
Mapping embedded applications on MPSoCs:
the MNEMEE approach

Christos Baloukas, Lazaros Papadopoulos, Dimitrios Soudris,

Institute of Communications and Computer Systems (ICCS), 9, Iroon Polytechniou Str., 15773, Athens, Greece

Sander Stuijk, Eindhoven University of Technology, Eindhoven, Netherlands

Olivera Jovanovic, Florian Schmoll, Design Automation for Embedded Systems Group, TU-Dortmund, Germany

Daniel Cordes, Robert Pyka, Informatik Centrum Dortmund e.V., Dortmund, Germany

Arindam Mallik, Stylianos Mamagkakis, IMEC vzw, Leuven, Belgium

François Capman, Séverin Collet, Thales Communications France, 160 boulevard de Valmy, 92704, Colombes, France

Nikolaos Mitas, Dimitrios Kritharidis, Intracom Telecom, Athens, Greece

Abstract— As embedded systems are becoming the center of our
digital life, system design becomes progressively harder. The
integration of multiple features on devices with limited resources
requires careful and exhaustive exploration of the design search
space in order to efficiently map modern applications to an
embedded multi-processor platform. The MNEMEE project
addresses this challenge by offering a unique integrated tool flow
that performs source-to-source transformations to automatically
optimize the original source code and map it on the target
platform. The optimizations aim at reducing the number of
memory accesses and the required memory storage of both
dynamically and statically allocated data. Furthermore, the
MNEMEE tool flow performs optimal assignment of all data on
the memory hierarchy of the target platform. Designers can use
the whole flow or a part of it and integrate it into their own
design flow. This paper gives an overview of the MNEMEE tool
flow along. It also presents two industrial case studies that
demonstrate who the techniques and tools developed in the
MNEMEE project can be integrated into industrial design flows.

I. INTRODUCTION
In today’s embedded systems market there is a trend

towards integrating more and more services on mobile devices.
These systems combine applications from various domains like
communications and multimedia (e.g., HD-video coders,
wireless protocols, image processing and 3D games). All these
examples make heavy use of data transfers and computation,
which makes multi-processor platforms the perfect candidate
for their implementation. However, Multiprocessor Systems-
on-Chip (MPSoCs) include complex memory hierarchies and
synchronization systems, which in turn makes it difficult to
map an application on an MPSoC. For such complex design
targets, the design choices will have a high impact on the
performance of the system and the success of the device on the
market.

There are several challenges that MPSoC designer faces.
First, the application should be parallelized to take advantage
of the multiple processor system. This is achieved by breaking
the execution into several tasks that can be performed in
parallel. Second, the statically and dynamically allocated data

structures must be optimized to take advantage of the memory
hierarchy of the target platform. Third, the final optimized
parallel code should be mapped and compiled onto the MPSoC.

In current embedded system design flows, the optimization
of the source code is done mainly by hand. This process is
becoming very tedious and error prone as the complexity of the
system and the applications are constantly increasing. This
makes it necessary to develop a systematic methodology and
tooling that will deal with of the aforementioned challenges
automatically.

The MNEMEE project [1] comes to address the challenge
of mapping an application onto an MPSoC platform. Several
state-of-the-art source-to-source optimization methodologies
and tools have been developed that automatically extract
possible parallelization from a target source code, while they
also optimize statically and dynamically allocated data
structures for less memory accesses and storage. Additionally,
the code is mapped onto the various processors and memories
of the MPSoC platform. Each methodology and tool has a very
clearly defined interface that allows the whole set of techniques
developed under the MNEMEE project to be integrated into a
common tool flow or used as individual optimization steps. It
is this exact feature that renders the MNEMEE tools easy to
use in industrial applications, where companies already work
with certain tool chains. By integrating the MNEMEE tools
into their tool chain, industrial designers can automate their
flows. As will be demonstrated in section III, parts of the tool
flow can be used to replace existing manual or less efficient
steps in an industrial design flow. Two examples are provided,
one from the communications domain and one from the
multimedia domain.

The remainder of this paper is organized as follows. The
next section gives an overview of the developed techniques of
the MNEMEE project. Section III presents two industrial cases
that demonstrate the applicability of the MNEMEE approach.
Section IV concludes this paper.

This work was supported in part by the EC through FP7 IST project 216224,
MNEMEE.

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.96

512

II. MNEMEE TOOL FLOW

A. Overview
Figure 1 shows the MNEMEE tool flow. The input of the

tool flow is sequential source code written in C. The output of
the flow is source code that is parallelized and optimized for
the target MPSoC and its memory hierarchy. The first step
targets the optimization of all dynamically allocated data
structures by changing their implementation. These changes
may affect the parallelization and therefore they are performed
first. Step 2 identifies any potential parallelization in the source
code and implements it by breaking the code into several tasks.
Step 3 optimizes the statically allocated data structures. Since
the parallelization of the original source code has already taken
place, the tool can map the statically allocated data structures
efficiently onto the memory hierarchy, as their size and
behavior is known. The next step, maps the dynamically
allocated data structures onto the memory hierarchy. Step 5
maps the parallelized application onto the processors and
memories. The MNEMEE tool flow offers two alternatives
mapping techniques. The first technique called scenario-aware
mapping, tries to exploit the dynamic behavior of an
application in order to save resources. The second technique,
called memory-aware mapping, focuses on finding a mapping
that minimizes the energy consumption of the memory
subsystem. Finally, step 6 further optimizes the scratchpad
allocation of each processor in the target platform.

Figure 1 MNEMEE tool flow.

To combine the large number of required processing steps
into a single tool flow, the MACC framework for source level
optimization development has been used. This framework
exploits the abstract syntax tree code representation provided
by the ICD-C compiler development framework. MACC
provides a common platform model along with a well defined
interface for integration of analysis and optimization tools. This
framework was partially developed in the MNEMEE project
[9]. Furthermore, a graphical user interface is provided to
enhance the usability of the tool flow.

B. Dynamic data type optimizations
The dynamic data type optimizations step (step 1) changes

the implementation of all dynamic data structures like dynamic
arrays, linked lists and trees, based on the Dynamic Data Type
Refinement (DDTR) methodology [15]. All dynamic data
types (DDTs) are profiled to identify their access patterns and
allocation behavior. The optimized implementation is
customized to fit this particular access pattern. The objective is
to boost performance and restrain the memory consumption.
This customization of the data structures is achieved by
restructuring these data structures using components from a
library of DDTs. As an example, we can consider a list that is
accessed sequentially. The use of a memory pointer to store the
last accessed element can greatly boost the performance
without having to resort to an array solution. The linked list can
be restructured adding this memory pointer component.

C. Parallelization
The parallelization tool is the second one in the MNEMEE

tool flow. Its purpose is a fully automatic exploitation of
parallelism for the given sequential application’s source code,
given by the MACC framework. Therefore, the application is
transformed in a so called hierarchical task graph, based on the
one presented by Girkar in [10]. Once this intermediate
representation is extracted from the source code, an ILP based
parallelization approach is used to search for parallelism on
each hierarchical level of the task graph. Only by introducing
hierarchy into the task graph representation it is possible to
make usage of very complex ILP formulations. The whole
graph is analyzed for possible parallelism by a bottom-up
search strategy, which extracts a balanced, parallelized version
of the application’s source code. Though, the algorithm
deliberates about whether it should extract new tasks on the
current level of hierarchy or whether it should just use the
tasks, extracted earlier deeper in the hierarchy. In addition, the
parallelization tool also considers special requirements for
embedded systems and is e.g., able to limit the number of
extracted concurrently executed tasks to the number of
available processor units.

Once the whole graph is processed by the parallelization
algorithm, the taken decisions are annotated on the
application’s source code and a parallelization specification is
generated, which complies with the input specifications of the
MPMH tool [7]. This tool is then used in step 3 of the tool flow
to implement the extracted parallelism.

513

D. Optimize Static Data Structures
The MPSoC Parallelization and Memory Hierarchy

(MPMH) tool [7] generates parallel source code based on the
directives specified by the previous step in the tool flow. This
step has annotated the source code with parsections. These
parsections specify the sequential code segments that must be
parallelized. A directive has been added to each parsection that
specifies the number of threads that will execute this parsection
in parallel. The parallelization tool (step 2) further indicates
whether the work that is done in the parsection must be divided
over these threads in terms of functionality (i.e., to split the
parsection based on functional parallelism), or in terms of loop
iterations (i.e. to split the parsection based on data parallelism),
or a combination of both depending on what is the most
appropriate for a given parsection. Given the source code and
the parallelization directives, the MPMH tool generates a
parallel version of the code and insert FIFOs and
synchronization mechanisms where needed. Hence, the
designer does not need to worry about dependencies between
threads. This is taken care of automatically by the tool. This
ensures that the tool will always generate correct-by-
construction parallel code. MPMH provides the optional
mechanism of shared variables. Shared variables need explicit
synchronization and communication between threads. The tool
will check for possible inconsistency in the synchronization for
the shared variables. However it cannot guarantee correct-by-
construction parallel code for these shared variables. This
option is therefore not used in the MNEMEE tool flow.

The MPMH tool is also capable of performing static data
optimizations by optimizing the accesses to static data arrays.
The tool uses compile-time application knowledge and
profiling data to find out which data copies can be made and
whether these copies are beneficial. It also determines how the
data and the copies have to be mapped onto the various
memory layers in a memory hierarchy such that the energy
consumption is minimized and/or the performance is
maximized. The result of the optimization is a transformed
parallelized application with data copies and block transfers
explicitly expressed in the source code, automatic handling of
synchronization of data, and a mapping of the data and copies
to the various memory layers.

E. Optimize Dynamic Memory Management
The dynamic memory management methodology is

responsible for deciding where a data type or an individual
dynamic variable should be placed on a certain memory layer
in the memory hierarchy of the targeted MPSoC. The decision
is based on the allocation behavior of all dynamic data in the
source code. A profiling report reveals the
allocation/deallocation timeline of dynamic objects. This report
is analyzed to identify the most frequently used objects. These
objects are placed closer to the processors in the memory
hierarchy, while other data structures are placed in a higher
level of the memory hierarchy.

This step does not finalize the mapping of dynamic objects
to the memories. Instead it provides the remainder of the flow
with hints about the preferred placement. These hints are used
to guide the mapping decisions that are made in step 6.

F. Task Mapping
Two alternative techniques are available in the tool flow to

map the parallelized application onto the processors and
memories in the MPSoC. The first technique, called scenario-
aware mapping, tries to exploit the dynamic behavior of an
application in order to save resources. The second technique,
called memory-aware mapping, focuses on finding a mapping
that minimizes the energy consumption of the system while
considering memory requirements of tasks.

1) Scenario-aware mapping

Modern streaming applications are becoming increasingly
complex and dynamic. Existing mapping techniques (e.g. [4],
[6]) model these applications using relatively simple and static
models, such as (homogeneous) synchronous dataflow graphs
[3]. These models abstract from the dynamic behavior of an
application which may lead to a large overestimation of its
resource requirements. The dynamic behavior of an application
can be taken into account in a mapping technique by using a
scenario-based design approach [2]. In this approach, the
dynamic behavior of an application is viewed upon as a
collection of different behaviors (scenarios) occurring in some
arbitrary order, but each scenario by itself is fairly static and
predictable in performance and resource usage. Therefore,
resource allocation can be performed for each scenario using
existing mapping techniques. However, these mapping
techniques can only provide timing guarantees per scenario.
They cannot guarantee the timing behavior when switching
between scenarios. For many streaming applications it is
however important that timing guarantees are provided when
switching between scenarios. The scenario-aware mapping
technique can provide such guarantees.

The input of the scenario-aware mapping step is a set of
synchronous dataflow graphs (i.e., one for each scenario).
These graphs are automatically derived from the parallelized
application source code. The scenario-aware mapping step
allocates processing, memory, and communication resources
for all these graphs. The output of this mapping step is a set of
mappings that provide different trade-offs between the amounts
of processing, memory, and communication resources that are
used from the MPSoC. A run-time mechanism (e.g. [5], [8])
can use this set of mappings to adapt the mapping of an
application to the available resource in different use-cases. The
development of such a run-time mechanism is also studied in
the context of the MNEMEE project. At this moment, the run-
time library does however not support run-time configuration.
Therefore, the MNEMEE tool flow now selects one of the
mappings generated by the scenario-aware mapping step (i.e.,
the mapping which minimizes the memory usage). This
mapping is then used by the last step in the tool flow.

2) Memory-aware mapping

The memory-aware mapping tool provides a static assignment
of tasks to processors. The focus of the tool lies in the
integration of the memory subsystem in the mapping
optimization decision. The memory hierarchy and the impact
on energy, runtime and communication is often disregarded by
other mapping tools. The mapping tool considers the memory
requirements of tasks and maps them to available memories in

514

the hierarchy. However, the mapping tool does not decide on
the final mapping of memory objects to the memories. It only
provides hints to the last step of the flow. The last step finalizes
the mapping of data objects to memories.

The memory-aware mapping tool is based on the DOL
framework [12]. A multiobjective optimization is implemented
which balances the load on the processors and communication
channels, and minimizes the overall energy of the system. An
evolutionary algorithm based on EXPO [13] and PISA [14]
performs this optimization. In a first step, several mapping
solutions (genes) are generated. In the next step, an energy and
performance evaluation is accomplished. The best solutions are
stored and used for the generation of new solutions. These last
steps are repeated until a maximum number of generations are
reached. At the end a set of pareto optimal solutions is
provided. Since the goal of the MNEMEE project is to
minimize the energy consumption of the system, the solution
with the minimal energy consumption is selected and provided
to the next step in the MNEMEE tool flow.

G. Scratchpad memory allocation
The scratchpad memory allocation tool enables a system

designer to implement an efficient memory allocation for
statically allocated data within a very short time. It exploits
scratchpad memories that are known for fast memory accesses
consuming little energy. By allocating frequently accessed data
objects to these memories the runtime and energy consumption
of a system can be reduced significantly. Unfortunately, beside
the favored properties scratchpad memories have a small size.
Therefore, the tool applies a knapsack-based approach [11] to
calculate the set of data objects that, once allocated to
scratchpad memories, will lead to the most savings.

By using integer linear programming, the scratchpad
memory allocation tool can solve this problem optimally in a
very short time. Finally, the tool implements the resulting
optimal non-overlaying allocation by applying source-to-
source transformations. Another major advantage of the tool is,
that it operates fully automated, thus a system designer can
reduce runtime and energy consumption at the push of a
button.

III. INDUSTRIAL APPLICATION
The MNEMEE tool flow can be used to automate the

already existing too chains of embedded design industries, by
replacing traditional manual techniques. This section presents
two examples from companies working on different domains,
namely communications and multimedia domain. Both
examples demonstrate the integration of the MNEMEE tools
into their design flow, emphasizing the automation achieved.

A. Communications domain
In the context of the MNEMEE project Intracom Telecom

targets the IEEE 802.16e system for broadband wireless
communications, for fixed, nomadic and mobile users IEEE
802.16e is a broadband wireless solution that enables
convergence of mobile and fixed broadband networks through
a common wide area broadband radio access technology and
flexible network architecture. IEEE 802.16 and WiMAX are

designed as a complementary technology to Wi-Fi and
Bluetooth.

The target platform is the Freescale MSC8144 [16], a high-
performance multicore DSP device. It includes four extended
cores, each one comprising the DSP core with dedicated
instruction cache, data cache, memory management unit
(MMU), interrupt controller (EPIC) and timers. The
complexity of the platform demands large design effort to map
a streaming application like 802.16e. The pre-MNEMEE
design approach from Intracom can be seen on Figure 2. The
application’s source code has to be manually partitioned to take
advantage of the four DSP cores. Then the processes should be
verified so that the partitioning does not break any timing
constraints. Finally, manual memory mapping of data objects
needs to be performed.

Manual process partitioning

Process verification

Manual memory mapping

(Sequential C Source Code)
START

Software mapping on
MPSoC platform

Figure 2 Intracom: pre-MNEMEE design flow

With the help of the MNEMEE tool flow the design flow
was changed to that of Figure 3. The automatic process
partitioning that is used now to map the processes to cores,
provided a boost in the design time saving, while it was
possible to achieve acceleration by a factor of up to 2.2.
Furthermore, the mapping of data objects is also performed
automatically further reducing design effort. The manual
operation took ~2 days whereas the automatic process only ~4
hours. A coarse performance difference between this optimised
solution and simply mapping everything to DDR, was found to
be ~30%. Therefore, usage of the specific tool was considered
an efficient solution as it concerns both performance and
design time.

B. Multimedia domain
The multimedia application is a state of the art low bit rate

speech coder based on the enhanced Mixed Excitation Linear
Predictive (MELPe) algorithm. This coder constitutes the new
NATO standard STANAG 4591 [17][18]. The target platform
is the OMAP-L137 [19], a dual core low-power application
processor comprising an ARM92EJ-S and a C674x DSP core.

515

Both processors have their own instruction and data cache, but
also share some internal and external memory.

Before integrating the MNEMEE tool flow in the design
flow, the required steps were those depicted on Figure 4. The
source code has to be split manually between the DSP and the
ARM core and then a series of manual optimizations and code
rewriting takes place. Critical functions that do not meet the
necessary constraints are written in assembly code.

MNEMEE Automatic
process partitioning

MNEMEE memory hierarchy
optimizations

MNEMEE automatic memory
mapping

(Sequential C Source Code)
START

Software mapping on
MPSoC platform

Figure 3 Intracom: after integrating the MNEMEE design flow

C. Multimedia domain
The multimedia application is a state of the art low bit rate

speech coder based on the enhanced Mixed Excitation Linear
Predictive (MELPe) algorithm. This coder constitutes the new
NATO standard STANAG 4591 [17][18]. The target platform
is the OMAP-L137 [19], a dual core low-power application
processor comprising an ARM92EJ-S and a C674x DSP core.
Both processors have their own instruction and data cache, but
also share some internal and external memory.

Before integrating the MNEMEE tool flow in the design
flow, the required steps were those depicted on Figure 4. The
source code has to be split manually between the DSP and the
ARM core and then a series of manual optimizations and code
rewriting takes place. Critical functions that do not meet the
necessary constraints are written in assembly code.

Integrating the multimedia application on the OMAP-L137
platform led us to face two main challenges: (1) how to
efficiently split the code between the two processors and (2)
how to make the most of the four available memory levels.
Manually addressing these challenges will require a lot of
design and integration efforts. The different optimisation tasks
depicted in Figure 4 have an impact on each other thus leading
to an iterative and error prone optimisation process. Moreover
the optimal solution could hardly be obtained manually. Using
the MNEMEE tool flow, every step is performed and linked to
the next in an automated way. This new design flow is given in
Figure 5. The parallelism of the application is first exploited to

split the code between the two processors. Even if the MELPe
algorithm is mostly sequential, the tools are expected to
provide low-grain parallelism optimization which could hardly
be obtained manually. The static and dynamic data are then
allocated in memories. Finally the communications between
processors and data transfers are handled. Defining which
memory should host which data is hard to do without tools that
can provide information about data usage at run-time. The
MNEMEE tools do provide such information, but they also use
them to give an optimised mapping and the associated source-
code. Furthermore, as most of the tools perform source-to-
source optimization, the output source code can be viewed and
analyzed.

Manually split code between
processors

Manual code optimization

Rewrite critical functions in
assembly

(Sequential C Source Code)
START

Optimize memory mapping

Figure 4 Thales: pre-MNEMEE design flow

The main advantages of using the MNEMEE tool flow is
that each step is optimized in two ways: (1) the tools can
generate and evaluate various alternative solutions, which can
hardly be done by hand; and (2) the tools can work
simultaneously on multiple optimization targets – execution
time, energy consumption or memory footprint – to find out the
best solution. Of course, some parts of the source code may
still require manual optimization, but it should be far less than
with a full manual optimisation process.

It should also be noted that if the application needs to be
modified or completed with additional functionalities, the use
of an automated tool flow such as the MNEMEE tool flow will
greatly facilitate the re-factoring process.

IV. CONCLUSIONS
The complexity of novel embedded systems is increasing

rapidly. These systems combine many different streaming
applications in a single system. To meet the processing and
memory requirements of these applications, multiprocessors
systems-on-chip with a memory hierarchy must be used. The
complexity of these architectures and applications make the
design of these systems very challenging. A decreasing time-

516

to-market and the need to differentiate products add to this
design challenge. Manual optimization and mapping of the
application source code is becoming prohibitively slow.
Therefore, a structured methodology and automated tools are
needed to map the application source code onto the target
hardware. The MNEMEE project provides a set of techniques
that fills the need for automation in the respective industry’s
design flows. In this paper, the MNEMEE techniques have
been presented, along with two real-world industrial examples,
demonstrating the applicability and the gains that are possible
by their exploitation.

MNEMEE automatic code
splitting betweem processors

MNEMEE source-to-source joint
code and mapping optimization

(Sequential C Source Code)
START

Manually optimize critical
functions in assembly if

necessary

Figure 5 Thales: after integrating the MNEMEE design flow

REFERENCES
[1] MNEMEE Project (IST-216224) - http://www.mnemee.org/
[2] S. Gheorghita, M. Palkovic, J. Hamers, A. van de Cappelle, S.

Mamagkakis, T. Basten, L. Eeckhout, H. Corporaal, F. Catthoor, F. van
de Putte, and K. D. Bosschere. System-scenario-based design of
dynamic embedded systems. ACM Transactions on Design Automation
of Electronic Systems 14, 1 (January 2009), p. 1–45.

[3] E. Lee and D. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Transactions on
Computers 36, 1 (January 1987), p. 24–35.

[4] O. Moreira, J.-D. Mol, M. Belooij, and J. van Meerbergen.
Multiprocessor resource allocation for hard-real-time streaming with a
dynamic job-mix. In 11th Real Time and Embedded Technology and
Applications Symposium, RTAS 05, Proceedings (March 2005), IEEE,
p. 332–341.

[5] H. Shojaei, A. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and R. Hoes.
A parameterized compositional multi-dimensional multiple-choice
knapsack heuristic for CMP run-time management. In 46th Design

Automation Conference, DAC 09, Proceedings (June 2009), ACM, p.
917–922.

[6] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Multiprocessor
resource allocation for throughput-constrained synchronous dataflow
graphs. In 44th Design Automation Conference, DAC 07, Proceedings
(June 2007), ACM, p. 777–782.

[7] Y. Iosifidis, A. Mallik, S. Mamagkakis, E. De Greef, A. Bartzas, D.
Soudris, F. Catthoor. A Framework for Automatic Parallelization, Static
and Dynamic Memory Optimization in MPSoC Platforms. In the Design
Automation Conference, DAC 10, Proceedings (June 2010), ACM.

[8] Ch. Ykman-Couvreur, V. Nollet, F. Catthoor, H. Corporaal. Fast Multi-
Dimension Multi-Choice Knapsack Heuristic for MP-SoC Run-Time
Management. In International Symposium on SoC, Proceedings (2006),
IEEE, p. 1–4.

[9] R. Pyka, F. Klein, P. Marwedel and S. Mamagkakis. Versatile System-
level Memory-aware Platform Description Approach for embedded
MPSoCs, LCTES 2010, April 2010.

[10] M. Girkar and C. D. Polychronopoulos. The hierarchical task graph as a
universal intermediate representation. International Journal of Parallel
Programming, 22(5):519–551, 1994.

[11] S. Steinke, L.Wehmeyer, B. Lee, and P. Marwedel. Assigning program
and data objects to scratchpad for energy reduction. In Design,
Automation and Test in Europe, DATE 02, Proceedings, p. 409, IEEE,
2002.

[12] L. Thiele, I. Bacivarov, W. Haid, K. Huang. Mapping Applications to
Tiled Multiprocessor Embedded Systems. In Application of
Concurrency to System Design, ACSD 07, Proceedings (July 2007),
IEEE, 2007.

[13] L. Thiele, S. Chakraborty, M. Gries, M., and S. Künzli. A framework for
evaluating design tradeoffs in packet processing architectures. In 39th
Annual Design Automation Conference, DAC 02, Proceedings (June
2002), ACM, p. 880-885.

[14] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA – A Platform
and Programming Language Independent Interface for Search
Algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and .
Thiele, editors, Evolutionary Multi-Criterion Optimization (EMO 2003),
volume 2632/2003 of LNCS, pages 494–508. Springer-Verlag
Heidelberg, 2003.

[15] C. Baloukas, J.L. Risco-Martin, D. Atienza, C. Poucet, L. Papadopoulos,
S. Mamagkakis, D. Soudris, J. Ignacio Hidalgo, F. Catthoor, J. and
Lanchares. Optimization methodology of dynamic data structures based
on genetic algorithms for multimedia embedded systems. J. Syst. Softw.
82, 4 (April 2009), p. 590-602.M. Young, The Technical Writer's
Handbook. Mill Valley, CA: University Science, 1989.

[16] MSC8144 Reference Manual,
http://www.freescale.com/files/dsp/doc/ref_manual/MSC8144RM.pdf

[17] “The 600 bits/s, 1200 bits/s and 2400 bits/s NATO interoperable narrow
band voice coder”, NATO Standard STANAG No. 4591 Edition Y
(amendment W) Ratification Draft 1, January 2006.

[18] G. Guilmin, F. Capman, B. Ravera and F. Chartier. "New NATO
STANAG narrow band voice coder at 600 bits/s", Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing,
Toulouse, May 2006.

[19] OMAP-L137 Reference Manual,

517

