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ABSTRACT

The advent of embedded many-core architectures results in
the need to come up with techniques for mapping embedded
applications onto such architectures. This paper presents a
representative set of such techniques. The techniques focus
on optimizing performance, temperature distribution, relia-
bility and fault tolerance for various models.

Categories and Subject Descriptors

C.4 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms

Performance, Reliability

Keywords

Embedded Systems, Multi-processor systems on a chip (MP-
SoCs), application mapping

1. INTRODUCTION
Miniaturization of electronic components has led to the

introduction of complex electronic systems which are inte-
grated onto a single chip, so-called systems-on-a-chip (SoCs).
At the same time, performance requirements have been in-
creasing. The resulting performance requirements can no
longer be met by single processor systems. If achievable at
all, this performance would come with an enormous power
consumption and serious cooling problems, due to the nec-
essary very high clock speed. Currently, the only option for
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achieving the necessary performance is to use several pro-
cessors with moderate clock speeds. Therefore, many of the
currently available SoCs contain several processors, making
them multiprocessor systems on a chip (MPSoCs). As a re-
sult, implementing applications on such a platform includes
the mapping of applications onto MPSoCs.

In the general case, this mapping problem is difficult: sev-
eral use cases have to be considered simultaneously. For each
case, a combination of applications must be taken into ac-
count to ensure that deadlines or performance guarantees
are met. These applications may be using different models
of computation [23].

Generated mappings have to include solutions to the sche-
duling, resource allocation and resource assignment prob-
lems. The type and number of resources (processors, buses,
etc.) may be either be already specified in the initial input
by the designer or they may be generated during the design
steps. If this information is not provided by the designer,
it has to be generated by solving the resource allocation
problem. Resource assignment is supposed to map com-
putations and communication to hardware resources. Solu-
tions to the scheduling problem provide a mapping from
operations to the times during which these operations are
performed. Multiprocessor scheduling will sometimes al-
ready indicate the hardware resources to be used, i.e. the
resource assignment problem is included in the scheduling
problem. Resource assignment algorithms can be of vari-
ous types. For example, computations may be permanently
mapped to hardware resources.

The ArtistDesign network of excellence (see [2]) identi-
fied the application mapping problem as one of the most
urgent problems to be solved for implementing embedded
systems. A series of workshops on the mapping of appli-
cations to MPSoCs was started in order to support moving
beyond the state of the art in this area (“Map2MPSoCs”, see
e.g. [24]). This paper provides a brief overview over contri-
butions of four research groups who presented at the series.
These groups were members or affiliates of the ArtistDesign
network or gave invited talks.

This paper is structured as follows: section 2 contains a
brief summary of related work. In sections 3, 4, 5, and 6,



a brief overview of the work of the groups working at the
Universities of Erlangen-Nürnberg (Germany), ETH Zürich
(Switzerland), the Chinese University of Hong-Kong (China)
and Seoul National University (South Korea) is provided.
Section 7 will be a brief summary.

2. RELATED WORK
Even though the mapping of applications to MPSoCs is

a relatively new area, contributions from other areas can
be used as building blocks. Classical scheduling theory for
multi-processors provides a mapping from threads to proces-
sors and, therefore, results from this area can help to solve
the mapping problem. However, scheduling theory typically
considers just homogeneous processors whereas results for
heterogeneous processors and a corresponding resource al-
location are lacking. Classical hardware/software partition-
ing maps computations to either hardware or software. By
mapping to either hardware or software, such partitioning
does obviously support the mapping to heterogeneous sys-
tem components. However, global knowledge about periods,
schedulability, etc. is typically not supported. Approaches
explicitly designed for mapping to Map2MPSoCs include
work presented at the Map2MPSoCs workshop series, such
as MAPS [3], DAEDALUS [26] and an approach followed by
T. Simunic [28]. Additional related work will be referred to
below.

3. RESOURCE-AWARE PROGRAMMING
ON TILED ARCHITECTURES

The first approach to application mapping tries to pro-
vide programmers with tools for expressing resource require-
ments of applications. This approach is motivated as fol-
lows: In the many-core era, performance will not be the only
challenge software developers have to face. Software will
also have to guarantee high resource utilization and fault-
tolerance and provide power and thermal management. We
believe that to facilitate the mapping of applications to the
increasing number of available resources, applications will
need to be adaptive to a variable resource availability and
to their own resource demands. To make that possible, the
programmer needs to be provided with the necessary ab-
stractions to express the resource needs of an application,
without knowing beforehand the exact details of the under-
lying architecture. The low-level management of resources
should remain the responsibility of run-time system support.
Our approach consists of providing the programmer with
such a higher level interface to promote the development of
adaptive, resource-aware applications. Resource-aware pro-
gramming is one of the key ideas of invasive computing [31,
32], a new paradigm for resource-aware computing that in-
tegrates research on MPSoC architectures, compilers, simu-
lation, applications, and run-time support.

3.1 Basics of resource-aware programming
The main idea of resource-aware programming, as the

name suggests, is making the application aware of the sta-
tus and availability of the underlying resources and giving
it control over resource allocation and de-allocation. In this
way, the application can adjust to changes in degree of par-
allelism or in the status and availability of resources.
The lifetime of a resource-aware program can be separated

in three types of phases: (1) resource allocation, (2) execu-

tion, and (3) resource de-allocation. During resource allo-
cation the application requests to allocate resources based
on constraints such as number of requested cores, maxi-
mum workload or temperature of cores to be allocated, mini-
mum computational capabilities, communication bandwidth
or memory size, etc. During the execution phase, the appli-
cation is allowed to offload computations to the already al-
located resources. Last, de-allocation of resources, when the
degree of parallelism of the application is lowered, enables
better overall resource utilization. These phases can be re-
peated many times during the lifetime of a resource-aware
application, providing the necessary adaptivity. Listing 1
shows what a simple resource-aware application might look
like. The application tries to allocate a set of resources, and
in case of failure falls back to requesting a different set of
resources. Execution is performed on the successfully allo-
cated resources, or sequentially in case both requests failed.

We expect various benefits from resource-aware program-
ming: In addition to improved resource utilization, the per-
formance of individual applications can be improved, as re-
sources that were not available during the application start-
up can be allocated later, when they become available. Power
consumption can also be improved by dynamic adaptation
of voltage/frequency of individual processing elements to
match application needs. Monitoring temperature statistics
can reduce overheating.

Listing 1: Example pseudocode for a simple
resource-aware application
// Request r e s ou r c e s
c la im = r equ e s t r e s o u r c e s ( type , quantity ,

c on s t r a i n t s ) ;
i f ( s u c c e s s f u l ( c la im ) ) :

execute ( claim , code , data ) ;
r e l e a s e ( c la im ) ;

e l s e :
// Try again with d i f f e r e n t c on s t r a i n t s
c la im = r equ e s t r e s o u r c e s ( other type ,

o ther quant i ty ,
o t h e r c on s t r a i n t s ) ;

i f ( s u c c e s s f u l ( c la im ) ) :
execute ( claim , code , data ) ;
r e l e a s e ( c la im ) ;

e l s e :
// Resource a l l o c a t i o n f a i l e d again
e x e c u t e s e qu en t i a l l y ( ) ;

3.2 Application on Tiled Architectures
Motivation: Resource-aware programming is of interest

when it comes to future many-core architectures, but we
can also evaluate potential benefits on existing multi-core
architectures. For this purpose, we focus in this paper on
Tilera’s 64-core TILEPro64 processor [36] and Intel’s 48-core
Single-Chip Cloud Computer (SCC) [25].

These two architectures are both based on processor tiles
and use a large number of processing elements. They con-
sist of a number of tiles replicated on a single chip, intercon-
nected with a network-on-chip (NoC).

Tilera’s TILEPro64 offers coherent shared memory, thus
allowing the use of wide-spread shared memory program-
ming approaches. Two of the on-chip networks, one static
and one dynamic, are also accessible at user-level for send-
ing short messages [36]. Intel’s SCC, however, lacks hard-
ware support for memory coherence. The main program-
ming models used with this processor are based on message



passing, which is implemented over the on-chip non-coherent
shared memory, named message passing buffer (MPB) [25].
Current operating systems do scale well and exhibit prob-

lems for these architectures. On TILEPro64, SMP Linux
is used, which cannot provide the level of scheduling and
mapping support that competing applications need on such
a number of cores.
Implementation: To make an early evaluation of resource-

aware programming for these architectures, we built a li-
brary to support its basic concepts at user-level. For our
initial implementation, the resources we consider are the
cores of each processor, of which applications request ex-
clusive use. Due to the differences of system software sup-
port on the two processors, our implementations of these
libraries will also vary. Our goal, however, is to provide
a common interface for resource-aware programming, to be
used with both architectures. Listing 2 shows what such a
common API could look like, and is actually the API that
we have currently implemented for TILEPro64 and partly
implemented for SCC.

Listing 2: API for resource-aware applications on
tiled architectures
// I n i t i a l i z e − f i n a l i z e re source−aware app l i c a t i on
void r e s ou r c e awa r e app i n i t ( ) ;
void r e s o u r c e awa r e app f i n a l i z e ( ) ;

// A l l o ca t e co r e s
// num: number o f reques ted co r e s
// cla im : s e t o f CPUs s u c c e s s f u l l y a l l o c a t e d
i n t r eque s t cpus ( i n t num, cpu s e t t ∗ c la im ) ;

// A l l o ca t e g r id o f co r e s
// h , w: he ight and width o f reques ted core g r id
// cla im : s e t o f CPUs s u c c e s s f u l l y a l l o c a t e d
i n t r e qu e s t g r i d ( i n t h , i n t w, c pu s e t t ∗ c la im ) ;

// Release co r e s
// cla im : s e t o f c o r e s to r e l e a s e
i n t r e l e a s e c pu s ( c pu s e t t c la im ) ;

// Execute func t i on on a l l o c a t e d co r e s :
// c la im : s e t o f a l l o c a t e d co r e s
// s t a r t r o u t i n e : array o f func t i on po i n t e r s
// arg : arguments , r e t : r e turn va lue s
i n t execute ( c pu s e t t claim , i n t ncpus ,

void ∗(∗ s t a r t r o u t i n e [ ] ) ( void ∗ ) ,
void ∗arg [ ] , void ∗∗ r e t [ ] ) ;

// Execute program on a l l o c a t e d co r e s :
// c la im : s e t o f a l l o c a t e d co r e s
// path : array o f program names
// argv : array o f arguments
i n t execute cpus ( c pu s e t t claim , const char ∗path ,

char ∗ const argv [ ] ) ;

For the implementation of such an API, we have to con-
sider the partitioning of resource information among the
cores, as well as the distribution of responsibility of servicing
resource allocation requests.
Since Tilera TILEPro64 offers support of coherent shared

memory, the simpler choice is to keep resource status in-
formation in shared memory, and to provide resource-aware
applications access to that shared information through li-
brary calls. This centralized approach leads to improved
resource utilization, since all information on resource sta-
tus is available when making resource allocation decisions.
On the other hand, the shared information is a bottleneck
and performance gets worse when increasing the number of
processes competing for resources. For our initial implemen-

tation we chose to use this approach, but we plan to look
into distributed or hierarchical approaches to resource man-
agement as well [19].

For enabling resource-aware programming on Intel’s SCC
processor, we follow a more distributed approach, having
a process to service allocation requests executed on each
core. The resource availability information is stored in the
non-coherent shared on-chip memory. This more distributed
approach has the benefit that there exists no central bot-
tleneck, but applications lack a general view of status and
availability of resources. Thus, resource allocation decisions
will tend to be suboptimal, and requests such as allocating
a grid of cores will be more time-consuming to service.

There are some basic challenges yet to be faced for SCC.
As a different operating system instance is operating on each
core, the execution of arbitrary pieces of code on another
core is complicated. Currently, we only support execution
of full programs on remote allocated cores, but we are work-
ing on also executing code of the granularity of functions
implementing a given interface instead of full programs. For
this reason, we currently have two separate versions of ex-
ecute() in our API (see Listing 2).

3.3 Experimental Results
Table 1 shows the overheads of the three basic constructs

of resource-aware programming, as measured when a single
application is running on each processor.

Table 1: Overheads of a single resource-aware appli-
cation (in cycles).
cores allocate execute (in 103) release

Tilera SCC Tilera SCC Tilera SCC
1 1147 1119 2708 8848 11381 1393
2 6269 1694 3797 6154 10232 1408
4 6402 2789 6332 6358 11084 2114
8 6904 5119 10165 40215 12439 3449
16 7480 10090 24411 41531 13298 6145
32 9267 19656 62404 6965 15758 12673

To compensate for the measurements’ variability due to
the interference of the operating system, we calculate the av-
erage of 100 executions. In order to isolate the overhead of
the execution phase (starting a new thread/process, joining
etc.) from the execution time of the particular application,
we use a function which only returns zero on TILEPro64,
and a program which only returns zero on SCC. This over-
head is to be compared with the execution time (per thread)
of the application, to determine the granularity at which it
makes sense to parallelize and still expect gains in real-world
applications.

For TILEPro64, offloading execution to an allocated core
incurs an overhead in the order of millions of cycles, which
rises almost linearly as the number of cores increases. There-
fore, our current approach would not be appropriate for
fine-grained parallelization. This high overhead is due to
the process/thread creation time, which is a costly opera-
tion. To reduce this overhead, alternative implementation
approaches need to be considered.

The high execution overhead can also be noticed on SCC,
although in that case it is more variable and does not have
a clear correlation to the number of cores. This results from
the distributed design of our library. Each new process is
started by the “server” process running on each core, thus
distributing the overhead. The results presented here are
preliminary, as this is is ongoing work.



4. REAL-TIME AND TEMPERATURE
AWARE MAPPING OPTIMIZATION

The increase in performance of modern real-time MPSoC
comes with an increase in power density and high on-chip
temperatures, which in turn may decrease the reliability
and performance of the system. Embedded systems like cell
phones or more sophisticated 3D architectures cannot afford
sufficient cooling or cheap cooling solutions. One way to ad-
dress these challenges is to optimize the system design for
both worst case performance and worst case temperature.
This requires ruling out mapping alternatives that do not
conform to real-time and peak temperature requirements of
the system already in early design stages. In this section,
we present the distributed operation layer (DOL) [33] as a
mapping optimization framework that considers both per-
formance and thermal characteristics of MPSoCs.

4.1 Mapping Optimization Loop
Figure 1 illustrates the task of mapping optimization as it

is considered in DOL [33]. Implementing the Y-chart design
paradigm [17], DOL considers parallel streaming applica-
tions represented as process networks and specified indepen-
dently from the distributed memory architecture. An opti-
mized mapping is found after the system-level exploration of
different design alternatives. Mapping refers to both bind-
ing application elements to computation and communication
resources, and scheduling on shared computation or commu-
nication resources. Ultimately, the same system-level speci-
fication of the application and architecture together with the
optimal mapping specification form the synthesizable system
specification, which will be implemented on the final system
or can be simulated on the virtual platform. Typically, we
use low level simulation in a feedback loop for automatically
calibrating our time and thermal analysis models used for
comparison of different mapping alternatives [9] [10] [34].
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Figure 1: Distributed operation layer (DOL) real-
time and thermal-aware mapping optimization.

4.2 Real-Time Analysis
To analyze timing properties and provide real-time guar-

antees on investigated systems, DOL integrates the modular
performance analysis (MPA) [35] [4].
In DOL, the MPAmodel is generated and calibrated based

on the same system specification as used for software synthe-
sis. The model preserves an accurate representation of the
system, but it requires properly estimated parameters. The
automated MPA model generation and calibration method
is described in [9] and [10].

Figure 2 shows an MPA representation of a basic system
with three processes mapped on two processors that com-
municate via a shared bus. Concretely, an MPA model is
composed of abstract elements representing (a) the compu-
tation and communication of an application, (b) resources
such as processors and interconnects, (c) resource sharing
methods, and (d) event streams that carry data and trigger
actors. The approach is based on real-time calculus (RTC)
[5], an extension of network calculus [20], that uses arrival
curves α(∆) for event streams, service curves β(∆) for re-
source availability, and derived workload curves γ(∆).
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Figure 2: MPA model of a system mapping three
communicating processes on two cores connected via
a bus; preemptive fixed priority scheduling is used
on all resources.

In the MPA abstraction, a component receives in the time
interval [s, t) a cumulative workload (trace) of R(s, t) time
units, upper-bounded by an upper arrival curve α, where

R(s, t) ≤ α(t− s) ∀s < t (1)

with α(0) = 0. For work-conserving scheduling, the accu-
mulated computing time Q(s, t) of the component in time
interval [s, t) is Q(s, t) = infs≤u≤t{(t−u)+R(s, u)}. Q(s, t)
is upper bounded by the workload curve γ(t− s), written as

Q(t−∆, t) ≤ γ(∆) = inf
0≤λ≤∆

{(∆− λ) + α(λ)}. (2)

4.3 Worst-Case Thermal Analysis
Similar to worst-case timing analysis in MPA, we aim to

bound the worst-case peak temperature, that is, the maxi-
mum temperature that can occur under all possible scenarios
of task executions. In real-time analysis, for work-conserving
real-time scheduling algorithms, the time critical instant is
to release all tasks/events as early as possible without vio-
lating arrival curve constraints [5].

For temperature analysis, the temperature critical instant
for a single processor is identified among infinitely many
traces that comply with the event stream specification in
MPA, in [27]. We demonstrate that the workload trace
that leads to the worst-case peak temperature at time in-
stant τ is to release events in time interval [τ − ∆, τ) such
that the processed computation in time interval [τ − ∆, τ)
is maximized under arrival-curve constraints. For example,
for periodic tasks with jitter, the worst-case execution time
occurs if burst arrivals and jitters happen at system initial-
ization, while the worst-case peak temperature occurs if the
system is first warmed up with periodic arrivals and then
suddenly heat up with burst arrivals and jitters. There-
fore, R∗(0,∆) = Q∗(0,∆) = γ(τ)− γ(τ −∆), with γ(∆) =
inf0≤λ≤∆{(∆− λ) +α(λ)} leads to worst-case temperature,
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Figure 3: Trade-off between worst case latency and
peak temperatures, depending on the mapping/-
placement of MJPEG process network on 3 cores.

among all possible traces. The upper bound on component
temperature T ∗(τ) is guaranteed at time τ , with a preci-
sion determined by steady-state temperature and thermal
parameters of the underlying hardware, see [27].
However, for multi processor systems, besides the worst-

case temperature due to self-heating described above, heat
transfer between components needs to be equally considered.
In addition to the upper bound on the temperature of each
processing component k, T ∗

k (τ), we have to construct the
worst-case temperature sequence Qi

∗(0,∆) for all neighbor
components i ∈ {1, n} with respect to the chosen compo-
nent k. The worst-case neighboring sequences will differ for
all analyzed components due to geometrical differences and
imply different transfer delays between cores. Finally, the
worst-case peak temperature of the system T ∗

S is computed
as the maximum of all component temperatures T ∗

k , that is,
T ∗
S = max (T ∗

1 , . . . , T
∗
n).

Often, finding the exact solution on worst-case heat trans-
fer is only possible via exhaustive search due to the huge
number of possibilities in event patterns and undetermined
locations of heat transfer functions maxima. To speed up
the calculations, we practically over-approximate neighbor-
ing temperatures by simply maximizing the convolution be-
tween mirrored burst activities and accumulated maximum
period of activity in the vicinity of the approximated max-
imum heat transfer function. In our experiments, the over-
approximation comes with a very small error of below 1% in
temperature variation.

4.4 Illustrative Results
In this section, DOL is used to optimize the mapping

of a motion JPEG (MJPEG) decoder on three ARM cores
communicating via a shared bus. Both worst-case latency
and worst-case peak temperature are considered during op-
timization. The MPARM virtual platform [1] is used to
determine the computational demand of different processes
and the power dissipation of ARM cores. Fixed priority pre-
emptive scheduling is used on all processors, while a TDMA
policy is employed on the bus. The application is driven by
a periodic input stream, with a period of 110 kcycles and a

jitter of 220 kcycles. Thermal parameters are obtained from
HotSpot [29].

Trade-off solutions on one, two, and three cores are il-
lustrated in Figure 3. The processors are identical, but
they have different thermodynamical properties, due to their
placement.

Solution pairs where only the placement the homogeneous
processors has been changed (e.g., mappings a and b), indi-
cate that physical placement cannot be ignored in tempera-
ture analysis. In our simple examples, we observe the same
latency in all pairs because of the homogeneous processor
structure and the symmetric shared bus, but more than 3K
maximum temperature variation.

No solution is optimal with respect to both latency and
temperature. The load balanced mapping (mappings e and
f) is a“cool”solution, due to small neighboring heat transfer
and shorter accumulated bursts. The two-processors solu-
tion (mappings c and d) has lower latency since it eliminates
some of the inter-processor communication overhead, but
it is characterized by the highest peak temperature due to
neighboring effect and long accumulated bursts. Note, that
mappings on fewer cores could present lower temperatures if
unused processors would be turned off. In our experiments,
unused processors still consume (non-negligible) idle power.

In conclusion, DOL guides the MPSoC mapping consid-
ering the non-trivial dependency between performance and
maximum temperature (and consequently reliability). Our
analytic models can guarantee the final performance and
correct function of the system, considering both functional
and non-functional properties.

5. AGING-AWARE MAPPING OF
APPLICATIONS TO MPSOCS

The third approach to application mapping focuses di-
rectly at lifetime reliability of MPSoCs, including potential
wearout failures. If the wearout is not taken into consider-
ation during the task allocation and scheduling (TAS) pro-
cess, some processors might age much faster than the others
and become the reliability bottleneck for the embedded sys-
tem. Most prior work in reliability-driven TAS solutions
assumes processors’ failure rates to be constant values (i.e.,
independent of their usage times), and thus is unable to
capture the system’s accumulated aging effects.

To tackle the above problem, we proposed the first work
that explicitly takes lifetime reliability into consideration
during the TAS process [14]. We propose an analytical
model to estimate the lifetime reliability of multiprocessor
platforms when executing periodical tasks, and we present a
novel lifetime reliability-aware task allocation and schedul-
ing algorithm based on simulated annealing technique. In
addition, to speed up the annealing process, several speedup
techniques are proposed to obtain an approximated mean
time to failure (MTTF).

In the above work, for the sake of simplicity, only a sin-
gle execution mode is considered. However, today’s complex
embedded systems usually work across a set of different in-
teracting applications and operational modes. Motivated
by the above, in [12], we showed how to conduct energy-
efficient task allocation and scheduling on MPSoC platforms
for such multi-mode embedded systems, taking the lifetime
reliability as a constraint. Since the lifetime reliability con-
straint is a system-wide constraint, it is not necessary to ap-



ply the same reliability constraint to every execution mode
for multi-mode MPSoC embedded systems. We first gener-
ate “good” solutions in terms of reliability and/or energy for
each execution mode and then search for an optimal combi-
nation of these to obtain minimized energy while satisfying
the system-wide lifetime reliability constraint.
Customers of electronic products may have different usage

strategies for the same system. This is referred as the usage
strategy deviation of the product. Because of this, a unified
task schedule for every execution mode generated at design-
stage may not be reliable or energy-efficient. In [13], we pro-
posed a novel customer-aware task allocation and scheduling
technique to tackle this problem, wherein initial schedules
are generated at design stage and each product is optimized
separately with online adjustment at regular intervals.

5.1 Problem Formulation
Based on the above, the problem of aging-aware mapping

of applications to MPSoCs can be formulated as follows:

Problem: Given

• q execution modes. A directed acyclic task graph Gk =
(T k, Ek) for mode k, wherein each node in T k = {τk

i :
1 ≤ i ≤ nk} represents a task in Gk, and Ek is the set of
directed arcs which represent precedence constraints.
Each task graph Gk has a deadline dk;

• The joint probability density function that the system
is in various modes fY(y), where yk represents the
probability that the system is in execution mode k;

• A platform-based MPSoC embedded system that con-
sists of a set of processors P = {Pj : 1 ≤ j ≤ m},
belonging to V categories;

• Execution time table {ck,i,j : 1 ≤ k ≤ q, 1 ≤ i ≤
nk, 1 ≤ j ≤ m}, where ck,i,j is the execution time of
task τk

i on processor Pj . If a task cannot be executed
by a certain processor, the corresponding ck,i,j is set
to infinity;

• Power consumption table {pk,i,j : 1 ≤ k ≤ q, 1 ≤ i ≤
nk, 1 ≤ j ≤ m}, where pk,i,j is the power consumption
of τk

i on processor Pj ;
• The target service life tL and the corresponding relia-

bility requirement η%;
• Failure mechanism parameters (e.g., activation energy

Ea of electromigration) and the corresponding failure
distributions;

To determine a periodical task schedule for each execution
mode such that the objective (e.g., energy consumption)
is optimized under specified system requirements, such as
the performance constraint that all tasks are finished before
deadlines and the reliability constraint that the expected
reliability at the target service life is no less than η%.

5.2 Lifetime Reliability Estimation
As suggested in JEP85 [16], we use a Weibull distribution

to describe the wearout effects for MPSoCs. Since the slope
parameter is shown to be nearly independent of tempera-
ture, the reliability of a single processor at time t can be
expressed as

R(t, T ) = e
−( t

α(T )
)β

, (3)

where T , α(T ), β represent temperature, the scale param-
eter, and the slope parameter in the Weibull distribution,

respectively. Processors’ operational temperatures vary sig-
nificantly with different applications. Typically, when a pro-
cessor is under usage or its “neighbors” on the floorplan are
being used, its temperature is higher than otherwise. There-
fore, instead of assuming T as a fixed value, we consider
the temperature variations in our analytical model for more
accuracy. Other factors that affect a processor’s lifetime
reliability are also considered in the model. Architecture
properties of processor cores are reflected on the slope pa-
rameter β, while the cores’ various operational voltages and
frequencies manifest themselves on α(T ).

Our analytical framework takes the hard error models as
inputs, and hence it is applicable to analyze any kind of fail-
ure mechanism, including the combined failure effects shown
in [30]. For the sake of simplicity, we take electromigration
failure mechanism as an example in our works. The scale
parameter is

α(T ) =
A0(J − Jcrit)

−ne
Ea
kT

Γ(1 + 1
β
)

, (4)

where A0 is a material-related constant, J = Vdd × f × pi
[6], and Jcrit is the critical current density.

The details of this lifetime reliability model, which cap-
tures the accumulated aging effects of IC hard errors, have
been illustrated in [14]. We resort to this model to estimate
the reliability stress of task schedules. Let αk(T ) be the ag-
ing effect of processor k in unit time provided operational
temperature T . The aging effect of processor k in a certain
task schedule is therefore

Ai,k =
∑

j

[wi,j,k(ρ) · 1{i,j→k}

αk(Ti,j,k)
−

wi,j,k(ρ) · 1{i,j→k}

αk(Tamb)

]

+
di

αk(Tamb)
, (5)

where, Tamb is the ambient temperature. Then, suppose the
system remains in mode i through its service life, we can
express system reliability at the target service life L with
the aging effect additivity proved in [14] as

Ri = exp
[

−
∑

k

(
Ai,k

maxj{di,j}
· L)βk

]

. (6)

5.3 Proposed TAS Technique
Various optimization techniques have been proposed in

the literature to address the TAS problem. In our works, we
used a simulated annealing (SA)-based algorithm. An effi-
cient solution representation together with the correspond-
ing moves is very importasnt for any SA-based technique.
To the best of our knowledge, we propose the first solution
that has a 1-to-1 correspondence between the representation
and the task schedule. Please refer to [13] for more details.

We mainly minimize the expected energy consumption un-
der performance and reliability constraints. The cost func-
tion used in our SA-based technique consists of three terms,
each for one objective or constraint, as below,

Cost = EY[Energy] + µ · I[∃i, k : eki > dk] (7)

+µ · I[Rsys(tL) < η%],

where EY indicates the expectation over usage strategy dis-
tribution Y, µ is a significantly large number, and the in-
dicator function I[A] equals to 1 if event A is true while 0
otherwise. Thus, the large cost µ is the penalty of violating



constraints. In case that no DVFS technique is enabled, the
computation of energy consumption in an execution mode
k is a trivial problem. We can simply sum up the energy
consumption of all tasks. Given the task schedule, the sec-
ond term in Eq. (8) can be determined by comparing the
finish time eki and deadline dki of tasks and it is independent
of usage strategy. As for the third term, with the similar
argument described in Section 5.2 and detailed in [12, 11],
we can obtain the expected aging rate and approximate the
reliability function Rsys(tL).

5.4 Experimental Results
The effectiveness of the proposed technique is demon-

strated as follows: First, task graphs are generated by TGFF [7]
and scheduled on hypothetic MPSoCs. The power consump-
tion values are randomly generated while the range is set
in agreement with the parameters published for IBM’s Pow-
erPC 750CL [15]. Although the proposed analytical model is
applicable for any failure mechanisms or their combinations,
because of the lack of public data on the relative weights of
different failure mechanisms, we consider a widely-used elec-
tromigration model [8] in our experiments.
To validate the effectiveness of our approximation for MTTF,

we take the valid task schedules obtained from our algorithm
and compute the approximated MTTF . Then, we derive
the accurate MTTF values by monitoring the temperature
variation using HotSpot for the same schedules and com-
pare them to the approximated values. As shown in Fig. 4
for a homogeneous 2-processor platform, our approximation
is able to reflect the quality of different solutions. That is, if
a schedule has larger mean time to failure, it tends to have
a larger approximated value.
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Figure 4: Comparison between Approximated
MTTF and Accurate Value.

In [14], we try to maximize the lifetime reliability of MP-
SoCs under performance constraints. The results obtained
by using our algorithm have a much longer lifetime compared
to a baseline thermal-aware scheduling algorithm, especially
when we can relax the schedule constraints. For instance,
when we relax the task deadline by 5%, the lifetime improve-
ment is 12.17% on a homogenous 6-processor platform and
41.93% on a heterogeneous 6-processor platform.
In [12], we conduct TAS for multi-mode MPSoCs to op-

timize energy consumption under lifetime reliability con-
straints. For the experimental design, our multi-mode so-
lution is able to achieve low energy consumption meeting
the lifetime reliability requirement, while the greedy heuris-
tic approach cannot provide a solution meeting this require-
ment. In addition, the multi-mode method is able to achieve
14.1% energy savings when compared to the earlier single-
mode approach.

In [13], a customer-aware task allocation and scheduling
technique is presented to adapt to the specific usage strat-
egy of individual products. We plot the measurements of all
sample products in terms of energy consumption and lifetime
reliability in Fig. 5. As can be observed from this figure, for
those chips that have larger reliability margin, the proposed
online adjustment leads to more energy reduction. In con-
trast, for the other chips we achieve reliability enhancement
by sacrificing some energy consumption.

6. FAULT-AWARE TASK SCHEDULING UN-
DER REAL-TIME CONSTRAINTS

The fourth approach to mapping reflects the fact that pro-
cessors might fail, despite temperature- and reliability-aware
application mapping. A traditional solution to tolerate a
processor failure is to use resource redundancy such as phys-
ical hardware replication or multiple software versions [18].
However, the adoption of redundancy is often avoided for
resource constrained embedded systems. Another approach
is to migrate the tasks on the faulty processor to other live
processors. Previous work on migration mostly focuses on
minimizing the overhead of task migration [22].

If an application is specified by a decidable dataflow graph,
SDF (synchronous dataflow) [21], or CSDF (cyclo-static data-
flow) graph, it is possible to construct a static schedule that
considers the possibility of processor failures.

However, we are concerned about throughput-oriented ap-
plications that may also have a latency constraint. For
those applications, we propose a novel technique, called a
re-scheduling technique, that re-schedules the task graph to
maximize the throughput under a given latency constraint
for each fault scenario. If a fault is detected at run-time, the
live processors fetch the saved schedule, perform migration,
and execute the remaining tasks of the current iteration.
We consider the migration overhead when constructing a
static schedule for each failure scenario. Since a fault may
occur on any processor in any time, we have to consider
the worst-case scenario to guarantee satisfaction of the la-
tency constraint. Since the scheduling problem is no easier
than an NP-hard problem of simple multiprocessor schedul-
ing, we use a genetic algorithm to obtain a near-optimal
re-scheduling result for each fault scenario.

In addition, the basic migration policies, preemptive and
non-preemptive, are compared. When a fault is detected,
the preemptive policy interrupts the current task and starts
the re-scheduling step immediately. In contrast, the non-
preemptive policy waits until the current task finishes, and
then starts the re-scheduling step. We investigate the ef-
fect of the migration policy on the latency of the current
iteration, and propose a hybrid policy to obtain better per-
formance.

6.1 Problem Definition
A homogeneous SDF graph is shown in figure 6(a) for

simple illustration. We assume that the task execution time
is given a priori on each processor core, as shown in fig-
ure 6(b). We also assume that an initial schedule which
maximizes the throughput is given for all available proces-
sor cores. Figure 6(c) displays an example schedule on four
processors ignoring the communication overhead for sim-
plicity. The target architecture can be any heterogeneous
multi-processor system onto which a static schedule can be
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Figure 5: Comparison of Initial Solution and Online Adjustment in Product Measurements.

Figure 6: (a) An example task graph, (b) task exe-
cution times, (c) schedule before a fault occurs, and
(d) schedule after a fault occurs on P2

found. While a fault can occur at any moment on any pro-
cessor during execution, we assume that the process failure
is checked at the task boundary. Then a fault scenario is
uniquely defined by a task that encounters a fault during
execution. The total number of fault scenarios is the to-
tal number of task invocations in an iteration of the input
graph. In the proposed technique, we consider all possible
fault scenarios. For instance, suppose that a fault occurs
on P2 while task 2 is executed. Then we re-schedule the
task graph onto the remaining live processors P1,P3,P4 to
maximize the throughput, which is displayed in Figure 6(d).
To compute the latency, we have to determine when to

perform task migration. Figure 7 illustrates three cases as-
suming that the processor failure is detected and notified at
the completion time of task 2. In case we perform migration
immediately after a fault is detected (preemptive policy), we
stop task 3 on P3 and task 4 on P1 in the middle of execu-
tion. Then each processor fetches the schedule of figure 6(d)
and performs task migration accordingly. Afterwards, it ex-
ecutes the tasks that have not been completed in the current
iteration, following the fetched schedule after failure.
The second case of figure 7 shows another policy, called

non-preemptive policy, where task migration is delayed un-
til the current task is completed. In this example, the non-
preemptive policy shows better performance than the pre-
emptive policy in terms of latency. We may use a hybrid
policy that applies both policies selectively. In the last case

of figure 7, task 3 on P3 is preempted but task 4 on P1 is
not. We can find a hybrid policy that gives the best result
at each fault scenario.

In summary, we aim to find a static schedule and a mi-
gration policy at each fault scenario, that maximize the
throughput satisfying a given latency constraint. By varying
the latency constraint, we could obtain the pareto-optimal
solutions.

Figure 7: Latency computation for three migration
policies

6.2 Proposed Task Re-scheduling Technique
The proposed technique consists of two parts; intensive

compile-time analysis to find schedules that maximize the
throughput with live processors for all fault scenarios, and
run-time management to migrate tasks and resume the ex-
ecution after fetching the saved schedule. The compile-time
analysis flow is outlined in figure 8.

For each fault scenario, we use a GA(genetic algorithm)-
based heuristic to find a static schedule that maximizes the
throughput under a latency constraint. A candidate solu-
tion represents the mapping and scheduling information of
all tasks on the live processors. If a hybrid migration policy
is chosen, the migration policy of each task is also encoded
in the candidate solution. For each candidate solution, we
first compute the worst-case latency of the application by
simulating the schedule as illustrated in figure 7. We filter
out the solutions that fail to meet the latency constraint



Figure 8: The compile-time analysis flows

Table 2: Task graphs used for experiments
Graph 1 2 3 4 5
Number of procs 3 4 3 8 8
Number of tasks 8 12 24 40 50

and choose the best schedule that maximizes the through-
put. We terminate the evolution process in case there is no
improvement of the throughput or the user-defined limit on
the number of evolution cycles is reached. Note that we can
obtain the Pareto-optimal solutions by varying the latency
constraints and performing the analysis repetitively.

6.3 Experimental Results
For experiments, task graphs are randomly generated and

the execution times of tasks are assigned randomly with
300% variation. The migration cost of each task is set to
50% of its execution time. Table 2 summarizes the number
of tasks in the task graph and the number of processors used
for each experiment.
In the first set of experiments, we compare the latencies

of the same schedule that maximizes the throughput ignor-
ing the latency constraint. It is observed that the hybrid
policy reduces the latency by up to 15% compared with
the other policies while there is no preference between pre-
emptive and non-preemptive policies. As the second set
of experiments, we find a throughput-maximized schedule
by varying latency constraints. Figure 9 shows the results
for graph 1 experiment, where three migration policies are
compared. The x-axis represents the latency constraint and
the y-axis represents the resultant throughput normalized to
the initial throughput before a fault occurs. Three groups
are distinguished depending on which processor fails. The
graph shows that the throughput degrades as the latency
constraint is tightened. In some cases, only the hybrid pol-
icy could find a solution.

7. CONCLUSION
The preceding sections have clearly stated the improve-

ment over the state of the start as it existed a few years
ago. Tools like the ones that were presented consider sev-

Figure 9: Throughput variation according to the la-
tency variation for graph 1 experiment

eral constraints and objectives. It is now possible to map
combinations of applications to MPSoCs, while performing
multi-objective optimization. The trend toward addressing
more objectives continues. An integration of all types of op-
timizations into a single tool would, however, make that tool
very complex. It would become even more complex if the
union of execution platforms and applications models would
need to be supposed. Nevertheless, tools like the ones that
were presented should soon become mature enough to be
used in really large industrial applications.

The authors would like to thank the large number of in-
stitutions supporting this work.
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