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Abstract— As embedded systems are becoming the center of our 
digital life, system design becomes progressively harder. The 
integration of multiple features on devices with limited resources 
requires careful and exhaustive exploration of the design search 
space in order to efficiently map modern applications to an 
embedded multi-processor platform. The MNEMEE project 
addresses this challenge by offering a unique integrated tool flow 
that performs source-to-source transformations to automatically 
optimize the original source code and map it on the target 
platform. The optimizations aim at reducing the number of 
memory accesses and the required memory storage of both 
dynamically and statically allocated data. Furthermore, the 
MNEMEE tool flow performs optimal assignment of all data on 
the memory hierarchy of the target platform. Designers can use 
the whole flow or a part of it and integrate it into their own 
design flow. This paper gives an overview of the MNEMEE tool 
flow along. It also presents two industrial case studies that 
demonstrate who the techniques and tools developed in the 
MNEMEE project can be integrated into industrial design flows. 

I. INTRODUCTION 
In today’s embedded systems market there is a trend 

towards integrating more and more services on mobile devices. 
These systems combine applications from various domains like 
communications and multimedia (e.g., HD-video coders, 
wireless protocols, image processing and 3D games). All these 
examples make heavy use of data transfers and computation, 
which makes multi-processor platforms the perfect candidate 
for their implementation. However, Multiprocessor Systems-
on-Chip (MPSoCs) include complex memory hierarchies and 
synchronization systems, which in turn makes it difficult to 
map an application on an MPSoC. For such complex design 
targets, the design choices will have a high impact on the 
performance of the system and the success of the device on the 
market. 

There are several challenges that MPSoC designer faces. 
First, the application should be parallelized to take advantage 
of the multiple processor system. This is achieved by breaking 
the execution into several tasks that can be performed in 
parallel. Second, the statically and dynamically allocated data 

structures must be optimized to take advantage of the memory 
hierarchy of the target platform. Third, the final optimized 
parallel code should be mapped and compiled onto the MPSoC.  

In current embedded system design flows, the optimization 
of the source code is done mainly by hand. This process is 
becoming very tedious and error prone as the complexity of the 
system and the applications are constantly increasing. This 
makes it necessary to develop a systematic methodology and 
tooling that will deal with of the aforementioned challenges 
automatically.  

The MNEMEE project [1] comes to address the challenge 
of mapping an application onto an MPSoC platform. Several 
state-of-the-art source-to-source optimization methodologies 
and tools have been developed that automatically extract 
possible parallelization from a target source code, while they 
also optimize statically and dynamically allocated data 
structures for less memory accesses and storage. Additionally, 
the code is mapped onto the various processors and memories 
of the MPSoC platform. Each methodology and tool has a very 
clearly defined interface that allows the whole set of techniques 
developed under the MNEMEE project to be integrated into a 
common tool flow or used as individual optimization steps. It 
is this exact feature that renders the MNEMEE tools easy to 
use in industrial applications, where companies already work 
with certain tool chains. By integrating the MNEMEE tools 
into their tool chain, industrial designers can automate their 
flows. As will be demonstrated in section III, parts of the tool 
flow can be used to replace existing manual or less efficient 
steps in an industrial design flow. Two examples are provided, 
one from the communications domain and one from the 
multimedia domain.   

The remainder of this paper is organized as follows. The 
next section gives an overview of the developed techniques of 
the MNEMEE project. Section III presents two industrial cases 
that demonstrate the applicability of the MNEMEE approach. 
Section IV concludes this paper. 
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II. MNEMEE TOOL FLOW 

A. Overview 
Figure 1 shows the MNEMEE tool flow. The input of the 

tool flow is sequential source code written in C. The output of 
the flow is source code that is parallelized and optimized for 
the target MPSoC and its memory hierarchy. The first step 
targets the optimization of all dynamically allocated data 
structures by changing their implementation. These changes 
may affect the parallelization and therefore they are performed 
first. Step 2 identifies any potential parallelization in the source 
code and implements it by breaking the code into several tasks. 
Step 3 optimizes the statically allocated data structures. Since 
the parallelization of the original source code has already taken 
place, the tool can map the statically allocated data structures 
efficiently onto the memory hierarchy, as their size and 
behavior is known. The next step, maps the dynamically 
allocated data structures onto the memory hierarchy. Step 5 
maps the parallelized application onto the processors and 
memories. The MNEMEE tool flow offers two alternatives 
mapping techniques. The first technique called scenario-aware 
mapping, tries to exploit the dynamic behavior of an 
application in order to save resources. The second technique, 
called memory-aware mapping, focuses on finding a mapping 
that minimizes the energy consumption of the memory 
subsystem. Finally, step 6 further optimizes the scratchpad 
allocation of each processor in the target platform. 

 

Figure 1 MNEMEE tool flow. 

To combine the large number of required processing steps 
into a single tool flow, the MACC framework for source level 
optimization development has been used. This framework 
exploits the abstract syntax tree code representation provided 
by the ICD-C compiler development framework. MACC 
provides a common platform model along with a well defined 
interface for integration of analysis and optimization tools. This 
framework was partially developed in the MNEMEE project 
[9]. Furthermore, a graphical user interface is provided to 
enhance the usability of the tool flow. 

B. Dynamic data type optimizations 
The dynamic data type optimizations step (step 1) changes 

the implementation of all dynamic data structures like dynamic 
arrays, linked lists and trees, based on the Dynamic Data Type 
Refinement (DDTR) methodology [15]. All dynamic data 
types (DDTs) are profiled to identify their access patterns and 
allocation behavior. The optimized implementation is 
customized to fit this particular access pattern. The objective is 
to boost performance and restrain the memory consumption. 
This customization of the data structures is achieved by 
restructuring these data structures using components from a 
library of DDTs. As an example, we can consider a list that is 
accessed sequentially. The use of a memory pointer to store the 
last accessed element can greatly boost the performance 
without having to resort to an array solution. The linked list can 
be restructured adding this memory pointer component. 

C. Parallelization 
The parallelization tool is the second one in the MNEMEE 

tool flow. Its purpose is a fully automatic exploitation of 
parallelism for the given sequential application’s source code, 
given by the MACC framework. Therefore, the application is 
transformed in a so called hierarchical task graph, based on the 
one presented by Girkar in [10]. Once this intermediate 
representation is extracted from the source code, an ILP based 
parallelization approach is used to search for parallelism on 
each hierarchical level of the task graph. Only by introducing 
hierarchy into the task graph representation it is possible to 
make usage of very complex ILP formulations. The whole 
graph is analyzed for possible parallelism by a bottom-up 
search strategy, which extracts a balanced, parallelized version 
of the application’s source code. Though, the algorithm 
deliberates about whether it should extract new tasks on the 
current level of hierarchy or whether it should just use the 
tasks, extracted earlier deeper in the hierarchy. In addition, the 
parallelization tool also considers special requirements for 
embedded systems and is e.g., able to limit the number of 
extracted concurrently executed tasks to the number of 
available processor units. 

Once the whole graph is processed by the parallelization 
algorithm, the taken decisions are annotated on the 
application’s source code and a parallelization specification is 
generated, which complies with the input specifications of the 
MPMH tool [7]. This tool is then used in step 3 of the tool flow 
to implement the extracted parallelism. 
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D. Optimize Static Data Structures 
The MPSoC Parallelization and Memory Hierarchy 

(MPMH) tool [7] generates parallel source code based on the 
directives specified by the previous step in the tool flow. This 
step has annotated the source code with parsections. These 
parsections specify the sequential code segments that must be 
parallelized. A directive has been added to each parsection that 
specifies the number of threads that will execute this parsection 
in parallel. The parallelization tool (step 2) further indicates 
whether the work that is done in the parsection must be divided 
over these threads in terms of functionality (i.e., to split the 
parsection based on functional parallelism), or in terms of loop 
iterations (i.e. to split the parsection based on data parallelism), 
or a combination of both depending on what is the most 
appropriate for a given parsection. Given the source code and 
the parallelization directives, the MPMH tool generates a 
parallel version of the code and insert FIFOs and 
synchronization mechanisms where needed. Hence, the 
designer does not need to worry about dependencies between 
threads. This is taken care of automatically by the tool. This 
ensures that the tool will always generate correct-by-
construction parallel code. MPMH provides the optional 
mechanism of shared variables. Shared variables need explicit 
synchronization and communication between threads. The tool 
will check for possible inconsistency in the synchronization for 
the shared variables. However it cannot guarantee correct-by-
construction parallel code for these shared variables. This 
option is therefore not used in the MNEMEE tool flow. 

The MPMH tool is also capable of performing static data 
optimizations by optimizing the accesses to static data arrays. 
The tool uses compile-time application knowledge and 
profiling data to find out which data copies can be made and 
whether these copies are beneficial. It also determines how the 
data and the copies have to be mapped onto the various 
memory layers in a memory hierarchy such that the energy 
consumption is minimized and/or the performance is 
maximized. The result of the optimization is a transformed 
parallelized application with data copies and block transfers 
explicitly expressed in the source code, automatic handling of 
synchronization of data, and a mapping of the data and copies 
to the various memory layers. 

E. Optimize Dynamic Memory Management 
The dynamic memory management methodology is 

responsible for deciding where a data type or an individual 
dynamic variable should be placed on a certain memory layer 
in the memory hierarchy of the targeted MPSoC. The decision 
is based on the allocation behavior of all dynamic data in the 
source code. A profiling report reveals the 
allocation/deallocation timeline of dynamic objects. This report 
is analyzed to identify the most frequently used objects. These 
objects are placed closer to the processors in the memory 
hierarchy, while other data structures are placed in a higher 
level of the memory hierarchy. 

This step does not finalize the mapping of dynamic objects 
to the memories. Instead it provides the remainder of the flow 
with hints about the preferred placement. These hints are used 
to guide the mapping decisions that are made in step 6. 

F. Task Mapping 
Two alternative techniques are available in the tool flow to 

map the parallelized application onto the processors and 
memories in the MPSoC.  The first technique, called scenario-
aware mapping, tries to exploit the dynamic behavior of an 
application in order to save resources. The second technique, 
called memory-aware mapping, focuses on finding a mapping 
that minimizes the energy consumption of the system while 
considering memory requirements of tasks. 

1) Scenario-aware mapping 

Modern streaming applications are becoming increasingly 
complex and dynamic. Existing mapping techniques (e.g. [4], 
[6]) model these applications using relatively simple and static 
models, such as (homogeneous) synchronous dataflow graphs 
[3]. These models abstract from the dynamic behavior of an 
application which may lead to a large overestimation of its 
resource requirements. The dynamic behavior of an application 
can be taken into account in a mapping technique by using a 
scenario-based design approach [2]. In this approach, the 
dynamic behavior of an application is viewed upon as a 
collection of different behaviors (scenarios) occurring in some 
arbitrary order, but each scenario by itself is fairly static and 
predictable in performance and resource usage. Therefore, 
resource allocation can be performed for each scenario using 
existing mapping techniques. However, these mapping 
techniques can only provide timing guarantees per scenario. 
They cannot guarantee the timing behavior when switching 
between scenarios. For many streaming applications it is 
however important that timing guarantees are provided when 
switching between scenarios. The scenario-aware mapping 
technique can provide such guarantees. 

The input of the scenario-aware mapping step is a set of 
synchronous dataflow graphs (i.e., one for each scenario). 
These graphs are automatically derived from the parallelized 
application source code. The scenario-aware mapping step 
allocates processing, memory, and communication resources 
for all these graphs. The output of this mapping step is a set of 
mappings that provide different trade-offs between the amounts 
of processing, memory, and communication resources that are 
used from the MPSoC. A run-time mechanism (e.g. [5], [8]) 
can use this set of mappings to adapt the mapping of an 
application to the available resource in different use-cases. The 
development of such a run-time mechanism is also studied in 
the context of the MNEMEE project. At this moment, the run-
time library does however not support run-time configuration. 
Therefore, the MNEMEE tool flow now selects one of the 
mappings generated by the scenario-aware mapping step (i.e., 
the mapping which minimizes the memory usage). This 
mapping is then used by the last step in the tool flow. 

2) Memory-aware mapping 

The memory-aware mapping tool provides a static assignment 
of tasks to processors. The focus of the tool lies in the 
integration of the memory subsystem in the mapping 
optimization decision. The memory hierarchy and the impact 
on energy, runtime and communication is often disregarded by 
other mapping tools. The mapping tool considers the memory 
requirements of tasks and maps them to available memories in 
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the hierarchy. However, the mapping tool does not decide on 
the final mapping of memory objects to the memories. It only 
provides hints to the last step of the flow. The last step finalizes 
the mapping of data objects to memories.  

The memory-aware mapping tool is based on the DOL 
framework [12]. A multiobjective optimization is implemented 
which balances the load on the processors and communication 
channels, and minimizes the overall energy of the system. An 
evolutionary algorithm based on EXPO [13] and PISA [14]  
performs this optimization. In a first step, several mapping 
solutions (genes) are generated. In the next step, an energy and 
performance evaluation is accomplished. The best solutions are 
stored and used for the generation of new solutions. These last 
steps are repeated until a maximum number of generations are 
reached. At the end a set of pareto optimal solutions is 
provided. Since the goal of the MNEMEE project is to 
minimize the energy consumption of the system, the solution 
with the minimal energy consumption is selected and provided 
to the next step in the MNEMEE tool flow. 

G. Scratchpad memory allocation 
The scratchpad memory allocation tool enables a system 

designer to implement an efficient memory allocation for 
statically allocated data within a very short time. It exploits 
scratchpad memories that are known for fast memory accesses 
consuming little energy. By allocating frequently accessed data 
objects to these memories the runtime and energy consumption 
of a system can be reduced significantly. Unfortunately, beside 
the favored properties scratchpad memories have a small size. 
Therefore, the tool applies a knapsack-based approach [11] to 
calculate the set of data objects that, once allocated to 
scratchpad memories, will lead to the most savings. 

By using integer linear programming, the scratchpad 
memory allocation tool can solve this problem optimally in a 
very short time. Finally, the tool implements the resulting 
optimal non-overlaying allocation by applying source-to-
source transformations. Another major advantage of the tool is, 
that it operates fully automated, thus a system designer can 
reduce runtime and energy consumption at the push of a 
button. 

III. INDUSTRIAL APPLICATION 
The MNEMEE tool flow can be used to automate the 

already existing too chains of embedded design industries, by 
replacing traditional manual techniques. This section presents 
two examples from companies working on different domains, 
namely communications and multimedia domain. Both 
examples demonstrate the integration of the MNEMEE tools 
into their design flow, emphasizing the automation achieved. 

A. Communications domain 
In the context of the MNEMEE project Intracom Telecom 

targets the IEEE 802.16e system for broadband wireless 
communications, for fixed, nomadic and mobile users IEEE 
802.16e is a broadband wireless solution that enables 
convergence of mobile and fixed broadband networks through 
a common wide area broadband radio access technology and 
flexible network architecture. IEEE 802.16 and WiMAX are 

designed as a complementary technology to Wi-Fi and 
Bluetooth. 

The target platform is the Freescale MSC8144 [16], a high-
performance multicore DSP device. It includes four extended 
cores, each one comprising the DSP core with dedicated 
instruction cache, data cache, memory management unit 
(MMU), interrupt controller (EPIC) and timers. The 
complexity of the platform demands large design effort to map 
a streaming application like 802.16e. The pre-MNEMEE 
design approach from Intracom can be seen on Figure 2. The 
application’s source code has to be manually partitioned to take 
advantage of the four DSP cores. Then the processes should be 
verified so that the partitioning does not break any timing 
constraints. Finally, manual memory mapping of data objects 
needs to be performed. 

Manual process partitioning

Process verification 

Manual memory mapping

(Sequential C Source Code)
START

Software mapping on 
MPSoC platform

 

Figure 2 Intracom: pre-MNEMEE design flow 

With the help of the MNEMEE tool flow the design flow 
was changed to that of Figure 3. The automatic process 
partitioning that is used now to map the processes to cores, 
provided a boost in the design time saving, while it was 
possible to achieve acceleration by a factor of up to 2.2. 
Furthermore, the mapping of data objects is also performed 
automatically further reducing design effort. The manual 
operation took ~2 days whereas the automatic process only ~4 
hours. A coarse performance difference between this optimised 
solution and simply mapping everything to DDR, was found to 
be ~30%. Therefore, usage of the specific tool was considered 
an efficient solution as it concerns both performance and 
design time.  

B. Multimedia domain 
The multimedia application is a state of the art low bit rate 

speech coder based on the enhanced Mixed Excitation Linear 
Predictive (MELPe) algorithm. This coder constitutes the new 
NATO standard STANAG 4591 [17][18]. The target platform 
is the OMAP-L137 [19], a dual core low-power application 
processor comprising an ARM92EJ-S and a C674x DSP core. 
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Both processors have their own instruction and data cache, but 
also share some internal and external memory. 

Before integrating the MNEMEE tool flow in the design 
flow, the required steps were those depicted on Figure 4. The 
source code has to be split manually between the DSP and the 
ARM core and then a series of manual optimizations and code 
rewriting takes place. Critical functions that do not meet the 
necessary constraints are written in assembly code.  

MNEMEE Automatic 
process partitioning

MNEMEE memory hierarchy 
optimizations  

MNEMEE automatic memory 
mapping

(Sequential C Source Code)
START

Software mapping on 
MPSoC platform

 

Figure 3 Intracom: after integrating the MNEMEE design flow 

C. Multimedia domain 
The multimedia application is a state of the art low bit rate 

speech coder based on the enhanced Mixed Excitation Linear 
Predictive (MELPe) algorithm. This coder constitutes the new 
NATO standard STANAG 4591 [17][18]. The target platform 
is the OMAP-L137 [19], a dual core low-power application 
processor comprising an ARM92EJ-S and a C674x DSP core. 
Both processors have their own instruction and data cache, but 
also share some internal and external memory. 

Before integrating the MNEMEE tool flow in the design 
flow, the required steps were those depicted on Figure 4. The 
source code has to be split manually between the DSP and the 
ARM core and then a series of manual optimizations and code 
rewriting takes place. Critical functions that do not meet the 
necessary constraints are written in assembly code.  

Integrating the multimedia application on the OMAP-L137 
platform led us to face two main challenges: (1) how to 
efficiently split the code between the two processors and (2) 
how to make the most of the four available memory levels. 
Manually addressing these challenges will require a lot of 
design and integration efforts. The different optimisation tasks 
depicted in Figure 4 have an impact on each other thus leading 
to an iterative and error prone optimisation process. Moreover 
the optimal solution could hardly be obtained manually. Using 
the MNEMEE tool flow, every step is performed and linked to 
the next in an automated way. This new design flow is given in 
Figure 5. The parallelism of the application is first exploited to 

split the code between the two processors. Even if the MELPe 
algorithm is mostly sequential, the tools are expected to 
provide low-grain parallelism optimization which could hardly 
be obtained manually. The static and dynamic data are then 
allocated in memories. Finally the communications between 
processors and data transfers are handled. Defining which 
memory should host which data is hard to do without tools that 
can provide information about data usage at run-time. The 
MNEMEE tools do provide such information, but they also use 
them to give an optimised mapping and the associated source-
code. Furthermore, as most of the tools perform source-to-
source optimization, the output source code can be viewed and 
analyzed. 

 

Manually split code between 
processors 

Manual code optimization  

Rewrite critical functions in 
assembly 

(Sequential C Source Code) 
START 

Optimize memory mapping 

 

Figure 4 Thales: pre-MNEMEE design flow 

 

The main advantages of using the MNEMEE tool flow is 
that each step is optimized in two ways: (1) the tools can 
generate and evaluate various alternative solutions, which can 
hardly be done by hand; and (2) the tools can work 
simultaneously on multiple optimization targets – execution 
time, energy consumption or memory footprint – to find out the 
best solution. Of course, some parts of the source code may 
still require manual optimization, but it should be far less than 
with a full manual optimisation process.  

It should also be noted that if the application needs to be 
modified or completed with additional functionalities, the use 
of an automated tool flow such as the MNEMEE tool flow will 
greatly facilitate the re-factoring process. 

IV. CONCLUSIONS 
The complexity of novel embedded systems is increasing 

rapidly.  These systems combine many different streaming 
applications in a single system. To meet the processing and 
memory requirements of these applications, multiprocessors 
systems-on-chip with a memory hierarchy must be used. The 
complexity of these architectures and applications make the 
design of these systems very challenging.  A decreasing time-
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to-market and the need to differentiate products add to this 
design challenge. Manual optimization and mapping of the 
application source code is becoming prohibitively slow. 
Therefore, a structured methodology and automated tools are 
needed to map the application source code onto the target 
hardware. The MNEMEE project provides a set of techniques 
that fills the need for automation in the respective industry’s 
design flows. In this paper, the MNEMEE techniques have 
been presented, along with two real-world industrial examples, 
demonstrating the applicability and the gains that are possible 
by their exploitation. 

 

MNEMEE automatic code 
splitting betweem processors 

MNEMEE source-to-source joint 
code and mapping optimization  

(Sequential C Source Code) 
START 

Manually optimize critical 
functions in assembly if 

necessary 

 

Figure 5 Thales: after integrating the MNEMEE design flow 
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