
T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E

Technische Universität Dortmund

Reducing the Energy Consumption of Embedded Systems
by Integrating General Purpose GPUs

Constantin Timm, Andrej Gelenberg, Peter Marwedel,Frank Weichert

Computer Science 7 & 12

Number: 829

June 2010

Technische Universität Dortmund — Fakultät für Informatik
Otto-Hahn-Str. 16, 44227 Dortmund

Constantin Timm, Andrej Gelenberg, Peter Marwedel,Frank Weichert: Reducing
the Energy Consumption of Embedded Systems
by Integrating General Purpose GPUs, Technical Report, Department of Computer
Science, TU Dortmund University. © June 2010

A B S T R A C T

Nowadays, General Purpose Computing on GPUs (GPGPU) accelerates many
industrial and scientific applications in the high performance computing (HPC)
domain. Recently, GPU vendors, such as Nvidia and AMD, promoted the uti-
lization of high end GPUs in embedded systems. The intention of the GPU
vendors is the acceleration of traditional graphics computations, but in anal-
ogy to the HPC desktop domain, GPUs could also be used as GPGPU in the
embedded domain. However, energy constraints are omnipresent in the embed-
ded world and therefore, one central question for embedded system designers
is: Can energy be saved by using an additional GPGPU-equipped graphics card
to accelerate general purpose applications?

This paper firstly discusses the theoretical background of an energy aware
embedded system design including a GPGPU-equipped graphics card. In order
to support these theoretical considerations, secondly an energy and runtime
evaluation of a low power GPU/CPU system is presented. We demonstrate
that a profitable GPU integration, seen from an energy perspective, strongly
depends on the structure and the features of an application such as a high
parallelizability and the utilization level of the graphics card. The evaluation
of several real world benchmarks shows that increasing the system’s power
consumption by integrating a GPU can lead to a reduced overall energy con-
sumption of a system.

iii

C O N T E N T S

1 Introduction 1

2 GPGPU Programming and Energy Saving on GPUs 3

2.1 GPGPU Programming 3

2.2 Energy Saving on GPUs 3

3 Related Work 5

4 Energy Reduction for GPGPU-accelerated Applications 7

4.1 Profiling GPGPU Applications 7

4.2 Profit Analysis 10

4.2.1 Evaluation Results 12

4.2.2 Decision for Integration 12

5 Conclusion 15

v

1I N T R O D U C T I O N

Using a GPGPU-capable GPU for scientific and industrial general purpose ap-
plications is widely accepted for HPC (High Performance Computing) at the
desktop or server level [19]. On the other hand, GPGPUs (General Purpose
Computing on Graphics Processing Units) can also be used in embedded sys-
tems without a graphical interface in order to accelerate parallel general pur-
pose applications. The trend towards GPGPU computing can be noticed through
the fact that GPU vendors, such as Nvidia and ATI, provide developers with
dedicated GPGPU frameworks like CUDA [17] and Stream [1] to create ap-
plications for their GPUs. Moreover, initiatives such as OpenCL [13], make
programming of GPUs easier and several programming frameworks such as
StreaMIT [26] and BrookGPU [4] were developed in the scientific community.
GPGPU-implemented applications comprise a wide area [16] including video
and image processing, simulation, cryptography or machine-learning.
The GPUCV project offers, for example, GPU-accelerated replacement routines
for the image processing library OpenCV [8]. Another field of applications are
solvers for parallel Sequential Minimal Optimization (SMO) within Support
Vector Machine training [5]. Both of the last examples are especially important
for medical and biological problems, which require rapid evaluation of com-
plex and extensive data sets. Published GPGPU applications achieved runtime
reductions of 50% and more in comparison to a CPU execution. This makes
the GPGPU computing extremely interesting for embedded system design. E.g.
small optical biosensors with integrated GPU-based analytical units for mass
screening at airports to curtail the global spreading in terms of virus infections
can be pointed out. Further, every additional computing resource in a system
increases the power consumption which adversely affects the objective of sav-
ing energy in the embedded system domain, e.g., in mobile systems. A ques-
tion that arises for the embedded system design is based on the high speedup
potential on GPUs. Namely, whether energy can be saved by integrating an ad-
ditional graphics card/processor for GPGPU computing.

The main intention of this paper is to provide an embedded system designer
with the theoretical background and practical advices to reduce total system en-
ergy consumption employing an additional GPGPU-equipped accelerator. The
reduction of the energy consumption can be achieved under the assumption
that the applications that are running on the system are known at system design
time. The paper shows that this reduction is only possible for certain types of
applications, namely highly parallelizable applications [3]. An overview about
parallelizable applications implemented in CUDA can be found at [17]. The
evaluation of several benchmarks demonstrates that even doubling the system’s
power consumption by integrating a GPU can lead to an energy reduction of
the overall system.

The remainder of this paper is structured as follows. Section 2 will make the

1

2 introduction

__kernel void vector_add (__global const float* In1,
__global const float* In2,

__global float* Out)
{

int pos = get_global_id(0);

Out[pos] = In1[pos] + In2[pos];
}

Data Parallel Execution

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

In1

In2

Out

Figure 1: Schematic View of a Vector Addition with OpenCL

reader of this paper familiar with GPGPU programming and presents energy
saving techniques for graphics cards. The related work is described in Section 3.
Section 4 introduces the steps towards energy reduction of GPGPU-accelerated
applications for energy aware embedded systems. After discussing the results
of our practical evaluation, the work is concluded in the last section and future
work is presented.

2G P G P U P R O G R A M M I N G A N D E N E R G Y S AV I N G O N G P U S

This section will introduce the programming for GPGPUs and techniques which
can be used to save energy on graphics cards.

2.1 gpgpu programming

GPUs can work in parallel. But what does this mean? It can be distinguish
between at least two types of parallelism [7]. Task or function parallelism de-
scribed the concept, when different parts of an application (short: tasks) can
work on different data sets in parallel. The second type of parallelism is data
parallelism, i.e., several tasks can work on the data items of one data set in
parallel. Therefore, dedicated programming languages such as CUDA, Stream
or OpenCL are tailored towards using the GPU-parallelism capabilities for gen-
eral purpose applications by the possibility to express task and data parallelism.
These previous mentioned languages have in common that so called “kernels”
have to be specified for the code running on the GPU. The code running on the
devices hosting, e.g. a GPU, can be normally written in C, C++ etc. One kernel
works on a shared data set in parallel on the different stream processors of the
GPU, and several kernels can run on these processors in parallel on different
data sets. An exemplary kernel for vector addition with CUDA is depicted in
Figure 1. It can be seen, the kernel vector add works on two input arrays and
one output array. The qualifier global indicates that these arrays are avail-
able in the main memory of the graphics card. The function get global id(0)

provides the kernel with information on which index of the arrays it has to
work.

Sequential and
Parallel Parts

Power
Consumption
and Runtime

Energy
Savings

Energy and
Runtime Profiling Profit Analysis GPGPU

IntegrationCode

Figure 2: Workflow towards Energy Reduction for GPU-accelerated Applications

2.2 energy saving on gpus

An interesting feature, provided by up-to-date graphics cards supporting en-
ergy efficient design, is, that these cards are capable of saving power at runtime
when the complete computational power of the GPU is not required. Analog
to the CPU domain, GPU vendors equip their GPUs with several power/fre-
quency domains for different load settings. A low power and/or frequency
domain is chosen when only two dimensional graphics computations are per-
formed, otherwise a higher power/frequency domain is selected. In addition
to that, GPU vendors allow their GPUs to power down certain units if they
are not utilized. Under different loads these techniques can save energy and

3

4 gpgpu programming and energy saving on gpus

make GPUs more interesting for energy aware designs. This feature can also
be used for GPGPU computing in order to save energy and to support the idea
of reducing the total energy consumption of systems by integrating a GPGPU-
equipped graphics card. Additionally, Nvidia’s HybridPower as well as ATI’s
PowerXpress integrated an interesting mechanism which could enable the us-
age of GPGPUs in embedded systems. They are equipped with two GPUs. One
basic and low power GPU and one powerful GPU which could also be used for
GPGPU computing. The powerful GPU is only activated on demand otherwise
it remains in sleep mode.

3R E L AT E D W O R K

General purpose application support for GPUs is widely utilized for scientific
and industrial applications (see e.g. [17]). One paper which evaluates the per-
formance of general purpose applications implemented on GPUs was written
by the Trancoso and Charalambous [27]. The authors evaluated the speedup for
several applications and application types on a GPU compared to a high-end
CPU. Important parameters such as the memory access patterns for data, dif-
ferent data types and input data size were investigated. However, not energy
consumption reduction but the speedup was the goal of this work.
The energy consumption of a generalized many-core system was considered
in [29]. The authors of the paper describe how many-core architectures could
be constructed and how this affects the speedup of parallelizable applications
and the power consumption of such a system. The first many-core architecture
analyzed in this paper comprises a couple of full-blown processors such as the
Intel hexa-core Westmere [12]. Another architecture style that was evaluated,
consists of many small energy-efficient processors in the system. The last de-
scribed architecture style is to reconcile a full-blown processor with many small
energy-efficient processors. This last architecture style generalizes systems such
as GPU-accelerated systems or the IBM Cell Broadband Engine [11]. The energy
considerations were done in this paper from the hardware and not from the
software perspective. For example, only a fixed worst-case power consumption
for the different processors for executing an application was assumed.
In the HPC world, energy constraints arise from the field of green computing.
In this area, parallel computing GPUs are used for a wide range of applica-
tions [17]. Several papers [21, 23, 6] show that choosing the right processing
unit (CPU vs. GPU) for a problem can lead to energy savings and performance
increases of the considered applications. In [21], the authors take the idle power
consumption of the parallel parts of an application into account and analyze
whether it is beneficial to integrate a GPU into a high performance computing
system. Their analysis is based on the fact that nowadays, high performance
CPUs are also quite powerful for parallel computing. However, their paper
is based on the HPC perspective and the authors worked with different con-
straints concerning GPU and CPU power consumptions and processing speeds
compared to the embedded system domain.
An extension of the CUDA framework with the capability of choosing at run-
time whether a kernel should be executed on a CPU or on a GPU in order to
save energy was proposed in [23]. This is especially important if the developer
does not know the actual platform in advance. It was shown that an efficient
runtime management for choosing the execution location can reduce the en-
ergy consumption.
The authors of [6] presented a pure theoretical work on the dependencies be-
tween parallel processing and energy savings. The work also includes DVFS
(dynamic voltage and frequency scheduling). In [20] the multiplication of large
matrices was optimized the with regards to energy consumption. Overall, it

5

6 related work

can be summarized that energy-aware embedded system design with the help
of GPUs/graphics cards is not exploited in completeness yet.

4E N E R G Y R E D U C T I O N F O R G P G P U - A C C E L E R AT E D
A P P L I C AT I O N S

The workflow of integrating a GPGPU-equipped graphics card (depicted in
Figure 2) comprises two steps and starts with an application which includes
GPGPU accelerated code. First, the runtimes and the power consumption of
the system with and without the GPGPU-equipped graphics card (including
GPU, memory and busses) have to be measured for the application. In a profiler
framework, which is described in Section 4.1, the power consumption during
the runtime of an application is traced. If a real system is not available, a power
model can be used [14] to estimate the power consumption based on the GPU
utilization degree, in order to evaluate the power consumption for the code. The
decision whether the integration of an additional graphics card into the system
is beneficial is based on the considerations that are discussed in Section 4.2. In
this section, the energy profit of integrating a GPU is analyzed and a formula
is presented for the GPU integration decision.

4.1 profiling gpgpu applications

One of the important tasks when optimizing the energy consumption of an
application is to evaluate how much energy is consumed by the system compo-
nents during its execution. A very fine-grained model for energy consumption
per access for memories [28] or per instruction for processors [22] can be used
to be as precise as possible. Nevertheless there are some obstacles: For exam-
ple, this requires detailed information on the architecture which is normally not
available to application developers. Moreover, if working on such fine-grained
level, the complexity of the system can be too high since one has to create
power models for every component and their interactions. In order to solve
these problems, we modeled and measured on a very coarse-grained level and
considered the system components as black boxes. This section therefore intro-
duces the testbed utilized to trace the power consumption of the system and
the graphics card for CUDA applications.

Hardware/Software Testbed

The hardware used for this testbed is listed in Table 1. As the main processor,
a quite up-to-date low power CPU, the Intel Atom 270, was selected. This pro-
cessor can be found in many embedded systems such as routers, small size
NAS etc. For the GPGPU computations, a low power GPU, the Nvidia 8400 GS
was selected. This GPU has one stream multiprocessor with eight stream pro-
cessors which can be used for GPGPU computing. The power consumption for
the system (without the GPGPU-equipped graphics card) plus the power con-
sumption of the GPGPU-equipped graphics card under high load was 25 Watt
and 14 Watt under low load. For this paper, we measured the overall power con-
sumption at two different points during the execution of the benchmarks. The

7

8 energy reduction for gpgpu-accelerated applications

0
5

10
15

0
0.2

0.4
0.6

0.8
1
0

2

4

6

8

10

12

14

16

#cores (n)parallel fraction (f)

S
pe

ed
up

(a)

0 2 4 6 8 10 12 14 16

0

0.5

1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

#cores (n)
parallel fraction (f)

S
pe

ed
up

 /
W

at
t

(b)

Figure 3: (a) Speedup Estimation and (b) Estimation of an Energy Efficient Speedup ,
both with Amdahls Law (mod. after [29])

Table 1: System Configuration

Component Configuration Power Power

Consump- Consump-

tion [W] tion [W]

(High Load) (Idle)

System Intel Atom 270 15 10

2GB-DDR2-Memory

Linux OS

Graphics Nvidia 8400 GS 10 4

Card 512MB-DDR-Memory

power consumption of the GPGPU-equipped graphics card (including GPU,
memory, busses) was measured by inserting two probes between the supply
lines (12V and 3.3V) of the PCI Express bus. The system power consumption
(without the GPGPU-equipped graphics card) was measured at the main power
supply of the system. In our case there is only one 19V supply line. For the mea-
surements a 0.1Ω resistor is embedded into the 12V and 19V supply lines and
a 0.01Ω resistor into the 3.3V supply line. The voltage drop at these resistors
with is proportional to current was then measured by an oscilloscope. From
these current values, power values Psys,Pgpu were calculated. The energy con-
sumption Esys over the runtime of a benchmark Truntime was then approximated
(using a Riemann sum) for the system (without the GPGPU-equipped graphics
card) by

Esys = ∑
t∈[0,Truntime]

Psys(t)
fs

(1)

4.1 profiling gpgpu applications 9

and energy consumption Esys+gpu was approximated for the system plus a
GPGPU-equipped graphics card by

Esys+gpu= ∑
t∈[0,Truntime]

Psys(t)
fs

+

∑
t∈[0,Truntime]

Pgpu(t)
fs

, (2)

in which fs is the sampling frequency [s−1] of the measurements, P is a power
measured in Watt [W], E is the energy in Joule [J] and Psys does not include the
power consumption of the GPGPU-equipped graphics card.

Benchmarks

The benchmark suite that was used in this paper consists of four benchmarks
that were all written with Nvidias CUDA SDK for GPGPU execution and
with C/C++ for the CPU execution. The benchmarks were optimized towards
their runtime environment (CPU or GPGPU) and were chosen from scientific
projects, standard libraries and from the CUDA examples as follows:

• Fast Fourier Transform:

– Description: This is the well-known runtime-efficient version of the
Fourier transform which is often used to analyze signals and im-
ages.

– GPU version: cufft [17]

– CPU version: fftw3 [9]

• Matrix Multiplication

– Description: Multiplication of 3 large matrices.

– GPU version: cublas [17]

– CPU version: goto2 [24]

• Range-Doppler Algorithm

– Description: Creation of images from radar data with the Range-
Doppler algorithm.

– GPU version: gpu-vsipl [10]

– CPU version: vsipl [10]

• Air Pollution Simulation

– Description: Simulating the air pollution with the help of a stochas-
tic Lagrangian particle model

– GPU version: CUDA implementation [15]

– CPU version: C++ implementation [15].

10 energy reduction for gpgpu-accelerated applications

The chosen benchmarks take computationally intensive applications and data
intensive applications into account. The runtime of the benchmarks was mea-
sured for a parallel GPU implementation and for a CPU implementation. The
GPU measurements for a benchmark include the initialization process of the
GPU, the transfer and allocation of data from/to/on the graphics card and the
runtime of the kernels itself. The communication costs were often neglected
in the literature but this is dangerous especially when large data sets must be
transferred to the graphics card memory.

4.2 profit analysis

The central point of this paper is the question whether integrating a GPU for
general purpose applications is beneficial from the energy point of view. Imag-
ine a typical application for data processing, where there are sequential parts
and parts which can be parallelized. The parallelizable parts can potentially be
executed on a GPU. If these parts are executed in parallel on a GPU, the overall
application runtime is shortened. But is this also profitable for energy optimiza-
tion? With energy constraints in mind, it is beneficial to integrate a GPGPU-
equipped graphics card into a system if the acceleration is large enough to
compensate the power overhead created by the graphics card.

A more analytical view on the problem can start with Amdahls Law [2]:

Speedup =
1

(1− f) + f
n

. (3)

Amdahl separates the application in parts (represented by application fraction
f) which can be computed in parallel and parts that must be computed sequen-
tially (represented by application fraction (1− f)) as depicted in Figure 3a. The
acceleration is then expressed by f

n if the parallel part can be independently
computed on the n processors. Amdahls Law is used to estimate the perfor-
mance speedup that can be achieved by parallelizing an application and run-
ning it on a parallel processor like a multi core architecture or a SIMD machine.
This theoretical bound for speeding up an application is restricted in reality by
many more factors such as communication costs, memory access patterns, the
processing power of the multiprocessors, as evaluated later in Section 4.2.1. In
Figure 3a it can be observed that the higher the fraction of parallel parts (Y-
Axis) is, the better the speedup (Z-Axis) scales with the number of processors
(X-Axis). Amdahls Law was created with having the performance speedup in
mind but it was shown that Amdahls Law applies for energy consumption of
multi-processors as well. The authors of [29] established a formula for describ-
ing the relative speedup per Watt based on Amdahls Law:

Speedup
Watt

=
1

(1− f) (1 + (n− 1)wckc) + f
sc

(
k

n−1 + wc

) . (4)

Equation (4) describes a multi processor system comprising one powerful full-
blown processor and n− 1 small efficient cores with a realtive processing per-
formance sc compared to the main processor. The small efficient cores have a

4.2 profit analysis 11

8

10

12

14

16

18

20

22

24

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

seconds [s]

w
at

t [
W

]
CPU Execution
GPU execution

(a)

8

10

12

14

16

18

20

22

24

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120

seconds [s]

w
at

t [
W

]

CPU Execution
GPU execution

(b)

Figure 4: Power Consumption of (a) Matrix Multiplication and (b) AirPollution

benchmark

8

10

12

14

16

18

20

22

24

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

seconds [s]

w
at

t [
W

]

CPU Execution
GPU execution

(a)

8

10

12

14

16

18

20

22

24

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134

seconds [s]

w
at

t [
W

]
CPU Execution
GPU execution

(b)

Figure 5: Power Consumption of (a) FFT and (b) Range-Doppler-Algorithm benchmark

relative power consumption of wc for one core and one small efficient core con-
sumes the fraction kc over all small efficient cores. This is basically the principle
of a system containing a main CPU and a GPU. From Figure 3b, one can see
that in order to maximize the energy profit the application must be highly par-
allel (parallel fraction above 0.5).
A comparison of equation (3) to the real world measurements will be analyzed
in Section 4.2.1 but obviously, only an average (or worst case) power consump-
tion is the basis of the equation. Otherwise different power consumptions must
be taken in account for different points in time.

Table 2: Speedup

Benchmark CPU GPU Speed

Runtime [s] Runtime [s] up

Matrix Multiplication 22.46 13.66 1.6

Air Pollution 117.32 0.89 132

FFT 50.64 0.74 68

Range-Doppler-Algorithm 129.43 4.67 28

12 energy reduction for gpgpu-accelerated applications

4.2.1 Evaluation Results

Figures 4 and 5 depict the power consumption of the system. The solid lines
show the power consumption of the system without the GPGPU-equipped
graphics card whereas the dashed lines represent a system equipped with an
additional graphics card. It can be seen from Figures 4 and 5 that the idle power
consumption of the system is 10 Watt without the GPGPU-equipped graphics
card and over 14 Watt with the graphics card included. The benchmarks can
be identified in these figures by the increased power consumption for a certain
amount of time. Another observation on Figures 4 and 5 is that the power con-
sumption is nearly doubled which means that even with the shortened runtime
an graphics card integration can be profitable only under certain circumstances
as shown in Section 4.2.2. But due to the enormous runtime difference between
the execution of the benchmarks on the GPU and on the CPU, it can be ex-
pected that GPU executions need less energy.

It can be observed from Figures 4 and 5 that the runtime is shortened for each
of the benchmarks. The speedup factors are between 1.6 and 131 as one can
tell from Table 2 and they are comparable to the results reported by the au-
thors [17, 10, 15]. The speedup factors from Table 2 indicate that Amdahls Law
provides no optimal prediction for GPGPU-accelerated applications. From the
Nvidia Visual Profiler [17] we can derive that 3 percent of the Range-Doppler

Algorithm benchmark can not be executed in parallel (2%: gpu idle, 0.5% trans-
fer time from and to the graphics card memory, 0.5% application initialization).
Since we have 8 stream processors in this GPU the calculated speedup factor
would be:

1
(1− 0.97) + 0.97

8
= 6.61. (5)

The measurements showed that the speedup factor is much higher, because the
runtime reduction is influenced by factors such as memory access patterns or
the processing power of the multiprocessors compared to the CPU.

4.2.2 Decision for Integration

The results clearly show that additional graphics cards for GPGPU computing
should be integrated into an embedded system for speeding up the execution
of applications. Based on the benchmarks, equation 6 is proposed in order
to support an embedded system designer to decide whether it is profitable to
integrate an additional graphics card for GPGPU computing into an embedded
system:

4.2 profit analysis 13

∑
t∈[0,Tapp]

Pcpu(t)
fs

> ∑
t∈[0,Tcpu]

Pcpu(t)
fs

+ (6)

∑
t∈[0,Tgpu]

Pgpu(t)
fs

+

∑
t∈[0,Tcom]

Pcom(t)
fs

+

∑
t∈[0,Tidle]

Pidle(t)
fs

.

Equation 6 checks if the energy consumption of a CPU execution is higher
than the energy consumption of the same application when a GPU is employed
to accelerate the application. The inequation therefore comprises the following
parts:

• Tapp: Complete benchmark runtime

• Tcpu: Runtime on CPU

• Tgpu: Runtime on GPU

• Tcom: Runtime for communication time between embedded system and
graphics card

• Tidle: Time until the next invocation of parallel application part

• Pcpu(t): Power consumption for running code at point of time t

• Pgpu(t): Power consumption for running application code on GPU at
point of time t

• Pidle(t): Idle power consumption (system + graphics card) at point of time
t

• Pcom(t): Power consumption for communication between system and the
graphics at point of time t.

• fs: Sampling frequency of the multimeter or oscilloscope.

In order to introduce equation 6 in more detail, we take a closer look to
the Range-Doppler Algorithm benchmark for which the following values for
inequation (6) apply:

• Tapp: 129.43 seconds

• Tcpu: 4.67 seconds

• Tgpu: 4.4832 seconds

• Tcom: 0.02335 seconds

• Tidle: 0.02335 seconds + λ seconds,

14 energy reduction for gpgpu-accelerated applications

Table 3: Benchmark Energy Consumption

Benchmark Esys[J] Esys+gpu[J]

Matrix Multiplication 344 209

Air Pollution Simulation 1394 20

FFT 655 16

Range-Doppler-Algorithm 1833 108

in which λ is a variable parameter.
The power values for a particular moment, measured in Watt [W], can be

derived from Figure 5b and the energy values, measured in Joule [J], for the
following inequation

1833 > 108 + ∑
t∈[0,Tidle]

Pidle(t)
fs

(7)

from Table 3. The energy values in Table 3 are based on the runtime of a
benchmark on the different platforms (CPU/GPU). The idle time have to be
considered separately. Equation 7 is true as long as ∑t∈[0,Tidle]

Pidle(t)
fs

is below
1724 Joule. If the GPU idle time (including λ) is too long and the idle power
consumption of a system with a GPGPU-equipped graphics card is too high
a reduction of the energy consumption can only be achieved if the idle power
consumption is also reduced. One possibility to manage this, the techniques
described in section 2.2 such as shutting down the graphics card or setting it to
a lower power/frequency mode can easily be used.

5C O N C L U S I O N

This paper showed that integrating a GPGPU-equipped graphics card into an
embedded system can be profitable in order to reduce the energy consump-
tion of the complete system. Several real world benchmarks where evaluated
in terms of energy and the results showed speedups from 1.6 to 132 and a
reduction of the energy consumption of up to 83 percent.

Based on the tests conducted and on many other CUDA examples, the fol-
lowing theses have been proposed for reducing the energy consumption of an
embedded system by integrating an additional graphics card:

1. The higher the idle time of the GPU is, the less the integration of a graph-
ics card for GPGPU computations into the system is useful in terms of
energy.

2. The communication overhead from the system memory to the graphics
card memory is more important than discussed in literature.

3. Techniques for saving power on a GPU can enable the integration of this
GPU for reducing the energy consumption of the total system.

The last thesis is especially important if a large amount of data such as images
have to be transferred to the graphics card memory.

Overall, the integration of an additional GPGPU-capable graphics cards/pro-
cessor into a system is a low-cost way of integrating high-performance comput-
ing resources and a promise way of saving energy by accelerating applications,
in particular data parallel applications. Based on the tests conducted, on the
computing components described above, future work will include the creation
of more fine-grained resource models for GPGPU-capable embedded systems
such as the Texas Instrument OMAP4 platform [25] or the Nvidia Tegra II plat-
form [18]. These systems are small embedded systems which support OpenCL
computations and they are tailored for the mobile market. From the results of
this paper it can be concluded that an energy consumption reduction will also
be achievable on these small embedded systems with the help of GPGPU com-
puting. Moreover, optimizations of the energy consumption by using different
power reduction techniques such as DVFS or DPM will be applied on these
systems. These techniques will make the GPGPU computing more interesting
in terms of energy consumption for a broader field of applications.

15

16 conclusion

acknowledgment

The authors would like to thank Dr. Da-Qi Ren (Department of Computer Sci-
ence, University of Tokyo), Dr. Michael Engel, Matthias Meier (both: Embedded
System Software Group, TU Dortmund) and Sascha Plazar (Design Automation
of Embedded Systems Group, TU Dortmund) for giving advice on the power
measurements at the PCI Express bus.

B I B L I O G R A P H Y

[1] AMD Corporation. ATI Stream SDK, 2010. (Cited on page 1.)

[2] G.M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the 1967 Spring Joint Com-
puter Conference (AFIPS), pages 483–485, 1967. (Cited on page 10.)

[3] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization algo-
rithms: from parallelism extraction to code generation. Parallel Computing,
24(3-4):421–444, 1998. (Cited on page 1.)

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan. Brook for GPUs: stream computing on graphics hardware. In
Proceedings of the 2004 SIGGRAPH, pages 777–786, 2004. (Cited on page 1.)

[5] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine
training and classification on graphics processors. In ICML ’08: Proceed-
ings of the 25th international conference on Machine learning, 2008. (Cited on
page 1.)

[6] S. Cho and R. Melhem. Corollaries to amdahl’s law for energy. IEEE
Computer Architecture Letters, 7(1):25–28, 2008. (Cited on page 5.)

[7] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer
Architecture - A Hardware/Software Approach. Morgan Kaufmann Publishers,
San Francisco, California, 1999. (Cited on page 3.)

[8] J.-P. Farrugia, P. Horain, E. Guehenneux, and Y. Allusse. GPUCV: A frame-
work for image processing acceleration with graphics processors. In IEEE
International Conference on Multimedia & Expo, 2006. (Cited on page 1.)

[9] Frigo, M. and Johnson, S.G. FFTW3, 2010. (Cited on page 9.)

[10] Georgia Tech Research. Vector Signal Image Processing Library, 2010.
(Cited on pages 9 and 12.)

[11] IBM Coporation. Product Description of the IBM CELL Broadband Engine,
2010. (Cited on page 5.)

[12] Intel Coporation. Product Description of the Westmere Product Line, 2010.
(Cited on page 5.)

[13] Khronos Group. OpenCL Specification, 2010. (Cited on page 1.)

[14] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Statistical Power
Consumption Analysis and Modeling for GPU-based Computing. In Pro-
ceedings of the 2009 Workshop on Power Aware Computing and Systems (Hot-
Power), 2009. (Cited on page 7.)

17

18 Bibliography

[15] F. Molnár Jr., T. Szakály, R. Mészáros, and I. Lagzi. Air pollution mod-
elling using a Graphics Processing Unit with CUDA. Computer Physics
Communications, 181(1):105 – 112, 2010. (Cited on pages 9 and 12.)

[16] Hubert Nguyen, editor. GPU Gems 2. Addison-Wesley, 2007. (Cited on
page 1.)

[17] Nvidia Corporation. Collection of CUDA Applications and SDK. (Cited
on pages 1, 5, 9, and 12.)

[18] Nvidia Corporation. Next Generation NVIDIA Tegra. (Cited on page 15.)

[19] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn,
and T. Purcell. A Survey of General-Purpose Computation on Graphics
Hardware. Computer Graphics Forum, 26(1):80–113, 2007. (Cited on page 1.)

[20] D. Ren and R. Suda. Power Efficient Large Matrices Multiplication by
Load Scheduling on Multi-core and GPU Platform with CUDA. Proceed-
ings of the 2009 IEEE International Conference on Computational Science and
Engineering, 1:424–429, 2009. (Cited on page 5.)

[21] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh.
Energy-Aware High Performance Computing with Graphic Processing
Units. In Proceedings of the 2008 Workshop on Power Aware Computing and
Systems (HotPower), 2008. (Cited on page 5.)

[22] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An Accurate
and Fine Grain Instruction-Level Energy Model Supporting Software Op-
timizations. In Proceedings of the 2001 International Workshop on Power And
Timing Modeling, Optimization and Simulation, 2001. (Cited on page 7.)

[23] H. Takizawa, K. Sato, and H. Kobayashi. SPRAT: Runtime processor se-
lection for energy-aware computing. In Proceedings of the 2008 IEEE Inter-
national Conference on Cluster Computing, pages 386–393, 2008. (Cited on
page 5.)

[24] Texas Advanced Computing Center. BLAS, 2010. (Cited on page 9.)

[25] Texas Instruments. OMAP 4 Platform. (Cited on page 15.)

[26] W. Thies, M.I. Gordon, M. Karczmarek, J. Lin, D. Maze, R.M. Rabbah, and
S. Amarasinghe. Language and Compiler Design for Streaming Appli-
cations. IEEE International Parallel and Distributed Processing Symposium,
11(2):261 – 278, 2004. (Cited on page 1.)

[27] P. Trancoso and Ma. Charalambous. Exploring Graphics Processor Perfor-
mance for General Purpose Applications. In Proceedings of the 8th Euromicro
Conference on Digital System Design (DSD), Washington, USA, 2005. IEEE
Computer Society. (Cited on page 5.)

[28] M. Verma, L. Wehmeyer, and P. Marwedel. Efficient Scratchpad Allocation
Algorithms for Energy Constrained Embedded Systems. In Proceedings of
the 3th International Workshop on Power-Aware Computer Systems, pages 41–
56, San Diego, USA, 2003. (Cited on page 7.)

Bibliography 19

[29] D.H. Woo and H.-H.S. Lee. Extending Amdahl’s Law for Energy-Efficient
Computing in the Many-Core Era. IEEE Computer, 41(12):24–31, 2008.
(Cited on pages 5, 8, and 10.)

	Abstract
	Contents
	1 Introduction
	2 GPGPU Programming and Energy Saving on GPUs
	2.1 GPGPU Programming
	2.2 Energy Saving on GPUs

	3 Related Work
	4 Energy Reduction for GPGPU-accelerated Applications
	4.1 Profiling GPGPU Applications
	4.2 Profit Analysis
	4.2.1 Evaluation Results
	4.2.2 Decision for Integration

	5 Conclusion

