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ABSTRACT

Code positioning is a well-known compiler optimization aim-
ing at the improvement of the instruction cache behavior.
A contiguous mapping of code fragments in memory avoids
overlapping of cache sets and thus decreases the number of
cache conflict misses.

‘We present a novel cache-aware code positioning optimiza-
tion driven by worst-case execution time (WCET) informa-
tion. For this purpose, we introduce a formal cache model
based on a conflict graph which is able to capture a broad
class of cache architectures. This cache model is combined
with a formal WCET timing model, resulting in a cache con-
flict graph weighted with WCET data. This conflict graph
is then exploited by heuristics for code positioning of both
basic blocks and entire functions.

Code positioning is able to decrease the accumulated cache
misses for a total of 18 real-life benchmarks by 15.5% on
average for an automotive processor featuring a 2-way set-
associative cache. These cache miss reductions translate
to average WCET reductions by 6.1%. For direct-mapped
caches, even larger savings of 18.8% (cache misses) and 9.0%
(WCET) were achieved.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Compilers; Optimiza-
tion; C.3 [Real-time and embedded systems]; B.3.2
[Memory Structures]: Cache memories; B.3.3 [Memory
Structures|: Worst-case analysis
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1. INTRODUCTION

In contrast to the speed of memories, processor speed has
increased dramatically in the past. To bridge this large gap
between processor and memory speed, memory hierarchies
based on caches are today’s state of the art. Caches have the
advantage of being transparent to the software running on
a system — no code modification has to be performed since
caches are hardware controlled.

In current software design flows, compilers play an im-
portant role since they are able to apply automated opti-
mizations improving the quality of the generated executable
code. Unfortunately, even modern optimizing compilers are
often unable to quantify the effect of an optimization since
they lack precise timing models [11]. Hence, simple ad-hoc
heuristics are applied during optimization in the hope that
they finally improve code quality. But it is well-known that
this is not always true: due to the absence of precise models,
optimizations may have a negative impact on code quality.

This particularly holds for cache-based processors. Since
they are fully hardware-controlled, the latency of a memory
access can vary considerably. If an item to be fetched already
resides in the cache, a cache hit occurs and the memory
access usually takes one clock cycle. Otherwise, a cache
miss happens taking several clock cycles. Compilers that
are unaware of a cache’s behavior and that do not include
a formal cache model eventually generate code with poor
performance due to an increased number of cache misses.

Thus, caches are usually effective in reducing the average-
case execution time (ACET), provided that the compiler
somehow generates code which does not lead to massive
amounts of cache misses.

However, caches are problematic for real-time systems
with hard timing constraints. The correctness of a real-time
system depends on both the logical results and on the time
at which the results are produced. A program’s worst-case
execution time (WCET) is used to guarantee that real-time
constraints are safely met. Since caches are hardware con-
trolled, it is virtually impossible to determine the latency
of a memory access for many popular cache architectures.
However, this is what tools for static WCET analysis of ex-
ecutable code, like e.g. aiT [1], have to do — to classify
each memory access in a program as definite cache hit or
cache miss. Whenever a static WCET analyzer is uncer-
tain about the classification of a memory access, it must
assume the worst case and usually consider the access to



be a cache miss. Thus, WCET estimates computed during
static WCET analysis may be heavily overestimated in the
presence of caches.

It is well-known that caches effectively exploit temporal
locality and spatial locality. The former means that particu-
lar memory locations will be accessed within a short period
of time. The latter refers to the reference of contiguous
memory locations. Particularly with regard to instruction
caches,! it is possible to improve the cache’s performance
and to decrease the WCET overestimation by applying code
positioning during compilation. Code fragments which are
mapped to the same cache lines and which exhibit a high
temporal locality, e.g. since they are executed within a
loop, evict each other from the cache very frequently. The
cache misses resulting from this scenario are called conflict
misses since the code fragments lie in conflict if their cache
lines overlap. This overlapping within the cache can be re-
solved by positioning such code fragments contiguously in
the main memory, thus resulting in a decreased number of
conflict misses.

This paper presents formal models and techniques for code
positioning in a WCET-aware fashion. The overall goal of
the proposed approach is to systematically reduce I-cache
conflict misses and thus to reduce the WCET of a program.
The key contributions of this paper are

e its innovative formal cache model based on a conflict
graph which is able to capture all currently used cache
architectures, including direct-mapped and set-asso-
ciative caches; this cache model is combined with a
formal WCET timing model, resulting in an entirely
novel cache conflict graph weighted with WCET data,

e a couple of cache-related analyses which are used to
refine the above cache conflict graph,

e the exploitation of these formal cache and WCET mod-
els by novel heuristics for positioning of both basic
blocks and entire functions, and

e the achieved reductions in terms of accumulated cache
misses by 15.5% and of WCET estimates by 6.1% on
average for 18 benchmarks, while requiring only mod-
erate runtimes for optimization.

Section 2 gives a survey of related work on cache-based
and WCET-aware compiler optimizations. Our novel con-
flict graph based on formal cache and WCET models and
our cache analyses are the subject of Section 3. Section 4
presents the heuristics used for code positioning at basic
block and function level. Section 5 describes the bench-
marking results, and Section 6 summarizes this paper and
gives an outlook on future work.

2. RELATED WORK

Code positioning as such was studied in many different
contexts in the past. In [28], positioning of basic blocks was
proposed in order to reduce WCETs. The authors reorder
the positions of basic blocks such that unconditional jumps

"We exclusively consider I-caches in this paper due to their
practical relevance for safety-critical real-time systems. D-
caches are usually completely deactivated in such systems
since it is extremely difficult to get their worst-case timing
behavior under control.
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between blocks are avoided. This leads to a reduction of
jump-related pipeline delays and thus reduces the WCET.
Unfortunately, [28] only considers positioning in the context
of jumps, and not in the context of caches. The authors only
consider simple processors without any caches.

In contrast, [8] describes an optimization which consid-
ers caches and positions functions based on their call graph.
Functions which call each other frequently are placed con-
tiguously in memory in order to avoid repeated cache evic-
tion. However, this approach is limited to direct-mapped
caches and only considers ACET reduction. For this pur-
pose, the required data to construct the call graph is col-
lected using profiling, which is not feasible in the domain of
hard real-time systems.

A code positioning of functions that also supports set-
associative caches is described in [12]. Here again, the focus
lies on ACET reduction, and the data required for posi-
tioning is gained using profiling. A WCET-aware procedure
positioning was presented in [14]. Using a greedy heuris-
tic based on a program’s call graph enriched with WCET
data, procedures are placed contiguously in memory in or-
der to reduce WCET. However, this work does not rely on
any model of a cache’s behavior. Due to this, the impact of
a modified procedure placement is evaluated in a trial and
error fashion.

[7] positions entire tasks of a multi-task application in
order to minimize the number of cache misses. The authors
concentrate on the preemptive scheduling of tasks. Tasks
preempting each other are placed in memory such that they
are assigned to different regions of the cache. The goal here
is to maximize the number of persistent cache sets to allow
more precise WCET estimates for preemptively scheduled
tasks. A similar approach was proposed in [16] where the
I-cache is partitioned into disjoint regions which are then
assigned to the tasks of a multi-task application. This way, it
is ensured that the execution of one task never influences the
cache partition of other tasks. Thus, task preemption does
not have side-effects on other tasks which in turn leads to
highly precise WCET estimates for multi-task applications.

Several processors support software-control of caches in
the sense that the cache content can be locked and will not
be evicted from the cache afterwards. This feature basi-
cally disables a cache’s replacement mechanism and turns
the cache into a rather conventional memory which is highly
timing predictable. However, cache locking requires sophis-
ticated compiler support in order to allocate frequently ac-
cessed code or data fragments into the cache before locking.
Locking of data and instruction caches has been considered
by e.g. [4, 13, 18, 24].

As an alternative to caches, so-called scratchpad memories
(SPMs) were studied extensively in the past. SPMs have the
advantage that they are fully timing predictable since an
access to the SPM never has varying latencies. An SPM can
be compared to a locked cache and thus requires dedicated
compiler support, too. Approaches for SPM allocation of
code and /or data in order to minimize energy dissipation
or WCET have been proposed e.g. in [2, 20, 21].

The techniques mentioned in the last two paragraphs con-
cerning cache locking and SPM allocation are complemen-
tary to code positioning since they all aim at avoiding a
cache’s inherent unpredictability using additional hardware
— be it special instructions or registers for locking a cache
or be it the presence of scratchpad memories. In contrast,
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Figure 1: Resolution of Cache Conflict Misses using Code Positioning based on a Conflict Graph

this paper focuses on cache-based processors without such
hardware extensions.

Finally, [25] proposes a cache-aware SPM allocation. The
goal of this work is to minimize energy dissipation by allocat-
ing code fragments which lead to high numbers of cache con-
flict misses to the SPM. The interaction of code fragments
in the I-cache is modeled using a conflict graph. This graph
contains information about basic blocks, whether pairs of
basic blocks evict each other, and whether this happens fre-
quently and thus leads to a large energy overhead. [25] serves
as a basis for our work in that sense that we also model cache
conflicts by a conflict graph. However, the conflict graph
described in Section 3 relies on WCET data instead of en-
ergy data. Furthermore, our conflict graph is used to model
both functions and basic blocks. Finally, we use the conflict
graph for cache-aware code positioning, without relying on
the presence of additional hardware like e.g. SPMs.

As can be seen from this survey of related work, there
currently exist no code positioning techniques which focus
on WCET reduction under simultaneous consideration of
actual cache models. The remainder of this paper thus
presents our formal cache and WCET model in the next
section, followed by code positioning heuristics which are
able to deal with both functions and basic blocks.

3. WCET-AWARE CACHE CONFLICT
GRAPH AND ANALYSES

The code positioning techniques proposed in this paper
rely on a cache conflict graph as the underlying model of
a cache’s behavior. Section 3.1 presents the formal defini-
tion of this conflict graph. However, it is likely that the
conflict graph contains many superfluous conflict edges that
do not model actual cache conflicts. Thus, analyses are ap-
plied which help to refine the conflict graph so that such
superfluous conflict edges are removed. A refinement of the
conflict graph based on control flow analyses is presented in
Section 3.2. The exploitation of cache may analyses in the
context of the conflict graph is the subject of Section 3.3.
Finally, information on a program’s memory layout is used
in a last refinement step described in Section 3.4.

3.1 The WCET-aware Cache Conflict Graph

The conflict graph used throughout this paper is defined
as follows:

Definition 1 (Conflict Graph, CG)
A conflict graph G = (V,E,w) is a directed graph whose
edges are weighted.
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A node v; denotes a code fragment of a program. The
set of nodes V.= {v1,...,vn} includes a node v; if the code
fragment v; lies in conflict with some other code fragment
vj. Either, all nodes of V' represent basic blocks, or they all
represent entire functions.

The set of edges E contains an edge e; ; starting at v; and
ending at v; if a cache line that contains code of v; can be
replaced by code of vj.

The weight w; ; of edge e;; approzimates the number of
possible cache misses that are caused during the execution of
v; due to vj;, since v; evicts cache lines of v;.

Wab

Figure 2: Conflict Graph according to Definition 1

Figure 2 depicts an example conflict graph. An edge like
e.g. eqp is directed to node s if vy is responsible for cache
misses of the edge’s source node v,. Depending on whether
the node set V represents basic blocks or entire functions,
the conflict graph is called local or global. As depicted in
Figure 1, the conflict graph models in how far code fragments
overlap in the cache and thus potentially evict each other
from the cache. The conflict graph can then be exploited in
order to place such conflicting code fragments contiguously
in memory. This helps to resolve such conflict misses, since
nodes of the conflict graph are no longer mapped to the same
cache set unless the combined size of the nodes exceeds the
size of the cache.

To obtain the conflict graph from Definition 1, it is nec-
essary to perform a static WCET analysis beforehand. The
WCET of a program P is equal to the length of the longest
possible execution path from the start node to an end node
in P’s control flow graph (CFG). For such a path, its length
is the sum of the products of WCET and worst-case execu-
tion frequency for all basic blocks of the path. This longest
path is also known as Worst-Case Ezxecution Path (WCEP).

Static WCET analyzers a priori compute how often pieces
of code are executed in the worst case. For basic blocks,
a WCET analyzer thus computes the so-called worst-case
ezecution count (WCEC), and for functions the worst-case



calling frequency (WCCF). It is possible that WCET analy-
sis reveals that certain code fragments are never executed in
the worst case since they never lie on a program’s WCEP.
Such code fragments have a WCEC or WCCF of 0. Since
such pieces of code do not contribute to a program’s WCET
at all, it is not necessary to include them into our conflict
graph. Thus, the CG’s node set V consists of all basic blocks
or functions with non-zero WCEC or WCCF, respectively.

For the generation of the graph’s edge set E, it must be
known which code fragments overlap in the cache and thus
are in conflict with each other. For this purpose, Equa-
tion (1) defines a function which maps an address of a code
fragment to its belonging cache set:

Map(Addr) = (Addr > Off) mod

Ax S (1)

Addr denotes a main memory address of a code fragment.
The least significant bits of an address contain the offset
which is used for addressing of a word within a cache line.
Since the offset does not influence to which cache set an ad-
dress is mapped, this offset is stripped from Addr by shifting
Addr right by the required number Off of bits.

The remaining relevant part of the address is then mapped
to a cache set by simply computing the modulus of the right-
shifted address and the total number of sets available in a
cache. This amount of available cache sets is computed by
dividing the cache’s capacity C given in bytes by its asso-
ciativity A multiplied by the cache line size S in bytes.

Assuming that it is known at compile-time at which ad-
dresses the code fragments of a program start and end, it is
easy to compute which cache sets are occupied by the code
fragments using Equation (1). For each pair of code frag-
ments v; and v; that have at least one cache set in common,
two directed edges e;; and e;; are inserted into the CG.
Furthermore, Equation (1) obviously shows that our conflict
graph is inherently able to model a broad class of cache archi-
tectures with varying associativities, including e.g. direct-
mapped caches with an associativity of 1. In the following
we will focus on cache architectures using the least-recently-
used (LRU) replacement policy. The LRU policy is known to
allow static analyses to predict the cache content best [19].

By default, the edge weights of the CG are initialized with
the value 0. In addition to the abovementioned worst-case
execution frequencies, a static timing analyzer also computes
worst-case numbers of cache misses. All this information is
computed for edges of the control flow graph during WCET
analysis. A cache miss value z at CFG edge (v;, v;) denotes
that a number of x cache misses will occur in the worst case
if control is transferred from node v; to v;.

Unfortunately, this CFG edge-related data computed dur-
ing static WCET analysis can not directly be used as edge
weights w;,; for the conflict graph of Definition 1. This is
due to the fact that the CG contains edges which might not
be present in a program’s actual CFG: whenever any two
nodes of the conflict graph share at least one common cache
line, edges are introduced into the CG, irrespective of the
control flow relationship of the two nodes.

In order to bridge this gap between the CFG model used
during static WCET analysis and the conflict graph model
proposed in the present paper, we accumulate the CFG edge-
related data computed by the timing analyzer, attach this
accumulated data to CFG nodes and finally translate this
CFG node-related data to edge weights in our CG.

148

Modern WCET analyzers are context-sensitive — they con-
sider via which control flow paths each CFG node can pos-
sibly be reached, and they compute individual WCEC and
cache miss values for each CFG edge and context. For exam-
ple, basic blocks and their edges inside loops typically have
different contexts which represent the individual iterations of
the surrounding loop. For the very first loop iteration and its
corresponding context, WCET analysis typically computes
a relatively large number of cache misses in the worst case
since the loop’s code needs to be loaded into the cache. For
the remaining iterations and contexts, usually lower cache
miss numbers are determined.

To model the CG’s edge weights w;,;, this context-related
data produced during WCET analysis is used. For each CFG
node v;, its outgoing CFG edges and contexts are considered
and accumulated cache misses are computed as follows:

AccMisses; = Z EdgeMisses; (2)
VvjEsuce(vy):
(vi,vj)ECFG edges
EdgeMisses,; = ) Misses(ijy.c* WCEC().c

contexts c

According to Equation (2), the Misses(; ;) . of a CFG edge
leaving node v; are multiplied by the edge’s worst-case ex-
ecution count WCEC(; ;. for each context c. CFG edges
which are provably never executed since they are e.g. in-
feasible are properly treated this way, because such edges
have a WCEC of 0 so that they do not influence a block’s
accumulated cache misses. Thus, only true cache misses
which can actually occur in the worst case are considered by
Equation (2).

Accumulating all context-related data for EdgeMisses; ;
implies a certain loss of information since fine-grained data
for individual contexts is no longer available. However, this
is not a limitation, since fine-grained context-sensitive infor-
mation is not required for code positioning. This is because
code fragments v; and v; occur exactly once in the machine
code, and not several times as virtually assumed when dis-
tinguishing between different contexts. In order to decide
on the code positioning of v; and v;, the overall number of
cache conflicts between these code fragments is of impor-
tance, irrespective of the circumstance from which context
individual cache misses stem.

As afinal step, these CFG node-related accumulated cache
misses AccMisses; need to be translated to edge weights w;;
in our conflict graph. AccMisses; represents the total num-
ber of worst-case cache misses of v;. This total number of
cache misses needs to be distributed among all other nodes
v; which v; lies in conflict with. For this purpose, AccMisses;
is multiplied by the number of cache sets Sets; ; that v; and
v; have in common, divided by the total amount of cache
sets Sets; occupied by v;. Sets;,; and Sets; can be computed
easily using Equation (1). Thus the CG’s edge weights are
defined as follows:

Sets; j

AccMisses; * o for CGiocal
ets;
wij = (3)
. Sets; ;
AccMisses; x ;;;J * WCCF; for CGglobal

3.2 Refinement using Control Flow Analysis
Code fragments which are mapped to some common cache

sets need not necessarily lie in conflict with each other. If

e.g. one fragment belongs to the then-part and the other



Figure 3: Control flow path of a conflict edge e; ;

one belongs to the else-part of an if-else statement, the cor-
responding two nodes of the CG potentially need not be
connected by edges. The fact that one piece of code evicts
another piece of code in the cache thus heavily depends on
the location of both code fragments in a program’s CFG.

A CG edge e;,; denotes the situation that v; encounters
cache misses due to v;. However, this can only happen if
v; is executed both before and after v; within a program’s
control flow, as depicted in Figure 3.

v; needs to be executed before v; in order to be evicted
from the cache by v;. Due to the very first execution of v;,
its code is loaded into some cache sets. If v; is not executed
before v;, the cache cannot contain any code of v; which will
later be evicted by v;.

Additionally, v; also has to be executed after v; so that
it actually comes to cache misses due to v;. v; has evicted
some sets from the cache which were originally occupied by
v;. During v;’s second execution, these evicted cache sets
have to be reloaded from main memory which leads to actual
cache misses. If v; is not executed after v;, parts of v; can
be evicted from the cache by v;, but this does not lead to
actual cache misses since v; is no more executed.

This argumentation holds for any two nodes v; and wv;
which are connected by a control flow path as shown in Fig-
ure 3. The two nodes do not necessarily have to be direct
neighbors in a program’s CFG. It is sufficient that one path
exists within the CFG leading from v; to v;, and another
CFG path from v; back to v;. This is indicated by the
dashed edges in the above figure.

Thus, all edges in the conflict graph whose corresponding
nodes do not fulfill the CFG-based criterion sketched above
do not model actual cache conflicts. For this reason, edges
are removed from the conflict graph as follows:

Definition 2 (CG Refinement: Control Flow-based)
An edge e; ; is removed from the conflict graph if either no
directed path from v; to v; or from v; to v; exists in the
program’s control flow graph.

The criterion of Definition 2 is easy to check by simply
applying a standard reachability analysis to the CFG. Ap-
parently, only such edges e; ; are kept in the CG where the
corresponding nodes lie in a (possibly nested) loop structure.

3.3 Refinement using May Analysis

A code fragment v; can only evict some other block v;
from the cache if v; is actually contained in both nodes’
common cache sets prior to v;’s execution.

For this purpose, the control flow-based analysis presented
in Section 3.2 checks the execution order of both code frag-
ments. However, the criterion of Definition 2 cannot deter-
mine whether v; is still contained in the cache immediately
before v; is executed. For example, v; could be completely
evicted from the cache by some other block vy lying some-
where on the control flow path from v; to v;.

Thus, an edge e;; in the conflict graph would not rep-
resent an actual cache conflict between v; and v; since the
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eviction of v; is not caused by v; but by some other block
vi. If it can be excluded that v; is contained in the cache
immediately before it comes to the execution of v;, the edge
es,5 can be removed from the conflict graph.

In order to detect such superfluous CG conflict edges, we
apply a cache may analysis as already published in [5, 6].
For each point in a program’s CFG, the abstract cache states
and thus the states of the individual cache sets are esti-
mated. For a cache may analysis, the cache states include
information which code fragments possibly reside in a cache
set. Thus, it can be deduced which code fragments definitely
do not reside in the cache at certain points in the CFG.

For this purpose, incoming cache states are attached to
the CFG nodes. They model the possible contents of cache
sets immediately before the node’s execution. May analysis
iteratively traverses the CFG and refines these cache states
by applying the principle of abstract interpretation. During
the progress of may analysis, update and join functions are
used to update a node’s incoming cache states.

May analysis terminates as soon as all cache states are sta-
ble and are no longer changed. Since may analysis is a well-
established technique, we refrain from describing its details
here. Instead, the interested reader is referred to the original
publications [5, 6]. However, it is worth to note that cache
may analysis is used in a generic fashion in order to support
configurable cache associativities. Thus, also this heavily
cache-dependent part of our conflict graph-based framework
supports broad classes of cache architectures.

Based on the results of cache may analysis, edges are re-
moved from the conflict graph as follows:

Definition 3 (CG Refinement: May Analysis)
An edge e;,; is removed from the conflict graph if node v; is
not part of the incoming cache states of node v;.

3.4 Refinement using the Memory Layout

The code positioning approach described in this paper
aims at reducing cache conflict misses by positioning code
fragments contiguously in memory. This has the advantage
that it is very likely that contiguously placed pieces of code
are not mapped to the same cache sets. However, the initial
conflict graph as specified in Definition 1 can contain edges
between nodes v; and v; which are already placed contigu-
ously in memory. This occurs if the combined size of two
code fragments exceeds the size of one way. Thus, such CG
edges denote conflicts which do not exhibit any actual opti-
mization potential.

For this reason, CG edges are removed depending on the
memory layout of their corresponding nodes:

Definition 4 (CG Refinement: Memory Layout)
An edge e;,j is removed from the conflict graph if nodes v;
and v;j are already placed contiguously in memory.

These refinement criteria of Definitions 2 to 4 are se-
quently applied to the initial conflict graph of Definition 1.
The resulting refined local or global conflict graph is then
used as input for the code positioning heuristics described
in the following.

4. CODE POSITIONING HEURISTICS

To reduce WCETSs, cache-aware code positioning resolves
conflict misses between basic blocks and functions by placing



1 LLIR WCET_CodePositioning( LLIR P ) {
2 weeteyr = WCETAnalysis( P );

3 foreach ( function f€ P )

4 do {

5 Graph CGloeqr = BuildCG( f );

6 } while ( Position( CGipear, P ) )3
7 do {

8 Graph CGglobal = BuildCG( P );

9 } while ( Position( CGyiopai» P ) );
10 return P;

11}

12 bool Position( Graph G, LLIR P ) {
13 Edge €maz; ; = G .removeMaxEdge () ;

14 if ( €maz; ; 750 ) {

15 positionNextTo( v;, v; );

16 if ( G.isLocal() )

17 adjustJumps () ;

18 weetpew = WCETAnalysis( P );

19 if ( weetpew < weeteyr ) {
20 weeteyr = wWeetnew;
21 return true;
22 } else
23 revertPositioning();
24 }
25 return false;
26 }

Figure 4: Algorithm for WCET-driven Cache-aware
Code Positioning

those conflicting code fragments contiguously in main mem-
ory. For this purpose, local conflict graphs are generated
to position basic blocks. Afterwards, positioning is done at
function level with the aid of a global conflict graph.

Our code positioning heuristic is based on a greedy ap-
proach. The edge weights of a conflict graph are used to
identify code fragments with a high number of conflict misses
and thus with a high optimization potential. Starting with
the edge having the largest weight, the algorithm evaluates
the influence on the WCET when this edge — and therefore
the conflict misses it models — is removed by a reallocation
of the corresponding basic blocks or functions. If a WCET
reduction was achieved, the resulting altered memory layout
of the program is kept so that it serves as starting point for
the next optimization cycle. This ensures that the WCET
of the altered memory layout is never worse compared to the
original layout.

The formal definition of the WCET-driven code position-
ing algorithm is depicted in Figure 4. The input of the algo-
rithm is the low-level intermediate representation (LLIR) of
program P. The positioning at basic block level takes place
in lines 3-6, while lines 7-9 illustrate the positioning at func-
tion level. In line 5, a local conflict graph CGlocar is built for
each function f in P, based on the information of the WCET
analysis performed in line 2. wcete,r represents the current
WCET of the program P and is used later for evaluation.
The positioning at basic block level terminates if every local
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conflict graph is processed by function Position(). Posi-
tion() is also used for positioning at function level when
processing the global conflict graph CGyiopar, which is built
in line 8. Positioning at function level terminates if a re-
ordering of two functions was not successful, i.e. the result-
ing WCET starts to get worse, or all conflict graph edges
were processed. In that case, function Position() returns
false.

The function Position() itself is defined in lines 12-26.
The input of this function can be a global or a local conflict
graph. Based on the edges belonging to graph G, the algo-
rithm positions the corresponding code fragments. Thereby,
positioning always starts with the edge having the largest
weight and thus the largest optimization potential. In line
13, the edge with the largest weight is removed from conflict
graph G and is stored in Emaz; ;- In line 15, the two corre-
sponding basic blocks or functions v; and v; are contiguously
placed in memory by the function positionNextTo(). This
leads to an altered memory layout.

In contrast to positioning at function level, code position-
ing at basic block level requires additional jump adjustments
(line 17) after each reallocation. Therefore, adjustJumps ()
is called right after a reallocation of two basic blocks. Unlike
positioning at function level, the reallocation of basic blocks
has to consider the control flow of a program. If two basic
blocks A and B initially located next to each other in control
flow and in main memory are being separated, jump instruc-
tions need to be inserted, or existing jump instructions have
to be modified in order to ensure the correctness of control
flow. For example, if basic block A ends with a conditional
jump instruction and the condition won’t meet, the subse-
quent basic block B will be executed. If those basic blocks
will be separated due to a reallocation, they have to be re-
connected via an additional jump instruction by the function
adjustJumps (). Also, superfluous jump instructions can be
removed if two basic blocks previously separated are posi-
tioned contiguously due to a reallocation.

To evaluate the resulting memory layout, a WCET anal-
ysis of program P (line 18) is necessary. The new WCET of
P is stored in wcet,ew and is compared with the previously
computed value of wceteyr (line 19). If the positioning of the
code fragments v; and v; based on €maz; ; Was successful and
achieves a WCET reduction, the new memory layout will be
the starting point for the next optimization cycle. In that
case, Position() returns true. Otherwise, the positioning
is reverted by function revertPositioning() in line 23, and
Position() returns false. In that case, positioning at basic
block level processes the conflicts within the next function f
of P (line 3), or the positioning at function level terminates
(line 9).

As stated in Section 3.1, a program P’s WCET is equal to
the length of its longest execution path WCEP. Thus, a com-
piler aiming at WCET reduction has to shorten the length
of the WCEP. Assume p; is P’s current WCEP and some
disjoint path p2 is the second longest path in the CFG. If a
compiler optimization is successful in shortening p; by more
than |pi| — |p2| time units (where |p| stands for the length
of p), p2 becomes the new WCEP after this optimization.
This phenomenon of switching WCEPs in the course of an
optimization is known as the instability of the WCEP.

Due to the instability of the WCEP, any modification
of the memory layout of P might potentially change the
WCEP. Once two code fragments are reallocated success-
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Figure 5: WCET-aware C Compiler WCC [27]

fully, this can affect other code fragments and might cause
new conflicts or even solve conflicts between other code frag-
ments. Thus, one single invocation of Position() poten-
tially changes the memory addresses and cache misses of lots
of other code fragments. For this reason, the conflict graph
is fully rebuilt after a successful reallocation of code frag-
ments, i.e. if Position() returns true in line 6 (basic block
level) or in line 9 (function level). This necessarily includes
a complete WCET analysis in order to capture the novel
worst-case cache misses and to obtain the actual CG edge
weights after one single code positioning. This approach
ensures an effective WCET reduction, since only code frag-
ments relevant for the WCET are optimized. Without a
rebuild of the CG, the next positioning might be superflu-
ous and thus might not lead to a further WCET reduction.
Only after rebuilding the CG in lines 5 and 8, function Po-
sition() is called again to continue code positioning using
the edge with the next largest optimization potential.

In the algorithm shown in Figure 4, positioning at function
level takes place after positioning at basic block level. It is
also possible to switch this order, because the order is not
crucial for WCET reduction. Results achieved by applying
the presented code positioning heuristic at both basic block
and function level are presented in the following section.

5. EVALUATION

This section presents results obtained by applying the
proposed WCET-driven cache-aware code positioning tech-
niques to real-life benchmarks. Section 5.1 describes the
experimental setup used to perform benchmarking. The fol-
lowing sections discuss the results in terms of worst- and
average-case execution times, code sizes and optimization
runtimes.

5.1 Experimental Setup

Our code positioning techniques are integrated into a com-
piler for Infineon TriCore TC1797 processors. The TC1797
features a program flash memory with a size of 2 MB and an
instruction cache with a size of up to 16 kB which is 2-way
set-associative and uses the LRU replacement. The cache’s
line size is 32 bytes. In case of a cache hit, an access to
program code memory takes place within one cycle whereas
a cache miss takes up to 12 cycles. In order to demonstrate
the flexibility of our approach w.r.t. different cache archi-
tectures, we also assume varying associativities ranging from
1 up to 16 in the following.

Figure 5 depicts the structure of the compiler which we
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Figure 6: Relative WCET Estimates after Code Po-
sitioning (associativity 2)

used for benchmarking [3]. One of its key features is the
tight integration of the static WCET analyzer aiT [1] into
the compiler’s backend. This way, WCET timing data re-
quired to generate the conflict graph is available in the com-
piler. The second important aspect of the compiler is the
fact that it is up to the compiler to decide about a program’s
memory layout. For this purpose, the compiler has detailed
knowledge about the processor’s memory hierarchy, and the
compiler explicitly specifies at which addresses individual
basic blocks or functions are placed in memory. This prop-
erty is exploited by our code positioning approach during
conflict graph generation (cf. Equation (1)) and memory
layout-related refinement (cf. Section 3.4).

Both at C and assembly level, code optimizations are ap-
plied to the high-level intermediate representations, called
ICD-C [9] and to the LLIR. One of these optimizations, ap-
plied as very last one at assembly level, is the code position-
ing discussed in this paper. The compiler features a total of
42 different optimizations. For benchmarking, all of them
are activated such that code positioning is always applied to
already highly optimized code.

Code positioning was applied to a total of 18 different
real-life benchmarks from the MRTC [15], MediaBench [10],
UTDSP [23], DSPstone [26] and other benchmark suites.
The code sizes of the benchmarks range from 160 bytes up to
10.4 kB with an average code size of 3.3 kB per benchmark.
Since the benchmarks’ code sizes are considerably smaller
than the totally available cache capacity, we artificially limit
the available cache size for benchmarking.

For every single benchmark, a cache size of 10% of the
benchmark’s code size was used [17]. For the smallest bench-
marks where 10% of their code size results in a cache size of
less than 2 sets, a minimal cache size of 2 sets was assumed.
Whenever static WCET analysis was done during bench-
marking, the analyzer aiT was invoked such that highest
precision is achieved, i.e. an infinite number of execution
contexts was assumed wherever feasible. Only for very few
and complex benchmarks, we manually reduced the number
of execution contexts in order to keep analysis times of aiT
acceptable. For example, we set the number of contexts for
benchmark audiobeam to 10 for this reason.

5.2 Worst-Case Execution Time Estimates

Figure 6 shows the impact of our code positioning tech-
niques on the WCET estimates (WCETe.s:) of all considered
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sociativity 2)

benchmarks. The 100% baseline of the diagram represents
the benchmarks’ WCFET.s if no code positioning is applied,
i.e. the WCET estimates resulting from the compiler’s high-
est optimization level O8. Results are presented as the per-
centage of the benchmarks’ WCE T, after code positioning.

As can be seen, our WCET-driven and cache-aware code
positioning is able to reduce the WCET,s for all bench-
marks. For audiobeam, the WCFET,; after code positioning
is 98.4% of the original WCET.s, i.e. a minor WCET,s
reduction of 1.6% was achieved. The largest gain in terms
of WCET.s: was observed for codecs_dcodrlel where the
WCET,s: after our code positioning amounts to only 78.3%
of the original WCET.s, leading to savings of 21.7%.

On average over all 18 considered benchmarks, and as-
suming a cache associativity of 2, we were able to obtain a
WCETest of 93.9% of the original worst-case execution time
estimate, corresponding to a total average WCET.s; reduc-
tion of 6.1%.

Figure 7 shows the benchmarks’ accumulated cache misses
as defined in Equation (2). Again, these results are pre-
sented in a relative fashion where the 100% baseline rep-
resents the cache misses of the benchmarks without code
positioning.

In particular, benchmarks 1ms or prime show a clear re-
duction of accumulated cache misses. In contrast, only few
accumulated cache miss reductions were observed for bench-
mark 1ms_float. This is caused by the extremely tiny code
size so that a minimal cache size of 2 sets was assumed (cf.
Section 5.1). This has the effect that the cache is larger than
the usually assumed fraction of 10% of a benchmark’s code
size. Thus, only a rather limited conflict potential exists for
this benchmark.

As can be seen from Figure 7, our code positioning ap-
proach reduces the accumulated cache misses from 1.2%
(lms_float) up to 40.6% (1ms). On average over all bench-
marks, our approach is able to reduce accumulated cache
misses by 15.5%.

Besides the TriCore TC1797’s native cache associativity
of 2, the analyzer aiT allows to perform static WCET analy-
ses assuming a variety of other associativities. We exploited
this fact and our conflict graph’s flexibility in terms of asso-
ciativity and provide results for caches with associativities of
1 (direct-mapped), 2, 4, 8 and 16 in the following. Figure 8
shows the relative WCET estimates and accumulated cache
misses as average values over all 18 considered benchmarks.
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Figure 9: Relative ACETs after Code Positioning
(associativity 2)

As can be seen from the figure, the optimization poten-
tial exploited by our code positioning steadily decreases for
increasing cache associativities. For a direct-mapped cache,
the accumulated cache misses are reduced by 18.8%, which
translates to WCET.s reductions by 9.0%. However, for a
16-way set-associative cache, significantly smaller improve-
ments by 3.7% in terms of accumulated cache misses and
by 3.2% in terms of WCET.s were achieved. This behav-
ior is not surprising, as the number of cache conflict misses
decreases with increased associativity since more cache lines
are available per set and thus less evictions happen.

5.3 Average-Case Execution Times

Figure 9 shows the impact of code positioning on average-
case execution times (ACET) of our benchmarks for a 2-
way set-associative cache. ACETSs were measured using the
commercial simulator CoMET [22] for the TC1797. Simu-
lations were done using one input set per benchmark stem-
ming from the benchmark suites mentioned above. Once
again, ACETs after WCET-driven cache-aware code posi-
tioning are depicted as a percentage of the ACETSs resulting
from optimization level O8 without code positioning.

A comparison of Figures 6 and 9 shows that the measured
ACETs behave completely different than the WCET esti-
mates resulting from our code positioning. It can be seen
that, in contrast to WCETs, ACETSs are not significantly
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reduced by our code positioning. Even worse, ACETSs are
increased by a few percents for some benchmarks, e.g. by
1.8% for codecs_dcodrlel.

This behavior can be explained by the fact that our code
positioning is a fully WCET-oriented optimization which
keeps on optimizing along a program’s worst-case execution
path (WCEP) which is usually not identical to the path
that is executed in a typical average-case scenario. Hence,
our approach reduces cache misses of those basic blocks and
functions which contribute most to the global WCET esti-
mate of a program. This strategy can have the effect that
ACETs are increased since e.g. the layout of such basic
blocks which lead to a low ACET is changed so that they
generate more cache misses in the average case afterwards.
For this reason, it is likely that the total amount of cache
misses in the average case is probably displaced within our
benchmarks, but not systematically reduced.

Only for four benchmarks, ACET reductions were ob-
served: e.g. prime exhibits an ACET reduction by 7%
while the ACET of statemate is reduced by 0.03%. On
average for all considered benchmarks, our code positioning
approach leads to a minor ACET increase by 0.03%. It can
be concluded that optimizing for WCET is a completely dif-
ferent issue than optimizing for average-case performance.

When considering cache associativities ranging from 1 up
to 16, it turns out that ACETs do not vary notably. For a
direct-mapped cache, a negligible ACET reduction of 0.07%
was achieved, while an ACET increase by 0.28% was ob-
served for a 16-way set-associative cache. Due to the obvi-
ously irrelevant impact of associativity on ACETs, we refrain
from presenting more detailed results here.

5.4 Code Sizes and Optimization Runtimes

Figure 10 depicts the influence of our code positioning on
the benchmarks’ code sizes. Again, results are presented as
a percentage relative to the code sizes achieved when not ap-
plying code positioning. As can be seen from this diagram,
code positioning has only a marginal effect on code size. For
most benchmarks, code size is not affected at all. For others,
code sizes are slightly increased, up to a maximal code size
increase by 2.8% for benchmark codecs_dcodrlel.

These minor code size increases can be explained by the
jump correction stage which is necessary after code posi-
tioning. Placing basic blocks contiguously in memory might
have the effect that the control flow through a program is
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illegally modified. In order to obtain valid code after our
optimization, jump correction adjusts the programs’ con-
trol flow by inserting additional jump instructions into ba-
sic blocks whenever necessary. Obviously, these additional
jump instructions contribute negatively to the benchmarks’
code size. However, an average code size increase of only
0.8% was obtained for all considered benchmarks which is
tolerable in practice.

During each iteration of our WCET-driven code position-
ing, one static WCET analysis using aiT is required (cf.
Section 4). This is required in order to cope with the in-
stability of the WCEP. Thus, most of the runtime of our
positioning technique is not used for the algorithm given in
Figure 4, but for all the necessary WCET analyses.

Figure 11 finally shows the absolute runtimes of our code
positioning approach for all benchmarks. Runtimes are given
in CPU seconds for an Intel Xeon processor running at
2.5 GHz. They include the times needed for code position-
ing itself, all WCET analyses, and that for compiling and
optimizing the benchmarks at optimization level O83.

The least runtime is consumed for the optimization of
benchmark prime. Here, only a total of 5 WCET analyses is
required for code positioning, yielding an absolute runtime
of only 2.7 CPU seconds. The highest compilation time is
required for cover with a runtime of 804 seconds. During
the optimization of this benchmark, 15 WCET analyses are
performed overall. For all considered 18 benchmarks, an
average optimization runtime of 240 CPU seconds was

If, however, shorter runtimes are required, it is still possi-
ble to reduce the number of execution contexts during static
WCET analysis (cf. Section 5.1) which allows to trade anal-
ysis precision with runtime.

It again turned out that different associativities have al-
most no direct impact on code sizes. For all considered as-
sociativities, average code size increases only vary between
0.2% (8-way set-associative cache) up to 0.8%. In terms of
optimization runtimes, the highest average runtime of 240
CPU seconds was achieved for a 2-way set-associative cache,
while a minimal average runtime of 171 CPU seconds was
observed for the 8-way set-associative cache.

6. CONCLUSIONS

This paper is the first one to present a WCET-driven,
cache-aware code positioning technique. It introduces a for-



mal model of cache conflict misses based on a conflict graph
which is enriched by data stemming from static WCET anal-
ysis. Since it is likely that this conflict graph initially con-
tains many superfluous edges that do not model actual cache
conflicts, this paper also proposes techniques to refine the
conflict graph. These refinement approaches rely on control
flow analyses, cache may analyses and on the inspection of
a program’s memory layout.

On top of this conflict graph model, a greedy heuristic
for code positioning is presented. In contrast to previously
published positioning approaches, our technique is inher-
ently able to apply code positioning both to basic blocks
and to entire functions. Furthermore, we are able to opti-
mize for broad classes of cache architectures with varying
associativities. The effectiveness of our approach is shown
by average reductions of accumulated cache conflict misses
by 15.5% and by average reductions of WCET estimates by
6.1% for an industrially relevant processor with a 2-way set-
associative cache. Considering a direct-mapped cache even
yields significantly larger savings in terms of both accumu-
lated cache misses and WCET estimates.

Despite the fact that the average runtimes of 240 CPU sec-
onds required by our optimization are still moderate, we are
aware of the inherent scalability issues of an optimization
heuristic where a full static WCET analysis is performed
during each individual iteration of the heuristic’s optimiza-
tion loop. For this reason, our future work will concen-
trate on approximations of a WCET timing model which
are faster than a fully-featured WCET analysis using aiT,
but which still are accurate enough to guide our code po-
sitioning heuristics towards a systematic WCET reduction.
Furthermore, we will apply our code positioning techniques
to large industrial benchmarks in the future.
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