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ABSTRACT

In this paper we suggest a novel technique for surface plasmon resonance as-
sisted detection of viruses and nanoparticles which can be applied for rapid
analysis of large data volumes. The future availability of such an efficient de-
tection method for viruses is evident in terms of globally spreading virus in-
fections. The technique is based on the segmentation of slices, aimed at an au-
tomatic identification of nanoparticles, in which detection is based on position-
stationary spatiotemporal data using a one dimensional signal-analysis and
-classification approach. As data source a CCD camera taking a sequence of
snapshots from a surface plasmon assisted microscopy is used. A one dimen-
sional intensity analysis approach is applied for segmentation by classifying
time dependent 1D gray level profiles and combining them into spatial 2D seg-
ments.
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INTRODUCTION

The realization of small and portable biosensors becomes increasingly important
in the context of medical-biological problems [5]. Particularly in consideration
of an increasing demand for epidemic infection control, the availability of an
efficient and reliable method for virus detection is evident [15].

One of the most important imaging techniques, which requires rapid data

evaluation, is optical microscopy. Optical microscopy is known since the end of
the XVI* century and is still one of the main tools in medicine, physics and
biology. Since then many modifications and improvements of optical microsco-
py have been suggested, e.g. dark field microscopy, phase contrast microscopy,
confocal microscopy and surface plasmon microscopy (SPR-microscopy). SPR-
microscopy, first suggested in [19], has found plenty of applications, see e.g.
[13, 24, 18, 7, 11, 21]. The method is based on detection of light reflected from
a thin metal film (the sensor), in which a surface plasmon wave is excited. It is
well known that the lateral resolution of this method is about 20 um, which is
determined by the plasmon propagation length. Therefore the method is usual-
ly applied to examining the lateral structures of 100 ym and more [20, 2].
A significant improvement is given by the novel PAMONO technique (Plasmon
assisted Microscopy of Nano-Size Objects). The PAMONO technique allows the
detection of nanosized objects such as dielectric particles down to several tens
of nanometers or viruses as it was recently demonstrated by the authors [27]. It
furthermore provides the opportunity to detect selectively particles of interest
and by this it offers a significant extension of application areas of SPR microsco-
py- A more detailed description of these facts is given in section 2. However, the
new technique requires corresponding new efficient identification algorithms
and system for processing the data.

This requires in addition a specialized microsystem capable of managing the
large amount of data and an image acquisition which is capable of detecting
nanoparticles characterized by low signal amplitudes on a noisy background,
i.e. by low signal to noise ratio (SNR). The volume of the data depends on the
bit rate of the CCD chips” ADC [16], the number of processed pixel and the
frame rate. These parameters are crucial for the detection power of the sensor:
Higher bit rates result in better sensitivity of the detection; a large number of
processed pixel allows increasing the studied area and the SNR; high frame
rates allow observation of rapid processes and increasing the SNR by means of
averaging [4].

The structure of the signal processing pipeline, which is described in the
following sections, enables the processing system to work on the data massi-
vely in parallel and thus a system of several independently working proces-
sing pipeline steps was designed. A portable system has strong constraints for
designing the system, e.g. weight and energy efficiency. "Field programmable
gate arrays"(FPGA) are reconfigurable hardware devices increasingly used in
embedded systems to create energy and performance optimized designs wi-
thout the high cost implied by custom hardware designs (e.g. [14]). Recent



FPGAs include special functional blocks for improved digital signal processing
(DSP) capabilities which are useful to create hardware-accelerated functional
blocks, e.g. for efficiently implementing signal processing transformations like
S-Transforms or DCTs [17].

The paper is organized as follows: Section 2 introduces the experimental
setup, section 3 presents the concept of an automatic identification of nanopar-
ticles and section 4 shows the architecture of an embedded signal processing
system. Following, section 5 shows exemplary results that are obtainable using
the presented analysis and section 6 concludes with some remarks on the cur-
rent state and the further development.



PAMONO TECHNIQUE

The PAMONO technique setup which is based on the SPR microscopy (Kretsch-
mann configuration [12]) in imaging mode [19] is used for the experiments (see
Figure 2.1). A superluminescsent diode QSDM-680-9 (QPhotonics) with the wa-
velength A=670nm power 10mW, linewidth 10nm is applied to excite surface
plasmon resonance (SPR) in a 5onm thick gold layer (the sensor) deposited on
a glass prism. The gold detecting layer is illuminated through the prism at a
fixed incidence angle of approximately 60” chosen to maximize the sensitivity
of the method [26]. The reflected light is projected onto the 12-Bit Kappa DX
40 - 1020 FW CCD camera by means of Minolta photo objective f=50 mm with
1000x 1000 pixel of 7.4x7.4 ym and full-well pixel capacity of 42000 electrons
was used. An area of 0.2 square millimeters can be recorded with the frame rate
of approximately 50 fps (frames per second). The nanoparticles or viruses are
injected in the flow of distilled water or in PBS buffer (Phosphate Buffered Sali-
ne), which is pumped through the microfluidic flow cell contacting the detector
by means of a peristaltic pump with the flow rate of 300 yL/min. The volume
of the microfluidic cell used in our experiments is approximately 300 uL. A
particle being in the vicinity of the surface is bound to the gold layer coated by
corresponding selective receptors.

Biotinilated monoclonal antibodies 2G12 were immobilized on the gold surface
which was already covered with a streptavidin monolayer. The reflection from
the gold surface increases locally, resulting in a bright spot appearing on the
monitor, see Figure 2.2. Though the technique is based on the conventional SPR
microscopy it enhance the technique by a few significant facts.

The conventional SPR microscopy is able to detect variations of effective lay-
er thickness in picometer range which provides very high analytical sensitivity.
However this method suits well for measurements, in which the analyst crea-
tes a layer of definite thickness on the sensor surface. Detection and counting
of individual analytical agents is supposed to be impossible. Recently it was
demonstrated that slightly modified SPR microscopy provides a possibility to

flow cell

(a) PAMONO-Sensor (b) schematic setup

Abbildung 2.1: Experimental setup of the PAMONO-Sensor: (a) photo of the
setup and (b) schematic illustration.
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Abbildung 2.2: Five consecutive snapshots (a)-(e) of 80 nm polystyrene nano-
particles emerging on the detector surface and (f) a magnified
nanoobject. The background is removed and the snapshots are
averaged over 50 frames in order to make the particles visible.

detect immediately binding of individual nano-size particles on the sensor sur-
face. The novel PAMONO technique exploits a phenomenon of local reflectivity
increasing caused by a particle attached to the gold layer. Polystyrene spheres
of gonm in diameter were detected with the signal/noise ratio of ~5. Since the
size-signal dependence is approximately linear, particles down to 10nm can be
detected provided that the dependence remains unchanged for particles below
g4onm. This offers a significant extension of application areas of SPR microsco-
124

The detection of nano-size particles is possible due to excitation of concentric
plasmon waves by interaction of a particle with the evanescent field near to the
gold layer. As a result a local increase in the reflection is caused by a parti-
cle bound to the detector surface These concentric waves were observed and
investigated by means of near field microscopy in [25, 9]. The far field radia-
tion caused by such plasmons is obviously responsible for the bright spot on
the image. Any bound particle manifests itself as a bright spot on the surface
image so that the number of bound particles can be counted (see Figure 2.2).
This number can be taken for characterization of the particle concentration in
a liquid sample instead of the averaged layer thickness taken by conventional
SPR microscopy. However a quantitative theory of the far field radiation is still
not available.

The PAMONO technique provides the opportunity to detect selectively par-
ticles of interest. For example coating the sensor surface with antibodies to a
definite virus provides selective detection of only this type of viruses. Unli-
ke the electron microscopy the method does not require vacuum: The studied
object may be surrounded by gas, liquid or vacuum. Therefore the object of
interest can be studied at the natural environment and the binding process can
be monitored live. Unlike any other method, the nanoparticles can be simply
counted similar as microobjects are counted by conventional microscopy.
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Abbildung 2.3: Schematic representation of the experimental setup for nano-
particle detection: (a) Image sequence and (b) Comparison of
the temporal intensity variation at two exemplary image positi-
ons: a virus adhering to the detector surface results in an erratic
increase.






IMAGE PROCESSING

Figure 2.3 shows the concept of automatic nanoparticle detection, which is ba-
sed on the analysis of the image sequence (figure 2.3(a)) regarding characteristic
temporal and spatial intensity variations.

In effect, the main criteria for the identification of a nanoparticle or virus are:

e A particle bound to the sensor results in a bright spot (compared to its
local neighborhood).

e The spot appears after the particles are injected into the cell and bound
on the gold layer. There are diverse spots present from the beginning,
which are referred to the background.

e The spot does not move after the binding. The intensity of the spot mea-
sured as a function of time looks like a step of a certain height, see Figu-
re 2.3(b).

o The height of the step (see Figure 2.3(b)) or the intensity of the spot
should correspond to the average intensity, which is determined in preli-
minary experiments with calibrated particles of interest.

Regarding these characteristics, the proposed automatic particle identifica-
tion considers the evolution of pixel intensities in time by means of a signal
analysis pipeline. Beforehand, some image preparation needs to be done to
render the immanent particles distinguishable from the background at all, as
described in section 3.1. The subsequent particle identification is divided into
two steps, namely the identification of all pixel that contribute to particles (sec-
tion 3.2) and the aggregation of these pixel into segments that represent distinct
particles (section 3.3).

3.1 BACKGROUND CORRECTION AND FILTERING

At first the background is removed in order to separate relevant intensity pat-
terns from irrelevant variations caused by experimental setting properties. Sim-
plistically assuming a stationary background allows a constant reference image
to be used for background removal, which is constructed by averaging the first
B images (e.g. B=20). In order to eliminate broad intensity fluctuations stem-
ming from a background which actually is nonstationary, the intensity average
and variance of each image is standardized to decrease misclassifications cau-
sed by systematical intensity peaks. An appropriate average and variance value
is determined by pretesting a small sample of images. Based on these prelimi-
nary inquiries average and variance are set to 30000 and 3000, respectively, to
approximately cover the full range of 16bit images®.

An alternative approach models the background nonstationary by updating
suitable intensity statistics of each background pixel at each new frame of the

1 although the camera’s bit rate is 12, processing is performed using 16bit images



(a) Raw image (b) Constant background re- (c) Sliding background remo-
moved ved

Abbildung 3.1: Comparison of different approaches for background removal

dataset. This in turn allows for a compensation of systematical temporal inten-
sity variations and slowly emerging obstacles. The term obstacles shall denote
all sources of temporal intensity variations that are not caused by the binding
of a relevant particle to the detector surface. By limiting the updated back-
ground intensity statistics to an intensity average, a sliding background image
is applied, which is computed by averaging B images foregoing the currently
analyzed image with a predefined temporal offset. Via caching the B foregoing
images in main memory, the run-time is insignificantly slower than the con-
stant background case.

Figure 3.1 shows a cutout of the raw image along with its background correc-
ted versions using a constant and a sliding background. Note the invisibility
of resulting spots in the raw image. Figure 3.2 shows intensity curves at ex-
emplary particle positions with a constant and sliding background removal in
comparison. As can be seen, sharper peaks are obtainable via a nonstationary
background correction, but the characteristic intensity step drops off after the
emergence of a particle, due to its incorporation into the sliding background.
This fact complicates the distinction between flashing obstacles and relevant
particles.

An important observation is that particles exhibit not only a temporal but
also a spatial extent, resulting in a number of neighboring pixel showing similar
intensity curves. This characteristic collective intensity variation is crucial in the
separation of relevant variations from image noise and is exploited by means of
a median filter applied to each background corrected image, which eliminates
temporal variations with too little spatial extent. A more advanced exploitation
of the collective intensity variation is part of current work and discussed in
section 6.

3.2 IDENTIFICATION OF PARTICLE PIXEL

After background correction, normalization and filtering, the dataset is seg-
mented in a region growing manner by classifying each pixel independently
using its time dependent intensity variation. In order to avoid an exhaustive si-
gnal analysis at every single pixel, particle candidate pixel (pcp) are identified
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Abbildung 3.2: Temporal intensity curves at 7 particle positions using constant
and sliding background

beforehand, which are characterized by an intensity that exceeds some prede-
fined threshold at any point in time. Only these pcp’s are regarded as potential
particle positions by further analysis and classification, since the maximum in-
tensity of non-pcp’s is too low at all to represent the binding of a particle to the
detector surface at any point in time.

The resulting pcp’s can now be divided into relevant particle positions and ir-
relevant obstacles by means of a signal analysis approach.

In order to enable classification, discriminative features need to be construc-
ted that are able to distinguish the underlying image content. As described
above, simple intensity properties can be used to reduce the search space via
generation of particle candidate pixel that need further analysis and direct re-
jection of non-candidate pixel. The usage of a weak yet fast extracted feature
to identify candidates is crucial to allow application of stronger yet computa-
tionally expensive features for final classification due to the small fraction of
particle pixel.

Particle candidates may be classified using features generated from a broad
range of analytical, spectral or statistical signal analysis approaches. The pre-
sented approach exemplarily uses a weighted combination of running differen-
ces with temporal averaging window, as well as coefficients of a time-frequency
representation named S-Transform. The latter is computed by [23, 22]:

&£ T f(t) for k=0
(1)

N-1 _anmz ‘ym
F(m+k)-e # -e27xb for k=1,...,N—1

with f(t) a discrete signal of length N and F(k) its Fourier transform, t; €
{0,...,N—1} and k € {0,...,[N/2]}. Comparable to a windowed Fourier
transform, the S-Transform computes correlations of the discrete function f(t)
and translated and frequency-modulated Gaussian windows, with translation
and modulation being indexed by parameters fy and k. Figure 3.3 shows the
magnitudes of the S-Transform representations of the two intensity curves of
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Abbildung 3.3: Magnitudes of Time-frequency representations of the to inten-
sity curves of Figure 2.3(a) in comparison.

figure 2.3(a) computed by equation 1. The abscissa shows the temporal transla-
tion ¢ of the analysis window and the ordinate its corresponding frequency vy
in units of Hz, which is given by vy = k/ (NAT), with AT = 1/40s. As can be
seen, the presence of intensity variations of particular duration results in peaks
or ridges at corresponding locations in the time-frequency domain. The region
of high magnitudes on the left of both images results from an inhomogeneous
oscillatory illumination at the beginning of the record, which the normalization
was not able to compensate. In fact, the maximum magnitude of the particle
case is significantly higher than that of the non-particle case.

The extracted particle candidates are accepted as particles or rejected as
particle-free position based on their similarity to the corresponding class pro-
totype using the spectral and analytical features as described above.

3.3 PARTICLE AGGREGATION

As stated above, particles exhibit a characteristic temporal as well as spatial
extent. This fact was exploited during image filtering to eliminate particle-like
intensity variations with a spatial extent being too small to be considered par-
ticles. The second utilization of the spatial extent consists of an aggregation
of neighboring particle pixel into a single particle segment, and a subsequent
filtering of resulting segments using features of shape. Therefore, neighboring
particle pixel are aggregated by means of a single closed polygon. As mentio-
ned above, due to the characteristic spatial extent of relevant particles, a conclu-
ding selection rejects irrelevant obstacles with particle-like temporal intensity
variations based on the following two features of shape [10]:
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in which 7 is the number of polygon nodes, (x;,y;) the coordinates of the i-
th node and P the polygon perimeter. The choice of the features of shape is
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motivated by the fact that irrelevant obstacles which persist the particle pixel
identification, result in segments that are either too big or unshaped to repre-
sent a bound particle. The shape-based filtering of segments then allows the
rejection of these segments despite their particle-like temporal intensity curves.

Since real applications of the presented approach have demands of time-
critical and energy-efficient execution, the next section treats its implementation
in specialized hardware.
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EMBEDDED SIGNAL PROCESSING SYSTEM

Section 5 will show the applicability of the introduced particle identification
pipeline in terms of accurate particle detection. But for mass screening it is
important to realize small and portable biosensors. This coincides with micro-
systems which combines Smart Cameras with FPGAs as an integrated signal
processing system. The overall design of such a microsystem is depicted in Fi-
gure 4.1. The images provided by the CCD camera are transferred via a high
speed bus to the microsystem [16], where they are stored in the main memo-
ry for further processing. The results of the signal processing pipeline can be
transferred from main memory to a hard disk or/and to a display. The signal is
processed in several independently and concurrently working pipelines which
utilize the main memory for data communication between the pipeline steps.

The different signal processing pipeline elements are mapped to the pipeline
as depicted in Figure 4.1. The first element of the pipeline implements the
background correction, the second one the denoising and the last element of
the pipeline handles the signal analysis. As can be seen several concurrently
working cores of one pipeline step can process the image data highly in parallel
by using different parts of the images.

The microsystem main processing unit is an FPGA which is flexible and
suited for sequenced signal processing tasks. Since FPGAs allow for imple-
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Abbildung 4.1: Pipeline on reconfigurable hardware (FPGA)
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mentation of arbitrary logic functions, signal processing tasks can be divided
into performance-critical tasks implemented in dedicated hardware units and
administrative tasks implemented in software on a CPU created on the FPGA.
The microsystem approach uses LavA [1], a system to simultaneously configure
a multi-core/many-core processing system and the required system software
components to support the image processing application. In order to relieve
the application developer from the burden of hardware design, a high-level
feature model describing the required functionality (e.g., CPUs, signal proces-
sing hardware units, memory, synchronization elements) is used as an input to
the configuration process. The result of this configuration process is a VHDL
hardware description directly usable to configure an FPGA and a set of soft-
ware libraries to support the application, e.g., by implementing synchronizati-
on and communication primitives. If sufficient space is available on the FPGA,
this approach also permits the implementation of multiple pipelines operating
on different parts of one image or different images in parallel in order to speed
up processing.

Using the LavA configuration approach, the system designer is enabled to
shift functionality from hardware to software and vice versa. This makes it easy
to optimize the performance of the system for a given application considering
FPGA space and cost constraints typical in embedded systems. In addition,
relying on a high-level specification allows for rapid adaptation of the system
to FPGA technologies from different vendors.

14



RESULTS

The particle identification was evaluated on four types of datasets using spe-
cimen of predefined composition, whereof two sets used virus-like-particles
(VLP) of different origin and the other two used synthetic particles of a prede-
fined size of 80nm and 200nm. Particularly the VLP’s are equal to real viruses in
their external structure and size, but they do not contain any genetic material
and, therefore, can be safely used in experiments [8]. The raw data consists of a
total amount of 4704 images, divided into the four types of datasets containing
1081, 868, 2367 and 388 images, as referred to below.

Figure 5.1 shows intermediate results of the three described steps of particle
identification applied to a background corrected cutout and figure 5.2 shows
exemplary final results of the particle identification.

A quantitative evaluation of segmentation results is complicated, in that a pixel-
or area-based error measure is useless due to diffuse borders between parti-
cles and the background - only the similarity to an arbitrary out of a huge
set of possible reference segmentations would be measured (cf. Figure 5.2(a)).
Therefore, only intersections of extracted and manually defined reference po-
lygons are used for quantitative evaluation of identification results: intersec-
tions of extracted and reference polygons are counted as true-positives (tp),
non-intersected extracted polygons as false-positives (fp) and non-intersected
reference polygons as false-negatives (fn) [6]. True-negatives can not be unam-
biguously defined this way, because they would be based on polygons that are
not extracted and not intersected. Therefore the measures precision and recall
are used to evaluate results.

The manually defined reference polygons are constructed beforehand by a hu-
man expert observer, who outlines all relevant particles in a dataset to the best
of his knowledge.

An exemplary segmentation result for a VLP-dataset is shown in Figure 5.2(b).
A quantitative evaluation yields a recall (tp-rate) of 0.85 with 17 tp’s and 3 fn’s
and a precision of 0.61 with 11 fp’s. The second VLP-dataset yields a recall of

(a) Per pixel identification (b) Polygons constructed (c) Final segmentation

Abbildung 5.1: Results of intermediate particle identification steps
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(a) Cutout of segmentation (b) Virus-Like- (c) synthetic
Particles particles (80nm)

Abbildung 5.2: Particle identification result: (a) reference polygons are red and

cumulative frequency of occurrence

extracted polygons green; (b) and (c) circles mark identified
particles and crosses regions with no recognized particle. Green
marks are correct and red incorrect identifications of the pixel
class. Red circles are false alarms, red crosses unrecognized par-
ticles and green crosses correctly rejected candidates.
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Abbildung 5.3: Cumulative frequency of particle pixel as a function of image
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Abbildung 5.4: Evaluation results (precision/recall) of four types of datasets
using specimen of predefined composition, whereof two sets
used virus-like-particles (VLP) of different origin and the other
two used synthetic particles of a predefined size of 80nm and
200nm

0.85 with 29 tp’s and 5 fn’s and a precision of 0.59 with 20 fp’s. Both precisions
point to a yet too high rate of false alarms. An exemplary segmentation cutout
of the alternative evaluation based on synthetic particles of predefined size is
shown in Figure 5.2(c). The 80nm-case yields a recall of 0.77 with 17 tp’s and
5 fn’s and a precision of 0.85 with 3 fp’s, which points to a low rate of false
alarms. The 200nm-case yields a recall of 0.82 with 27 tp’s and 6 fn’s and a
precision of 0.87 with 4 fp’s. In summary, cf. Figure 5.4, the identification of
synthetic particles produced a significantly lower rate of false alarms than the
identification of VLP’s, which is primarily caused by a yet significantly varying
image quality. The recall is comparable in both settings with an insignificant
benefit in the VLP-case.

Examining the source of misses and false alarms, a great potential lies in an
improved background correction, since distracting artifacts are introduced into
the identification process by treating an actually nonstationary background as
stationary. Furthermore, the exploitation of the spatiotemporal extent of rele-
vant particles can be improved by using multivariate signal analysis, since the
univariate temporal intensity variation at a single position is often ambiguous.
Lastly, figure 5.3 shows the cumulative frequency of particle pixel occurrence
as a function of image number for the two synthetic particle datasets. Since the
beginning of record and particle injection have not yet been synchronized, a
temporal lag between the curves is not yet evaluable, but the different slope of
increase of bound particles is easily visible.

The evaluation of the signal processing algorithms is only one part of the
microsystem design. A second part comprises the analysis of important perfor-
mance indicators of the hardware signal processing pipeline. Therefore figures
5.5(a) and 5.5(b) show the impact of different algorithm parameters on the run-
time of the pipeline respectively the stability of the throughput provided by
the microsystem. Figure 5.5(a) details the impact on the runtime by varying the
number of images utilized by pipeline steps "background correctiondand "parti-

17
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Abbildung 5.5: Microsystem Design Results

cle pixel identification". Furthermore different numbers of cores are chosen for
realizing the pipeline which results in the two planes in the plot. The upper
plane illustrates the case if each pipeline step utilizes one core and the lower
plane illustrates if a pipeline step utilizes two cores. In summary one can say
that the pipelines runtime scales with the number of cores which means to get
a higher throughput one have to increase the number of cores. Figure 5.5(b)
depicts a Bland-Altman plot [3] with the deviation of the measured best ca-
se runtimes and worst case runtimes from the average runtimes. As one can
see the average difference of the best case and worst case runtimes is below 4,
which means in our case that best and worst case runtimes differ on average
by two percent.
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DISCUSSION

The paper demonstrates an automated and effective approach to nanoparticle
and virus identification. In view of an increasing demand for epidemic in-
fection control, the availability of an efficient detection method for viruses is
evident. The detection method is based on raw data acquired from the novel
PAMONO technique. Dependent on the experimental setting, a background is
removed by means of either a constant or a sliding background image, which
are initialized using the leading part of the raw data. This step is essential and
benefits from further development, since relevant particles are invisibly and
inseparably hidden in a complex but irrelevant nonstationary scene resulting
from the experimental setting. The subsequent identification of particle pixel
candidates significantly reduces the number of positions to analyze and classi-
fy, since most positions are dominated by temporal intensity variations below
a critical threshold that indicates a possible particle binding. Resulting parti-
cle regions are filtered via features of shape to incorporate prior knowledge
about the spatial extent of particles, like a minimum size of e.g. four pixel. An
objective quantitative evaluation is still complicated due to a difficult and am-
biguous definition of reference segmentations to compare against.

The parallel nature of the image processing and particle identification process
allows implementation on specialized hardware. The approach was validated
on four different types of datasets up to now, and several comments on ongoing
development were given to enhance identification accuracy. The hardware de-
sign enables processing the image series in parallel and is implemented on an
energy efficient and small size FPGA. Furthermore the design is configurable
in a way that future improvements and enhancements of the signal processing
and particle extraction algorithms can easily be implemented on the chip and
tested on real hardware without a great effort. The hardware architecture is
also supposed to work with other optical sensor systems in the future.

Besides algorithmic and architectural improvements, the bounding and ima-
ging processes itself need further investigations: one can see from the images
that a bound nanoparticle appears as a bright spot surrounded by circles of
lower intensities than the background. Such a dark ring resembles a diffraction
pattern of a point-like source but is asymmetric and essentially larger than ex-
pected. The nature of this pattern is a subject of further study, as well as its
utilization in order to increase detection precision.

In summary, the paper shows that the design of a portable biosensor is feasible.
The emergence of FPGAs in Smart Cameras sets the trend for small optical bio-
sensors utilizable for mass screening at airports to curtail the global spreading
in terms of virus infections.
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