. Here,

again, the WCET of the remaining functions f ∈ F is

taken into account if stored in non-cached memory as

well as stored in cached memory. Therefore, we can re-

cycle the WCET analysis results gathered in line 4 where

cachedWCET (f) was already determined for all functions

in a cached memory. WCET (f) can be reused from the

results computed in line 19 where the remaining functions

were stored in the non-cached memory.

WCET (f) for a function f stored in a non-cached

memory will be zero iff f is not lying on the WCEP. Thus,

profit(f) ≤ 0 is true and f is not consideres as a possible

candidate to move to a cached memory area during the next

loop iteration. Hence, we inherently keep track of a possible

change of the WCEP.

The algorithm terminates if all functions are either located

in set CF for functions to be cached or set NCF of functions

to exclude from caching.

Finally, all functions in set CF will be attached to a section

which is allocated to a cached memory area by the linker.

All remaining functions of set NCF belong to the .text

section which is allocated to a non cached area by default.

IV. WORKFLOW

WCET-driven optimizations and especially cache-aware

memory content selection need support of an underlying

compiler to collect WCET data and perform the required

memory layout modifications. We employ our WCET-aware

C compiler framework, called WCC [13], which is intended

to assist the development of various high- and low-level

Figure 5. Workflow of the WCET-aware C compiler WCC

WCET-driven optimizations. WCC is a compiler for the

Infineon TriCore TC1796 processor coupling AbsInt’s static

WCET analyzer aiT [2] which provides WCET data that is

imported into the compiler backend and made accessible for

optimizations.

Figure 5 depicts WCC’s internal structure. One or more

files of a program are read in the form of ANSI-C source

files with user annotations for loop bounds and recursion

depths, called flow facts. These source files are parsed and

transformed into WCC’s high-level intermediate representa-

tion (IR) ICD-C [14].

In the next step, the LLIR Code Selector translates the

high-level IR into a low-level IR called ICD-LLIR [15]. On

this TC1796-specific low-level IR, the cache-aware memory

content selection is performed. To enable such a WCET-

aware optimization, aiT is employed to perform static

WCET analyses on the low-level IR. Therefore, mandatory

information about loop bounds and recursion depths is

supplied by flow fact annotations. These flow facts are

automatically translated from the high-level IR to the low-

level IR and are always kept valid and consistent during each

optimization and transformation step of the compiler.

Optimizations exploiting memory hierarchies as well as

the static WCET analyzer require detailed information about

available memories, their sizes and access times. For this

purpose, WCC integrates a detailed memory hierarchy spec-

ification available at ICD-LLIR level.

Finally, WCC emits WCET-optimized assembly files and

generates suitable binaries using a linker script reflecting the

utilized internal memory layout.

Figure 6. Optimization results for different cache sizes

V. EVALUATION

This section evaluates the capability of our WCET-driven

cache-aware memory content selection algorithm applied

to real-life benchmarks. For benchmarking, we used the

optimization level O3 for which the WCC compiler activates

35 different optimizations in order to evaluate the perfor-

mance of our new algorithm on highly optimized code. Our

compiler supports the TC1796 processor with a 16 kB 2-

way set associative I-cache and last recently used (LRU)

replacement policy. The TC1796 integrates a 2 MB program

Flash as main memory which is mapped to two different

addresses in the memory layout. The first memory region

allows a cached access to the Flash whereas code executed

from the other region in the address space is excluded from

caching.

For our measurements, we used the 10 largest benchmarks

from the benchark suites DSP Stone [16], Mediabench [17],

MiBench [18], MRTC [19], NetBench [20] and UTDSP

[21]. The code size of the benchmarks range from 5 kB

(v32.modem bencode) up to 15 kB for the two rijndael

benchmarks.

Today’s embedded systems are equipped with main mem-

ories in megabyte ranges and caches typically ranging from

1 kB up to 16 kB or at most 32 kB. Due to this ratio of small

cache compared to a large main memory, we artificially

limited the cache sizes to 5, 10 and 20% of the program’s

overall code size. This guarantees, that we use a similar

ratio of cache size to program size for all optimizations and

static WCET analyses, found in current embedded systems

in order to generate comparable results.

WCET Estimations

Figure 6 depicts the results achieved by our new memory

content selection algorithm for the considered 10 bench-

marks. For each benchmark, each of the three bars represent

the results for different cache sizes. The bars depict the

estimated WCET of the optimized program computed by

the static WCET analyzer relative to the estimated WCET

if the benchmark is executed with all functions located in a

cached memory region.

Our algorithm was able to reduce the estimated WCET

of the benchmarks by up to 19.5% for 5% and 10% cache

size for the rijndael decoder. For the same benchmark, we

were able to achieve a WCET reduction of 20.1% for 20%

cache size. The reasons why the worst-case performance of

benchmark gsm could not be improved are twofold. First,

the loop of a filter function which consumes about 95%

of the program’s estimated WCET amounts to only 3% of

the program size and fits into all considered cache sizes.

Second, the programs control flow is highly serial with only

few branches. Thus, only few cache conflict misses occur

and the best performance is achieved if all functions reside

in a cached memory area during execution.

Due to the fact that our optimization is based on a

heuristic to select the most promising functions, wrong

decisions could be made leading to suboptimal results. The

benchmark h264dec clearly indicates suboptimal results for

the cache sizes of 5% and 20% of the program size. For these

cases, the memory content selection algorithm optimized on

local minimums where a different set of functions allocated

to the cached memory would achieve a better worst-case

performance.

On average, we were able to reduce the estimated WCET

for all benchmarks by 8% for the smallest considered cache

size and by 6 and 4% for 10% and 20% cache size,

respectively.

For most of the benchmarks, it can be observed that our

algorithm performs better for smaller cache sizes which has

two reasons. On the one hand, there is more optimization

potential since the number of cache misses necessarily grows

with caches diminishing in size. On the other hand, the

principle of locality [22] which states that programs tend

to reuse data or instructions they have used recently also

applies to most of the programs running on embedded

systems. Based on the principle of locality, a widely known

rule of thumb is that most of the programs spend 90%

of their execution time in only 10% of the code [23]. As

a consequence, the considered 10% cache size can often

already keep copies of a program’s hot spots. Thus, it is

very likely that the execution time of the program can

be improved by at most 10% by storing the remaining

90% of the code in the cache. The middle bar of each

benchmark shown in Figure 6 represents exactly these 10%

cache size. The 100% line represents the WCET of a system

with a normally operating cache which can store copies of

just these program’s hot spots. Seen from this angle, the

achieved average WCET reductions of 4-8% seem to be

hardly improvable.

Optimization Time

To consider the optimization time, we utilized an Intel

Xeon X3220 (2.40 GHz). Most of the time necessary for our

novel WCET-driven cache-aware memory content selection

algorithm was consumed by the repetitive WCET analyses

using aiT. The maximal number of WCET analyses amounts

to n + 2 where n is the number of functions. Initially, two

analyses have to be performed in order to calculate the profit,

and another after each allocation of a function to evaluate

its impact on the overall WCET.

Most of the time was consumed by the optimization of the

rijndael decoder where 6 WCET analyses require almost 2

hours of CPU time. The highest number of WCET analyses

(exactly 17) was performed during the optimization of

the two benchmarks g721 encode and g723 encode which

amounts to 8 respective 10 minutes of analysis time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we showed how the I-cache performance

can be improved by intelligent memory content selection

in order to decrease the WCET of a program. Frequently

used functions whose WCET highly benefits from a cached

execution are allocated to cached memory regions. This

ensures that they can not be evicted from the cache by

functions with a lower WCET decrease being allocated to

non-cached memories.

We introduced a novel algorithm for WCET-driven cache-

aware memory content selection which selects the set of

functions to be cached. The presented greedy algorithm

evaluates the influence on the WCET of a program when a

promising function is moved to a cached memory region in

order to optimize along the WCEP. Applying this technique,

we were able to achieve a WCET decrease of up to 20%

and ensure that the performance of the optimized program is

never worse than the original. On average, WCET reductions

between 4% and 8% were achieved for cache sizes ranging

from 5-20% of the overall code size.

In the future, we intend to develop an integer linear

programming based approach to select the optimal set of

functions which should be allocated to a cache memory

region w. r. t. the program’s WCET.

Furthermore, we plan to combine our WCET-aware cache

partitioning for multi-task hard real-time systems [24] with

the optimizations presented in this paper. In systems with

partitioned caches, each task is mapped into a separate part

of the cache, thus, the cache capacity is split among the set

of tasks. The performance of these tasks could be increased

by a smart selection of functions which should be cached

and those which would cause a performance decrease due

to a high number of cache misses.

ACKNOWLEDGMENTS

The authors would like to thank AbsInt Angewandte In-

formatik GmbH for their support concerning WCET analysis

using the aiT framework.

REFERENCES

[1] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and Precise
WCET Prediction by Separated Cache and Path Analyses,”
Journal of Real-Time Systems, vol. 18, no. 2-3, 2000.

[2] AbsInt Angewandte Informatik GmbH, “Worst-Case Execu-
tion Time Analyzer aiT for TriCore,” 2009, http://www.absint.
com/ait.

[3] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu,
“The Effect of Code Expanding Optimizations on Instruction
Cache Design,” IEEE Transactions on Computers, vol. 42,
no. 9, 1993.

[4] M. Kowarschik and C. Wei, “An Overview of Cache Op-
timization Techniques and Cache-Aware Numerical Algo-
rithms,” in Algorithms for Memory Hierarchies. Springer,
2003.

[5] V. Suhendra and T. Mitra, “Exploring Locking & Partitioning
for Predictable Shared Caches on Multi-Cores,” in Proc. of
DAC, Anaheim, USA, 2008.

[6] H. Falk, S. Plazar, and H. Theiling, “Compile Time De-
cided Instruction Cache Locking Using Worst-Case Execution
Paths,” in Proc. of CODES+ISSS, Salzburg, Austria, 2007.

[7] I. Puaut and D. Decotigny, “Low-Complexity Algorithms
for Static Cache Locking in Multitasking Hard Real-Time
Systems,” in Proc. of RTSS, Washington, DC, USA, 2002.

[8] X. Vera, B. Lisper, and J. Xue, “Data Caches in Multitasking
Hard Real-Time Systems,” in Proc. of RTSS, Cancun, Mexico,
2003.

[9] G. Gebhard and S. Altmeyer, “Optimal Task Placement to.
Improve Cache Performance,” in Proc. of EMSOFT, New
York, USA, 2007.

[10] C. Guillon, F. Rastello, T. Bidault, and F. Bouchez, “Proce-
dure Placement using Temporal-Ordering Information: deal-
ing with Code Size Expansion,” Journal of Embedded Com-
puting, vol. 1, no. 4, 2005.

[11] P. Lokuciejewski, H. Falk, and P. Marwedel, “WCET-driven
Cache-based Procedure Positioning Optimizations,” in Proc.
of ECRTS, Prague, Czech Republic, 2008.

[12] H. Falk and J. C. Kleinsorge, “Optimal Static WCET-aware
Scratchpad Allocation of Program Code,” in Proc. of DAC
’09, San Francisco, USA, 2009.

[13] H. Falk, P. Lokuciejewski, and H. Theiling, “Design of a
WCET-Aware C Compiler,” in Proc. of ESTIMedia, Seoul,
Korea, 2006.

[14] R. Pyka and J. Eckart, “ICD-C Compiler Framework,” http:
//www.icd.de/es/icd-c, 2009, Informatik Centrum Dortmund.

[15] J. Eckart and R. Pyka, “ICD-LLIR Low-Level Intermedi-
ate Representation,” http://www.icd.de/es/icd-llir, 2009, Infor-
matik Centrum Dortmund.

[16] C. S. Živojnović, J. Martinez and H. Meyr, “DSPstone:
A DSP-Oriented Benchmarking Methodology,” in Proc. of

ICSPAT, Dallas, USA, 1994.

[17] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems,” in Proc. of MICRO 30, Wash-
ington, DC, USA, 1997.

[18] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and T. Brown, “MiBench: A Free, Commercially Representa-
tive Embedded Benchmark Suite,” in Proc. of IISWC, 2001.

[19] Mälardalen WCET research group, “Mälardalen WCET
Benchmark suite,” http://www.mrtc.mdh.se/projects/wcet,
2008.

[20] G. Memik, W. H. Mangione-Smith, and W. Hu, “Netbench:
A benchmarking suite for network processors,” in Proc. of
ICCAD, Piscataway, USA, 2001.

[21] “UTDSP Benchmark Suite,” http://www.eecg.toronto.edu/
∼corinna/DSP/infrastructure/UTDSP.html, 2008.

[22] P. J. Denning, “The Locality Principle,” Communications of

the ACM, vol. 48, no. 7, pp. 19–24, 2005.

[23] J. L. Hennessy and D. A. Patterson, Computer Architecture
- A Quantitative Approach, 3rd ed. Morgan Kaufmann
Publishers, 2003, p. 47.

[24] S. Plazar, P. Lokuciejewski, and P. Marwedel, “WCET-aware
Software Based Cache Partitioning for Multi-Task Real-Time
Systems,” in Proc. of WCET’09, Dublin, Ireland, 2009.

